Supporting Information for

Enantioselective Direct Aminalization with Primary Carboxamides Catalyzed by Chiral Ammonium 1,1'-Binaphthyl-2,2'-disulfonates

Manabu Hatano,[†] Takuya Ozaki,[†] Yoshihiro Sugiura,[†] and Kazuaki Ishihara^{*,†,‡}

Graduate School of Engineering, Nagoya University[†] and Japan Science and Technology Agency (JST), CREST,[‡] Furo-cho, Chikusa Nagoya, 464-8603, Japan

ishihara@cc.nagoya-u.ac.jp

Table of Contents:

1.	General methods.	S2
2.	Analytucal data of amine 2g .	S2
3.	General procedure for the catalytic enantioselective aminal synthesis.	S2
4.	Products (Tables 1 and 2, and eqns. 1–3).	S3
5.	Conventional synthesis of 11 from azide carbonyl compound 10 (eqn. 4).	S 8
6.	Relationship between enantioselectivity of (R) -1 and that of aminal product 5a.	S9
7.	¹ H NMR analysis of the catalyst (R)-1–2g.	S9
8.	References.	S10

¹H NMR spectra were measured on a JEOL ECS-400 (400 MHz) 1. General methods. spectrometer at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), integration, and assignment. ¹³C NMR spectra were measured on JEOL ECS-400 (100 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.1 ppm). ¹⁹F NMR spectra were measured on a JEOL ECS-400 (376 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard ($CF_3C_6H_5$ at -63.24 ppm). High resolution mass spectral analyses (HRMS) was performed at Chemical Instrument Center, Nagoya University (JEOL JMS-700). Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. Optical rotations were measured on Rudolph Autopol IV digital polarimeter. High performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-10 AD coupled diode array-detector SPD-MA-10A-VP and chiral column of Daicel CHIRALCEL, CHIRALPAK; AD-H, AS-H, OD-3, OD-H, OZ-H, and IA. The products were purified by column chromatography on silica gel (E. Merck Art. 9385; Kanto Chemical Co., Inc. 37560). For thin-layer chromatography (TLC) analysis throughout this work, Merck TLC plates (silica gel 60G F₂₅₄ 0.25 mm) were used. Visualization was accomplished by UV light (254 nm), anisaldehyde, KMnO₄, and phosphomolybdic acid. In experiments that required dry solvents such as dichloromethane and 1,2-dichloroethane were distilled in prior to use.

2. Analytucal data of amines (2g).

2,6-Bis(2,4,6-triisopropylphenyl)pyridine (2g):¹ ¹H NMR (300 MHz, CDCl₃) δ 1.09 (d, *J* = 6.9 Hz, 12H), 1.11 (d, *J* = 6.9 Hz, 12H), 1.25 (d, *J* = 6.9 Hz, 12H), 2.58 (septet, *J* = 6.9 Hz, 4H), 2.90 (septet, *J* = 6.9 Hz, 2H), 7.02 (s, 2H), 7.26 (s, 4H), 7.75 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 23.7 (4C), 24.2 (4C), 24.7 (4C), 30.5 (4C), 34.5 (2C), 120.5 (4C), 122.9 (2C), 135.3 (2C), 136.9, 146.1 (4C), 148.6 (2C), 160.0 (2C). M.p. >300 °C (incapable measurement). IR(KBr) 2959, 2927, 2866, 1578, 1458 cm⁻¹. HRMS(ESI+) calcd for C₃₅H₅₀N [M+H]⁺ 484.3938, found 484.3938.

3. General procedure for the catalytic enantioselective aminal synthesis.

A well-dried pyrex Schlenk tube was charged with (R)-BINSA $(1)^2$ (8.3 mg, 0.02 mmol) and 2,6-bis-(2,4,6-triisopropylphenyl)pyridine (2g) (9.7 mg, 0.02 mmol) under a nitrogen atmosphere. 2 mL of CH₃CN was added, and the solution was stirred at room temperature for 30 min. The volatiles were removed in vacuo at room temperature for 1 h, and then MgSO₄ (80 mg, 0.66 mmol), 1.5 mL of CH₂Cl₂, and N-nucleophile (0.40 mmol) were added. The mixture was cooled to 0 °C and stirred for 30 min. Aldimine (3) (0.60 mmol) in CH_2Cl_2 (0.5 mL) was added via a cannula. The resultant mixture was then stirred at 0 °C for 1 h. 1 mL of saturated NaHCO₃ aqueous solution was poured into the reaction mixture, and the product was extracted with AcOEt (15 mL \times 2). The combined extracts were washed with brine (10 mL) and dried over MgSO₄. Method A: The organic phase was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography (eluent: $CHCl_3/AcOEt = 100/1$ to 5/1), to give the desired product with the original enantioselectivity. Method B: Powedered crude was washed with water and ethyl acetate. Recrystallization from chloroform-hexane gave the desired product with the enhanced enantioselectivity. The enantiomeric purity was determined by chiral HPLC analysis.

4. Products (Tables 1 and 2, and eqns. 1–3).

(S)-Benzyl ((4-methoxybenzamido)(phenyl)methyl)carbamate (5a): ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 5.10 (s, 2H), 6.27 (br, 1H), 6.55 (br, 1H), 6.89 (d, J = 8.1 Hz, 2H), 7.25-7.56 (m, 11H), 7.76 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 60.8, 67.0, 113.8 (2C),

125.8 (2C), 126.0, 128.0 (2C), 128.1, 128.2, 128.4 (2C), 128.6 (2C), 129.0 (2C), 136.1, 139.0, 155.7, 162.6, 166.5. M.p. 190–192 °C. IR (KBr) 3288, 1699, 1634, 1496, 1354, 1256, 1187, 1040 cm⁻¹. $[\alpha]_D^{26} = -5.2$ (*c* 1.0, CHCl₃, 78% ee (*S*)). HRMS (FAB+) calcd for C₂₃H₂₃N₂O₄ [M+H]⁺ 391.1658, found 391.1662. HPLC analysis; OD-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, $t_R = 30.0$ min (major, *S*), 41.1 min (minor, *R*).

(*S*)-Benzyl ((4-methoxybenzamido)(naphthalen-1-yl)methyl)carbamate (5b): ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 5.08 (s, 2H), 6.09 (br, 1H), 6.76-6.84 (m, 2H), 7.10-7.35 (m, 6H), 7.36-7.44 (m, 2H), 7.45-7.53 (m, 2H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.70 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.86 (m, 1H), 8.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 58.7, 67.0, 113.7 (2C), 123.0, 123.4, 125.0, 125.6, 125.9, 126.8, 128.0 (2C), 128.1, 128.4 (2C), 128.8, 129.0 (2C), 129.3, 130.2, 133.9, 134.1, 136.0, 155.3, 162.4, 166.1. M.p. 224–226 °C. IR (KBr) 3305, 1697, 1636, 1606, 1546, 1493, 1251, 1175, 1027 cm⁻¹. $[\alpha]_D^{27} = 5.3$ (*c* 1.0, CHCl₃, 81% ee (*S*)). HRMS (FAB+) calcd for C₂₇H₂₅N₂O₄ [M+H]⁺ 441.1814, found 441.1803. HPLC analysis; AS-H, *n*-hexane/*i*-PrOH = 4/1, 1.0 mL/min, *t*_R = 67.3 min (major, *S*), 91.0 min. (minor, *R*).

(*S*)-Benzyl ((4-fluorophenyl)(4-methoxybenzamido)methyl)carbamate (5c): ¹H NMR (400 MHz, CDCl₃) δ 3.85 (s, 3H), 5.10 (s, 2H), 6.25 (br, 1H), 6.50 (br, 1H), 6.90 (d, J = 8.1 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 7.26-7.52 (m, 8H), 7.75 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 60.4, 67.2, 113.9 (2C), 115.5 (d, $J_{C-F} = 21.9$ Hz, 2C), 125.8, 127.8 (d, $J_{C-F} = 8.5$ Hz, 2C), 128.1 (2C), 128.3, 128.6 (2C), 129.2 (2C), 135.0, 136.1, 155.9, 162.5 (d, $J_{C-F} = 246$ Hz), 162.7, 166.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.3. M.p. 202–205 °C. IR (KBr) 3293, 1698, 1639, 1606, 1495, 1253, 1037 cm⁻¹. [α]_D²⁸ = -3.3 (*c* 1.0, CHCl₃, 82% ee (*S*)). HRMS (FAB+) calcd for C₂₃H₂₂FN₂O₄ [M+H]⁺ 409.1564, found 409.1563. HPLC analysis; OD-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 24.8 min (major, *S*), 42.8 min. (minor, *R*).

(S)-Benzyl ((4-methoxybenzamido)(4-methoxyphenyl)methyl)carbamate (5d): ¹H NMR (400

MHz, CDCl₃) δ 3.79 (s, 3H), 3.85 (s, 3H), 5.11 (s, 2H), 6.10 (br, 1H), 6.52 (br, 1H), 6.88 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.1 Hz, 2H), 7.26-7.42 (m, 8H), 7.76 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 55.2, 55.4, 60.4, 67.0, 113.7 (2C), 114.0 (2C), 125.8, 127.0 (2C), 128.0 (2C), 128.2, 128.5 (2C), 129.0 (2C), 130.9, 136.0, 155.6, 159.3, 162.5, 166.4. M.p. 189–191 °C. IR (KBr) 3303, 1694, 1635, 1607, 1547, 1511, 1248, 1037 cm⁻¹. [α]_D²⁷ = 3.2 (*c* 1.0, CHCl₃, 87% ee (*S*)). HRMS (FAB+) calcd for C₂₄H₂₅N₂O₅ [M+H]⁺ 421.1763, found 421.1767. HPLC analysis; AD-H, *n*-hexane/*i*-PrOH = 4/1, 1.0 mL/min, *t*_R = 34.2 min (major, *S*), 49.2 min. (minor, *R*).

(*S*)-Benzyl (benzamido(phenyl)methyl)carbamate (5e): ¹H NMR (400 MHz, CDCl₃) δ 5.12 (s, 2H), 6.17 (br, 1H), 6.58 (br, 1H), 7.27-7.56 (m, 14H), 7.80 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 60.8, 67.0, 125.8 (2C), 127.2 (2C), 128.0 (2C), 128.1 (2C), 128.4 (2C), 128.5 (2C), 128.6 (2C), 131.8, 133.7, 136.1, 138.9, 155.7, 166.9. M.p. 182–184 °C. IR (KBr) 3298, 1697, 1644, 1509, 1351, 1245, 1038 cm⁻¹. $[\alpha]_D^{26} = 13.1$ (*c* 1.0, CHCl₃, 87% ee (*S*)). HRMS (FAB+) calcd for C₂₂H₂₁N₂O₃ [M+H]⁺ 361.1552, found 361.1554. HPLC analysis; OD-3 + OD-H, *n*-hexane/*i*-PrOH = 9/1, 0.5 mL/min, *t*_R = 99.2 min (major, *S*), 122.0 min (minor, *R*).

(*S*)-Benzyl (benzamido(4-methoxyphenyl)methyl)carbamate (5f): ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 5.12 (s, 2H), 6.06 (br, 1H), 6.54 (br, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.27-7.40 (m, 9H), 7.43 (t, J = 7.8 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.80 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 60.7, 67.2, 114.3 (2C), 127.2 (2C), 127.3 (2C), 128.2 (2C), 128.3, 128.6 (2C), 128.7 (2C), 131.1, 132.0, 133.9, 136.2, 155.7, 159.7, 167.0. M.p. 181–185 °C. IR (KBr) 3297, 1695, 1638, 1546, 1509, 1244, 1038 cm⁻¹. $[\alpha]_D^{28} = 5.9$ (*c* 1.0, CHCl₃, 89% ee (*S*)). HRMS (FAB+) calcd for C₂₃H₂₃N₂O₄ [M+H]⁺ 391.1658, found 391.1646. HPLC analysis; AS-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 63.4 min (minor, *R*), 71.8 min (major, *S*).

(*S*)-Benzyl ((4-chlorobenzamido)(phenyl)methyl)carbamate (5g): ¹H NMR (400 MHz, CDCl₃) δ 5.10 (s, 2H), 6.12 (br, 1H), 6.55 (br, 1H), 7.27-7.45 (m, 13H), 7.72 (br, 2H). ¹³C NMR (100

MHz, CDCl₃) δ 60.9, 67.1, 125.8 (2C), 128.0 (2C), 128.2, 128.3, 128.5 (2C), 128.6 (2C), 128.7 (2C), 128.8 (2C), 132.1, 136.0, 138.2, 138.6, 155.7, 165.9. M.p. 199–202 °C. IR (KBr) 3297, 1698, 1642, 1595, 1551, 1349, 1247, 1036 cm⁻¹. $[\alpha]_D{}^{26} = 6.4$ (*c* 1.0, CHCl₃, 80% ee (*S*)). HRMS (FAB+) calcd for C₂₂H₂₀ClN₂O₃ [M+H]⁺ 395.1162, found 395.1162. HPLC analysis; AD-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 35.5 min (minor, *R*), 47.7 min (major, *S*).

(*S*)-Benzyl ((4-chlorobenzamido)(4-methoxyphenyl)methyl)carbamate (5h): ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 5.10 (s, 2H), 6.03 (br, 1H), 6.52 (br, 1H), 6.88 (d, *J* = 8.7 Hz, 2H), 7.27-7.38 (m, 8H), 7.39 (d, *J* = 8.7 Hz, 2H), 7.72 (br, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 55.1, 60.0, 65.6, 113.6 (2C), 127.8 (4C), 128.3 (3C), 128.4 (2C), 129.5 (2C), 132.0, 132.7, 136.2, 136.9, 155.2, 158.8, 164.4. M.p. 197–201 °C. IR (KBr) 3279, 1698, 1637, 1509, 1248, 1035 cm⁻¹. $[\alpha]_D^{26} = 6.6$ (*c* 1.0, DMSO, 75% ee (*S*)). HRMS (FAB+) calcd for C₂₃H₂₂ClN₂O₄ [M+H]⁺ 425.1268, found 425.1257. HPLC analysis; AD-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 49.7 min (major, *S*), 59.0 min (minor, *R*).

(*S*)-Benzyl (acrylamido(phenyl)methyl)carbamate (5i): ¹H NMR (400 MHz, CDCl₃) δ 5.08 (d, *J* = 12.3 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 5.70 (d, *J* = 10.2 Hz, 1H), 6.12 (d, *J* = 16.8 Hz, 1H), 6.14 (m, 1H), 6.33 (d, *J* = 16.8 Hz, 1H), 6.45 (br, 1H), 6.91 (br, 1H), 7.37-7.42 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 60.3, 67.0, 125.8 (2C), 127.4, 127.9 (2C), 128.1 (2C), 128.4 (2C), 128.6 (2C), 130.4, 136.1, 138.7, 155.6, 165.1. M.p. 192–194 °C. IR (KBr) 3293, 1697, 1655, 1560, 1261, 1079, 1041 cm⁻¹. $[\alpha]_D^{26} = 6.5$ (*c* 1.0, CHCl₃, 77% ee (*S*)). HRMS (FAB+) calcd for C₁₈H₁₉N₂O₃ [M+H]⁺ 311.1396, found 311.1404. HPLC analysis; AD-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 22.5 min (minor, *R*), 43.1 min (major, *S*).

MeO

(S)-Benzyl (acrylamido(4-methoxyphenyl)methyl)carbamate (5j): ¹H NMR (400 MHz, CDCl₃)
δ 3.79 (s, 3H), 5.11 (s, 2H), 5.72 (d, J = 10.5 Hz, 1H), 5.94 (br, 1H), 6.10 (dd, J = 16.8, 10.5 Hz, 1H), 6.34 (d, J = 16.8 Hz, 1H), 6.41 (br, 1H), 6.71 (br, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.27-7.43 (m,

7H). ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 60.3, 67.1, 114.1 (2C), 127.1 (2C), 127.6, 128.1 (2C), 128.2, 128.5 (2C), 130.4, 130.8, 136.1, 155.5, 159.6, 164.9. M.p. 199–203 °C. IR (KBr) 3301, 1691, 1557, 1509, 1251, 1228, 1048 cm⁻¹. $[\alpha]_D^{27} = 2.0$ (*c* 1.0, CHCl₃, 89% ee (*S*)). HRMS (FAB+) calcd for C₁₉H₂₁N₂O₄ [M+H]⁺ 341.1501, found 341.1508. HPLC analysis; OZ-H × 2, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 70.6 min (minor, *R*), 76.2 min (major, *S*).

(*S*)-Benzyl (methacrylamido(phenyl)methyl)carbamate (5k): ¹H NMR (400 MHz, CDCl₃) δ 1.94 (s, 3H), 5.07 (d, *J* = 12.3 Hz, 1H), 5.11 (d, *J* = 12.3 Hz, 1H), 5.36 (s, 1H), 5.73 (s, 1H), 6.22 (br, 1H), 6.42 (br, 1H), 7.17 (br, 1H), 7.20-7.50 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 18.2, 60.4, 67.0, 120.6, 125.7 (2C), 128.0 (2C), 128.1, 128.2, 128.4 (2C), 128.6 (2C), 136.0, 138.7, 139.3, 155.6, 167.8. M.p. 160–164 °C. IR (KBr) 3308, 1696, 1654, 1621, 1550, 1507, 1252, 1040 cm⁻¹. [α]_D²⁶ = 13.2 (*c* 1.0, CHCl₃, 71% ee (*S*)). HRMS (FAB+) calcd for C₁₉H₂₁N₂O₃ [M+H]⁺ 325.1552, found 325.1558. HPLC analysis; IA, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 20.9 min (major, *S*), 24.7 min (minor, *R*).

(*S*)-Benzyl (phenyl(pivalamido)methyl)carbamate (5l): ¹H NMR (400 MHz, CDCl₃) δ 1.20 (s, 9H), 5.10 (d, J = 12.3 Hz, 1H), 5.14 (d, J = 12.3 Hz, 1H), 6.00 (br, 1H), 6.33 (br, 1H), 6.89 (br, 1H), 7.28-7.42 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 27.3 (3C), 38.7, 60.1, 66.9, 125.9 (2C), 128.0, 128.1 (2C), 128.2, 128.5 (2C), 128.6 (2C), 136.0, 138.9, 155.6, 178.2. M.p. 102–104 °C. IR (KBr) 3261, 2965, 1698, 1652, 1549, 1498, 1348, 1246, 1027 cm⁻¹. $[\alpha]_D^{26} = 13.2$ (*c* 1.0, CHCl₃, 56% ee (*S*)). HRMS (FAB+) calcd for C₂₀H₂₅N₂O₃ [M+H]⁺ 341.1865, found 341.1873. HPLC analysis; OZ-H, *n*-hexane/*i*-PrOH = 9/1, 0.5 mL/min, *t*_R = 17.0 min (major, *S*), 21.2 min (minor, *R*).

(*S*)-3,5-Dimethylbenzyl ((4-methoxybenzamido)(phenyl)methyl)carbamate (5m): ¹H NMR (400 MHz, CDCl₃) δ 2.27 (s, 6H), 3.84 (s, 3H), 5.04 (s, 2H), 6.15 (br, 1H), 6.56 (br, 1H), 6.87-7.00 (m, 5H), 7.27-7.40 (m, 4H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.77 (br, 2H). ¹³C NMR (100 MHz, CDCl₃)

δ 21.1 (2C), 55.4, 60.8, 67.1, 113.8 (2C), 125.8 (2C), 125.9 (2C), 126.0, 128.0, 128.6 (2C), 129.0 (2C), 129.8, 135.9, 138.1 (2C), 139.1, 155.8, 162.6, 166.4. M.p. 202–204 °C. IR (KBr) 3262, 1699, 1636, 1494, 1256, 1034 cm⁻¹. $[α]_D^{26} = 3.9$ (*c* 1.0, CHCl₃, 83% ee (*S*)). HRMS (FAB+) calcd for C₂₅H₂₇N₂O₄ [M+H]⁺ 419.1971, found 419.1990. HPLC analysis; AS-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, *t*_R = 40.0 min (major, *S*), 54.8 min (minor, *R*).

(*S*)-Allyl benzyl (phenylmethylene)dicarbamate (7): ¹H NMR (400 MHz, CDCl₃) δ 4.58 (d, J = 5.4 Hz, 2H), 5.12 (d, J = 12.3 Hz, 1H), 5.13 (d, J = 12.3 Hz, 1H), 5.21 (d, J = 10.2 Hz, 1H), 5.29 (d, J = 16.3 Hz, 1H), 5.70-6.00 (br, 2H), 6.27 (br, 1H), 7.25-7.45 (11H). ¹³C NMR (100 MHz, CDCl₃) δ 62.0, 66.0, 67.2, 118.1, 125.8 (2C), 128.3 (3C), 128.4, 128.6 (2C), 128.8 (2C), 132.5, 136.1, 138.8, 155.3, 155.4. M.p. 126–130 °C. IR (KBr) 3298, 1708, 1555, 1515, 1239, 1026 cm⁻¹. $[\alpha]_D^{28} = -3.3$ (*c* 1.0, CHCl₃, 77% ee (*S*)). HRMS (FAB+) calcd for C₁₉H₂₁N₂O₄ [M+H]⁺ 341.1501, found 341.1498. HPLC analysis; AS-H, *n*-hexane/*i*-PrOH = 4/1, 0.6 mL/min, $t_R = 36.4$ min (minor, *R*), 48.2 min (major, *S*).

5. Conventional synthesis of 11 from azide carbonyl compound 10 (eqn. 4).³

N-Methylmorpholine (0.24 mL, 2.2 mmol) was slowly added to a stirred solution of *N*-Benzyloxycarbonyl-L-phenylglycine (0.571 g, 2.0 mmol) in THF (12 mL). After 5 min, isobutyl chloroformate (0.285 mL, 2.2 mmol) was slowly added to the previously cooled reaction mixture at -20 °C and stirring was continued for 20 min at that temperature. The reaction mixture was warmed to 0 °C and a solution of KH₂PO₄ (0.136 g, 1.0 mmol) in H₂O (1 mL) was added in one portion, after 5 min followed by a solution of KH₂PO₄ (1.36 g, 10 mmol) and NaN₃ (0.33 g, 5.0 mmol) in H₂O (7 mL). After 1 h, 10 mL of saturated NaHCO₃ aqueous solution was poured into the reaction mixture, and the product was extracted with AcOEt (15 mL × 3). The

combined extracts were washed with NH₄Cl aqueous solution (10 mL), brine (10 mL), and dried over MgSO₄. The organic phase was concentrated under reduced pressure and the crude product was obtained in quantitative yield. Obtained **8** was used in next step without further purification. ¹H NMR (400 MHz, THF-*d*₄) δ 5.07 (s, 2H), 6.34 (br, 1H), 7.10-7.55 (m, 11H), 8.00 (br, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 61.5, 65.6, 126.5 (2C), 127.7, 127.9 (2C), 128.0, 128.3 (4C), 136.8, 138.9, 155.0, 155.2. IR (KBr) 3270, 2140, 1702, 1556, 1512, 1234, 1041 cm⁻¹. HRMS (FAB+) calcd for C₁₆H₁₆N₅O₃ [M+H]⁺ 326.1253, found 326.1247. The 1,2-dichloroethane solution of **8** (32.5 mg, 0.1 mmol) and 4-(dimethylamino)pyridine (1.2 mg, 0.01 mmol), triethylamine (16.7 µL, 0.12 mmol) and allyl alcohol (40 µL, 0.6 mmol) were added at room temperature. After 48 h, 10 mL of saturated NaHCO₃ aqueous solution was poured into the reaction mixture, and the product was extracted with AcOEt (15 mL × 3). The combined extracts were washed with brine (10 mL), and dried over MgSO₄. The organic phase was concentrated under reduced pressure and the crude product was purified by preparative thin-layer chromatography (eluent: hexane/AcOEt = 3/1), to give **7** in 17% yield (5.8 mg) with 29% ee (*S*). The absolute stereochemistry of **5** was deduced from that of **7**.

6. Relationship between enantioselectivity of (R)-1 and that of aminal product 5a.

We examined the relationship between the enantioselectivity of (R)-1 and that of aminal product **5a** (Fig. S1). (*R*)-1 is a disulfonic acid, and thus not only monomeric but also oligomeric structures of the catalysts in situ might be possible. However, a nonlinear effect was not observed in this catalysis, and a 1 to 1 monomeric complex of (*R*)-1 and 2g was strongly suggested.

Fig. S1 Absence of a nonlinear effect between the enantioselectivity of (*R*)-1 and that of 5a.

7. ¹H NMR analysis of the catalyst (R)-1–2g.

A preliminary ¹H NMR (CDCl₃) analysis of the catalysts generated in situ from (*R*)-1 (1 equiv) and **2g** (0–2 equiv) was performed (Fig. S2). The catalyst was prepared in CH₃CN according to the general procedure, the volatiles were removed under reduced pressure, and CDCl₃ was added.

¹H NMR spectra of (*R*)-1 and 2g as standard samples are shown in Figs. S2a and S2b, respectively. A mixture of (*R*)-1 (1 equiv) and 2g (1 equiv) gave sharp peaks at 6.75–7.80 ppm and a broad peak at 8.45 ppm with upfield shifts compared to the results with (*R*)-1 or 2g (Fig. S2c). Moreover, a mixture of (*R*)-1 (1 equiv) and 2g (2 equiv) gave peaks similar to those for a mixture of (*R*)-1 (1 equiv) and 2g (2 equiv) gave peaks similar to those for a mixture of (*R*)-1 (1 equiv) and 2g (1 equiv) (Fig. S2d). Although these ¹H NMR analyses cannot be considered solid evidence for the structure of the ammonium salt, and further studies on the structure are necessary, a 1:1 complex of (*R*)-1 and 2g is strongly suggested. Moreover, the absence of a nonlinear effect (Fig. S1) between the enantioselectivity of (*R*)-1 and that of aminal product 5a also supports the assumption of a 1:1 monomeric complex. Ammonium salts in situ might be in equilibrium, as shown in Fig. S3. Therefore, the balance of the complexes might be in favor of a 1:1 monomeric complex.

Fig. S2 ¹H NMR (CDCl₃) analysis of the catalyst (R)-1–2g.

Fig. S3 ¹H NMR analysis of the catalyst (R)-1–2g.

8. References.

- (1) T. Pell, D. P. Mills, A. J. Blake, W. Lewis and S. T. Liddle, *Polyhedron*, 29, 120 (2010).
- (2) M. Hatano, T. Maki, K. Moriyama, M. Arinobe and K. Ishihara, J. Am. Chem. Soc., 130, 16858 (2008).
- (3) G. Verardo, C. D. Venneri, G. Esposito and P. Strazzolini, Eur. J. Org. Chem., 1376 (2011).

