Supplementary information for

## Chemoselective reduction of nitrobenzenes to aminobenzenes having reducible groups by titanium(IV) oxide photocatalyst under gas- and metal- free conditions

## Introduction

|                                                            | Table S1Chemoselective reduction of NVB to AVB by various catalytic methods |                              |              |                  |         |                  |                   |            |
|------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|--------------|------------------|---------|------------------|-------------------|------------|
| Catalyst                                                   | Temp.<br>/K                                                                 | Solvent                      | Gas<br>phase | Pressure<br>/atm | Time /h | Conversion<br>/% | Selectivity<br>/% | References |
| TiO <sub>2</sub>                                           | 298                                                                         | 10% Water-ACN                | Ar           | 1.0              | 2       | 100              | 93                | This work  |
| Pt/C-H <sub>3</sub> PO <sub>2</sub> -VO(acac) <sub>2</sub> | 373                                                                         | Toluene                      | $H_2$        | 4.9              | -       | 95 <sup>a</sup>  |                   | 1.9        |
| 0.23  mol%-Au/TiO <sub>2</sub>                             | 393                                                                         | Toluene                      | $H_2$        | 8.9              | 6       | 99               | 96                | 10-12      |
| 0.39 mol%-Au/Fe <sub>2</sub> O <sub>3</sub>                | 403                                                                         | Toluene                      | $H_2$        | 11.8             | 9.5     | 95               | 95                | 10         |
| 0.2 wt%-Pt/C                                               | 313                                                                         | Toluene                      | $H_2$        | 3.0              | -       | 95               | 90                | 11         |
| 0.2 wt% Pt/TiO <sub>2</sub>                                | 313                                                                         | Toluene                      | $H_2$        | 3.0              | 6.5     | 95               | 93                | 11,12      |
| 5 wt%-Ni/TiO <sub>2</sub>                                  | 393                                                                         | Toluene                      | $H_2$        | 15               | 3       | 93               | 90                | 11         |
| 1wt%-Ru/TiO <sub>2</sub>                                   | 393                                                                         | Toluene                      | $H_2$        | 15               | 1.5     | 95               | 96                | 11         |
| 0.2  mol%-Au/Al <sub>2</sub> O                             | 393                                                                         | THF                          | $H_2$        | 30               | 2       | >99              | 99                | 13         |
| 2  mol%-Ag/Al <sub>2</sub> O <sub>3</sub>                  | 433                                                                         | THF                          | $H_2$        | 30               | 1       | >99              | 92                | 12,15      |
| 14 mol%-Ag/HT                                              | 423                                                                         | $\mathbf{DMA}^{\mathrm{b}}$  | CO           | 9.0              | 3       | >99              | >99               | 16         |
| $Rh_6(CO)_{16}$                                            | 353                                                                         | 2-Ethoxyethanol <sup>c</sup> | CO           | 4.0              | 5       | 91 <sup>a</sup>  |                   | 17         |
| $MoO_2Cl_2$                                                | 393                                                                         | Ethanol                      | $H_2$        | 50               | 48      | >99              | >99               | 18         |
| Ag@CeO <sub>2</sub>                                        | 383                                                                         | Dodecane                     | $H_2$        | 6                | 6       | >99              | 98                | 19         |

<sup>a</sup> Yield of AVB. No data for conversion and selectivity were presented.

<sup>b</sup> *N*,*N*-Dimethylacetamide

<sup>c</sup>Water and *N*,*N*,*N*',*N*'-tetramethyl-1,3-propanediamine were added.

## Experimental

Bare TiO<sub>2</sub> powder (Degussa P 25, 50 mg) was suspended in a mixture of acetonitrile (ACN, Wako Pure Chemical Industries, Osaka) and water (5 cm<sup>3</sup>) containing *m*-nitrovinylbenzene (NVB, 50 µmol, Sigma-Aldrich Japan, Tokyo) and oxalic acid (OA, 200 µmol, Wako Pure Chemical Industries, Osaka) in a test tube. The tube was sealed with a rubber septum and then photoirradiated at a wavelength >300 nm by a high-pressure mercury arc (400 W, Eiko-sha, Osaka) under argon (Ar) with magnetic stirring at 298 K. After the reaction, gas phase was analyzed by a gas chromatograph (Shimadzu, GC-8A equipped with MS-5A columns). After the suspension had been filtered to remove the particles, the amounts of NVB and product(s) were determined by high-performance liquid chromatography (JaAsco, UV-2075Plus detector, PU-2089Plus pump, equipped with an Inertsil ODS-3 column, eluent: aqueous sodium borate buffer/ACN = 50/50, flow rate: 0.5 cm<sup>3</sup> min<sup>-1</sup> at r.t). To obtain apparent quantum efficiency (AQE), a UV light-emitting diode (UV-LED, PJ-1505-2CA, CCS Inc, Kyoto, 927  $\mu$ W cm<sup>-2</sup>, maximum energy at  $\lambda = 366$  nm) was also used as a light source. A spectrum and light intensity of the UV-LED were determined using a spectroradiometer USR-45D (Ushio, Tokyo).

## Results

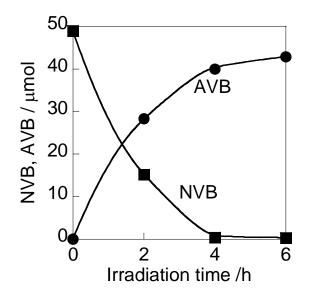



Figure S1 Time courses of amount of NVB remaining (squares) and amount of *m*-aminovinylbenzene (AVB) formed (circles) in an ACN suspension of  $TiO_2$  (50 mg) in the presence of OA (200 µmol) as a hole scavenger under deaerated conditions.

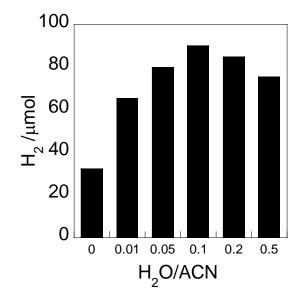



Figure S2 Effect of water content of solvents (water-ACN) on decomposition of OA ( $H_2$  evolution) in the suspensions of platinized TiO<sub>2</sub> for 2 h.

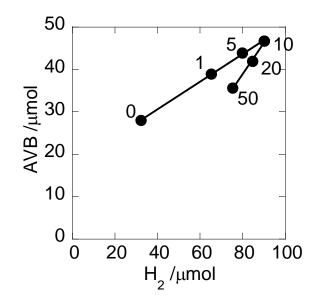



Figure S3 Correlations between amount of AVB formed and  $H_2$  evolved after 2-h and 30-min photoirradiation. Values in the figure indicate the content of water in reaction mixtures.