Supporting Information

Organosilicon-mediated Regioselective Acetylation of Carbohydrates

Yixuan Zhou^a, Olof Ramström^b and Hai Dong^{a,*}

^a Huazhong University of Science & Technology, School of Chemistry & Chemical Engineering, Luoyu

Road 1037, 430074, Wuhan, P. R. China, Email: hdong@mail.hust.edu.cn.

^bRoyal Institute of Technology (KTH), Department of Chemistry, Teknikringen 30, S-10044,

Stockholm, Sweden

Contents

General methods	S2
Figure S1	S3
Figure S2	S4
Table S1	S5
Table S2	S6
Table S3	S 7
¹ H-NMR of compound 2 , 5 , 7	S 7
¹ H-NMR of compound 9 , 11 , 13 , 17 , 20 , 23	S 8
¹ H-NMR of compound 26 , 28 , 30 , 32 and 34	S9
References	S9

General: All commercially available starting materials and solvents were of reagent grade and used without further purification. Chemical reactions were monitored with thin-layer chromatography using precoated silica gel 60 (0.25 mm thickness) plates. Flash column chromatography was performed on silica gel 60 (SDS 0.040-0.063 mm). ¹H NMR spectra were recorded at 298K in CDCl₃, using the residual signals from CHCl₃ (¹H: $\delta = 7.25$ ppm) as internal standard. ¹H peak assignments were made by first order analysis of the spectra, supported by standard ¹H-¹H correlation spectroscopy (COSY).

General method for organosilicon-mediated regioselective acylation: The 1,2- or 1,3-diol reactants (100 mg) were allowed to react with dimethyl dimethoxysilane (2.0 eq.) or methyl trimethoxysilane (1.2 eq.) in acetonitrile (10 mL) at 80 °C for 5 hours. After removal of most of the solvent, the residues were allowed to react with acetic anhydride or acetic chloride (1.1 eq.) in dry acetonitrile (1 mL) at 40 °C for 6-12 hours in the presence of tetrabutylammonium acetate (0.3 eq.). The reaction mixture was directly purified by flash column chromatography on silica gel (eluent: hexanes/EtOAc = 5:1 to 1:2), affording the pure selectively protected derivatives.

General method for obtaining product ratios: The 1,2- or 1,3-diol reactants (50 mg) were allowed to react with methyl trimethoxysilane (1.2 eq.) in acetonitrile (10 mL) at 80 °C for 5 hours. After removal of most of the solvent, the residues were allowed to react with acetic anhydride (1.1 eq.) in dry acetonitrile (1 mL) at 40 °C for 6 hours in the presence of tetrabutylammonium acetate (0.3 eq.). Samples of the reaction mixtures (0.2 mL) were withdrawn, dried under vacuum, and the product distribution analyzed using ¹H-NMR spectroscopy.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S1. ¹H-NMR analysis of the formation of the dioxasilolane intermediate for 4,6-*O*-benzylidene- β -D-galactoside **1.** The ratio of a:b decreased from 3:9 for methyl trimethoxysilane into 3:4. (The value of 10.56 includes 6 H from compound **1** and 4 H from SiOMe).

Figure S2. ¹H-NMR analysis of the formation of the dioxasilolane intermediate for 4,6-*O*-benzylidene- α -D-glucoside **4**. The ratio of a:b decreased from 3:9 for methyl trimethoxysilane into 4:4.

Entry	Reactant	Major product	Minor product	NMR
5		5 1	L.	ratio
1	Ph O HO OH OH OH 1	Ph O AcO OH O O O O O O O O O O O O O O O O O	Ph O HO OAc 3	76/24
2	Ph O O HO HO 4 MO Me	Ph O O S HO ACO OMe	Ph O O AcO HO 14 OMe	67/33
3	HO OBn HO OBn 6	HO_OBn AcO_OBn 7	AcO OBn HO OBn OMe OBn 15	80/20
4	Ph O OH HO 16 OMe	Ph O OH Aco 17 OMe	Ph O OAc HO 18 OMe	73/27
5	Ph O HO HO HO O O O O O I 19 O O Me	Ph O HO AcO O Me	Ph O AcO HO O HO O Me	57/43
6	Ph O O OMe HO OH 22	Ph 0 0 Aco OH 23	Ph O O OMe HO OAc 24	56/44
7	HO BOO BOO Me	HO DOC BNO OMe	-	>93
8	HO OH BnO BnO OMe	HO OAc BnO 0 11 BnO OMe	-	>96
9	HO BnO OBn 25	HO BnO OBn 26	-	>94
10	HO OH BnO OBn 27	HO OAc BnO OBn 28	-	>92
11	HO OBn HO 29 OMe	AcO HO BnO OMe	-	>91
12	HO OH Ph 12	HO OAc Ph 13	-	>90
13	OH HO JI	OH HOOAc 32	-	>95
14	HOOH 33	Aco OH 34	-	>90

Table S1. Product distribution in organosilicon-mediated acetylation of 1,2- and 1,3-diols.^a

^a Reaction conditions: reactant (50 mg), TBAOAc (0.3 eq.), MeSi(OMe)₃ (1.2 eq.) and Ac₂O (1.1 eq.), 40 °C, 6h.

Entry	Desetant	Majar product	Yields	Yields
Entry	Keactant	Major product	(organosilicon)	(organotin)
1	Ph O HO O O O O O O O Me O O O O O O O O O O O	Ph O Aco OH 2	74	72 ¹
2 ^a	Ph O O 4 HO HO OMe	Ph O O HO AcO 5 OMe	63	72 ²
3	HO OBn HO OBn 6	HO OBn Aco OMe OBn 7	79	85 ³
4 ^a	Ph O OH HO 16 OMe	Ph O OH AcO 17 OMe	61	67 ⁴
5 ^b	HO BNO BNO BNO OMe	HO BOO BOO Me	80	79-90 ⁵
6	HO OH BnO BnO 10 OMe	HO OAC BnO BnO 11 Me	84	85
7 ^b	HO BnO OBn 25	HO BnO OBn 26	86	79-90 ⁵
8	HO OH BnO OBn 27	HO OAc BnO OBn OMe OBn 28	81	85
9 ^b	HO HO BnO OMe	AcO HO BNO OMe	82	79-90 ⁵
10 ^c	HOOH Ph 12	HO OAc Ph 13	85	70-84 ⁶
11 ^c	ОН НООН 31	OH HOOAc 32	73	70-84 ⁶
12 ^c	HO_OH	AcOOHOH	73	70-84 ⁶

Table S2. Isolated yields in organosilicon/organotin-mediated acylation.

^a Benzoyl chloride as acylation reagent; organotin method. ^b Similar 1,3-diol configuration; slightly different substrate; benzoyl chloride as acylation reagent; organotin method. ^c Similar 1,2-diol configuration, slightly different substrate.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Substrate	Starting material	2-OAc	3-OAc	4-OAc	6-OAc	di-OAc
Ph O HO HO OH 1	0.8	0.07	0.13			
Ph O O HO HO 4 HO OMe	0.16	0.4	0.4			0.04
HO_OBn HO_OOMe OBn 6	0.68		0.17	0.15		
HO BNO BNO OME	0.36				0.64	

Table S3. Product distribution in acylation using acetyl chloride/ triethylamine.^a

^a Reaction conditions: Substrate (1 eq.), AcCl (1 eq.), DCM, TEA (2 eq.), 0 °C, 24 h.

¹H-NMR data

Methyl 3-*O*-acetyl-4,6-*O*-benzylidene- β -D-galactopyranoside (2)⁷

¹H-NMR (CDCl₃, 300 MHz): δ 7.48-7.38 (aromatic protons), 5.50 (1H, s, PhCH), 4.86 (1H, dd, *J* = 3.5, 10.0 Hz, H₃), 4.40 (1H, dd, *J* = 1.0, 3.5 Hz, H₆), 4.34 (1H, dd, *J* = 1.5, 12.5 Hz, H₆), 4.29 (1H, d, *J* = 7.5 Hz, H₁), 4.07 (1H, dd, *J* = 1.5, 7.5 Hz, H₄), 4.01 (1H, dd, *J* = 7.5, 10.0 Hz, H₂), 3.59 (3H, s, OCH₃), 3.51 (1H, d, *J* = 1.5 Hz, H₅), 2.43 (1H, br, OH), 2.14 (3H, s, OAc).

Methyl 2-*O*-acetyl-4,6-*O*-benzylidene-α-D-glucopyranoside (5)⁸

¹H-NMR (CDCl₃, 400 MHz): δ 7.50-7.30 (aromatic protons), 5.53 (1H, s, PhCH), 4.93 (1H, d, *J* = 3.6 Hz, H₁), 4.78 (1H, t, *J* = 9.6 Hz, H₂), 4.28 (1H, dd, *J* = 4.0, 10.0 Hz, H₆), 4.15 (1H, t, *J* = 10.0 Hz, H₃), 3.85 (1H, td, *J* = 10.0, 10.0 Hz, H₅), 3.74 (1H, t, H₆), 3.53 (1H, t, H₄), 3.39 (3H, s, OCH₃), 2.14 (3H, s, OAc).

Methyl 3-O-acetyl-2,6-di-O-benzyl-β-D-galactopyranoside (7)⁹

¹H-NMR (CDCl₃, 400 MHz): δ 7.26-7.36 (10H, m, 2xOBn), 4.88, 4.60, 4.59, 4.56 (4H, d, $J_{a,b}$ = 12.1 Hz, 2xOCH_aH_bC₆H₅), 4.35 (1H, d, J = 7.9 Hz, H₁), 3.76 (2H, dd, J = 4.6, 3.0 Hz, 2xH₆), 3.61 (1H, td, J = 9.3, 3.8 Hz, H₄), 3.56 (3H, s, OCH₃), 3.46-3.51 (1H, m, H₅), 3.33 (1H, dd, J = 7.9, 9.3 Hz, H₂), 2.92 (1H, d, J = 3.8 Hz, OH), 2.00 (3H, s, OAc).

Methyl 2,3-di-*O*-benzyl-6-*O*-acetyl-α-D-glucopyranoside (9)¹⁰

¹H-NMR (CDCl₃, 400 MHz): δ 7.46-7.26 (10H, m, 2xOBn), 5.00 (1H, d, *J* = 11.2 Hz, OCH₂C₆H₅), 4.78 (1H, d, *J* = 12.2 Hz, OCH₂C₆H₅), 4.75 (1H, d, *J* = 11.2 Hz, OCH₂C₆H₅), 4.65 (1H, d, *J* = 12.2 Hz, OCH₂C₆H₅), 4.62 (1H, d, *J* = 3.6 Hz, H₁), 4.41 (1H, dd, *J* = 12.2, 4.6 Hz, H₆), 4.21 (1H, dd, *J* = 12.2, 1.8 Hz, H₆), 3.79 (1H, merged dd, *J* = 9.3, 9.0 Hz, H₃), 3.76-3.72 (1H, m, H₅), 3.50 (1H, dd, *J* = 9.5, 3.6 Hz, H₂), 3.44-3.39 (1H, m, H₄), 3.38 (3H, s, OCH₃), 2.47 (1H, bs, OH), 2.08 (3H, s, OAc).

Methyl 2,3-di-*O*-benzyl-6-*O*-acetyl-α-D-galactopyranoside (11)¹¹

¹H-NMR (DMSO, 400 MHz): δ 7.41-7.27 (10H, m, 2xOCH₂C₆H₅), 4.96 (1H, d, J = 4.8 Hz, 4-OH), 4.79 (1H, d, J = 3.6 Hz, H₁), 4.72-4.56 (4H, m, 2xOCH₂C₆H₅), 4.15-4.11 (2H, m, 2xH₆), 4.05 (1H, t, H₄), 3.80-3.74 (2H, m, H₂, H₅), 3.69-3.65 (1H, dd, J = 10.4, 3.0 Hz, H₃), 3.26 (3H, s, OCH₃), 2.02 (3H, s, OAc).

3,4-Dihydroxy-4-phenylbutan-2-one (13)¹²

¹H-NMR (CDCl₃, 400 MHz): δ 7.42-7.28 (aromatic protons), 4.98-4.95 (1H, dd, J = 8.4, 3.2 Hz, CH), 4.32-4.15 (2H, m, CH₂), 2.12 (3H, s, OAc).

Methyl 3-O-acetyl-4,6-O-benzylidene-α-D-mannopyranoside (17)¹³

¹H-NMR (CDCl₃, 400 MHz): δ 7.46–7.26 (aromatic protons), 5.55 (1H, s, PhCH), 5.32 (1H, dd, *J* = 10.1, 3.3 Hz, H₃), 4.75 (1H, d, *J* = 1.5 Hz, H₁), 4.30 (1H, dd, *J* = 10.1, 4.2 Hz, H₆), 4.15 (1H, dd, *J* = 3.3, 1.5 Hz, H₂), 4.09 (1H, dd, *J* = 10.1, 10.1 Hz, H₆), 3.93 (1H, m, H₅), 3.84 (1H, dd, *J* = 10.1, 10.1 Hz, H₄), 3.40 (3H, s, OCH₃), 2.13 (3H, s, OAc).

Methyl 2-*O*-acetyl-4,6-*O*-benzylidene-α-D-galactopyranoside (20)⁷

¹H-NMR (CDCl₃, 300 MHz): δ 7.50-7.37 (aromatic protons), 5.57 (1H, s, PhCH), 5.16 (1H, dd, J = 3.6, 10.2 Hz, H₂), 4.98 (1H, d, J = 3.6 Hz, H₁), 4.28-4.32 (2H, m, H₆, H₅), 4.07-4.12 (2H, m, H₄, H₆), 3.74 (d, 1H, J = 10.5 Hz, H₃), 3.40 (3H, s, OCH₃), 2.40 (1H, br, OH), 2.15 (3H, s, OAc).

Methyl 3-*O*-acetyl-4,6-*O*-benzylidene-β-D-glucopyranoside (23)¹⁴

¹H-NMR (CDCl₃, 300 MHz): δ 5.50 (lH, s, PhCH), 5.21 (lH, t, *J* = 9.3 Hz, H₃), 4.38 (lH, d, *J* = 8.7 Hz, H₁), 4.36 (lH, dd, *J* = 10.5, 5.4 Hz, H₆), 3.78 (lH, t, 10.5 Hz, H₆), 3.63 (1H, t, *J* = 9.8 Hz, H₄), 3.58 (3H, s, OCH₃), 2.13 (3H, s, OAc).

Methyl 2,3-di-*O*-benzyl-6-*O*-acetyl-β-D-glucopyranoside (26)¹⁵

¹H-NMR (DMSO, 400 MHz): δ 7.35-7.25 (10H, m, 2xOCH₂C₆H₅), 5.54 (1H, d, J = 6.0 Hz, 4-OH), 4.37 (1H, d, J = 8.0 Hz, H₁), 4.85-4.62 (4H, m, 2xOCH₂C₆H₅), 4.30-4.27 (1H, dd, J = 12.0, 1.6 Hz , H₆), 4.14-4.10 (1H, dd, J = 12.0, 6.2 Hz, H₆), 3.47-3.34 (3H, m, H₃, H₄, H₅), 3.44 (3H, s, OCH₃), 2.05 (3H, s, OAc).

Methyl 2,3-di-O-benzyl-6-O-acetyl-β-D-galactopyranoside (28)¹¹

¹H-NMR (DMSO, 400 MHz): δ 7.39-7.25 (10H, m, 2xOCH₂C₆H₅), 4.75 (1H, d, J = 5.6 Hz, 4-OH), 4.76-4.51 (4H, m, 2xOCH₂C₆H₅), 4.28 (1H, d, J = 7.6 Hz, H₁), 4.22-4.13 (2H, m, H_{6a}, H_{6b}), 3.97 (1H, t, H₄), 3.66 (1H, t, H₅), 3.49 (2H, s, H₂, H₃), 3.48 (3H, s, OCH₃), 2.04 (3H, s, OAc).

Methyl 6-O-acetyl-2,3-di-O-benzyl-α-D-mannopyranoside (30)¹⁶

¹H-NMR (DMSO, 400 MHz): δ 7.39-7.28 (10H, m, 2xOCH₂C₆H₅), 5.32 (1H, d, J = 6.0 Hz, 4-OH), 4.77 (1H, d, J = 0.8 Hz, H₁), 4.65-4.62 (4H, m, 2xOCH₂C₆H₅), 4.35-4.31 (1H, dd, J = 12.0, 1.8 Hz, H₆), 4.10-4.03 (1H, m, H₆), 3.81 (1H, t, H₂), 3.69-3.61 (1H, m, H₄), 3.66-3.51 (2H, m, H₃, H₅), 3.26 (3H, s, OCH₃), 2.02 (3H, s, OAc).

2,3-Dihydroxypropyl acetate (32)¹⁷

¹H-NMR (CDCl₃, 400 MHz): δ 4.20-4.10 (2H, m), 3.93 (1H, t, *J* = 4.8 Hz), 3.69 (1H, dd, *J* = 3.6, 11.6 Hz), 3.59 (1H, dd, *J* = 6.0, 11.6 Hz), 3.19-3.09 (1H, bs, OH), 2.80-2.70 (1H, bs, OH), 2.11 (3H, s, Oac).

2-hydroxypropyl acetate (34)¹⁸

¹H-NMR (DMSO, 400 MHz): δ 3.60 (1H, m, CH), 3.30–3.12 (2H, m, CH₂), 2.00 (3H, s, Oac), 1.18 (3H, d, J = 6.3 Hz, CH₃).

References

- (1) Z. C. Pei, H. Dong, R. Caraballo, O. Ramström, Eur. J. Org. Chem. 2007, 4927-4934.
- (2) D. J. Jenkins, B. V. L. Potter, Carbohydr. Res. 1994, 265, 145-149.
- (3) H. Dong, Y. X. Zhou, X. L. Pan, F. C. Cui, W. Liu, J. Y. Liu, O. Ramström, J. Org. Chem. 2012, 77, 1457-1467.
- (4) X. Wu, F. Kong, Carbohydr. Res. 1987, 162, 166-169.
- (5) a) Y. Tsuda, M. E. Haque, K. Yoshimoto, Chem. Pharm. Bull. 1983, 31, 1612-1624. b) S. David, A. Thieffry, J. Chem. Soc., Perkin Trans. 1 1979, 1568-1573.

- (6) a) G. –J. Boons, G. H. Castle, J. A. Clase, P. Grice, S. V. Ley, C. Pinel, Synlett. 1993, 913-914. b) J. R. Marino-Albernas, R. Bittman, A. Peters, E. Mayhew, J. Med. Chem., 1996, 39, 3241-3247.
- (7) H. S. Wang, J. She, L. H. Zhang, X. S. Ye, J. Org. Chem.. 2004, 69, 5774-5777.
- (8) M. Adinolfi, A. Iadonisi, A. Pastore, Tetrahedron Lett. 2009, 50, 7051-7054.
- (9) H. Dong, Z. C. Pei, O. Ramström, J. Org. Chem. 2006, 71, 3306-3309.
- (10) G. K. Rawal, S. Rani, A. Kumar, Y. D. Vankar, Tetrahedron Lett. 2006, 47, 9117-9120.
- (11) S. Oscarson, M. Szoenyi, J. Carbohydr. Chem. 1989, 8, 663-668.
- (12) P. S. Prathima, C. U. Maheswari, K. Srinivas, M. M. Rao, Tetrahedron Lett. 2010, 51, 5771-5774.
- (13) W. Zhao, F. Kong, Carbohydr. Res. 2004, 339, 1779-1786.
- (14) B. Danieli, M. Luisetti, G. Sampognaro, G. Carrea, S. Riva, J. Mol. Catal. B: Enzym. 1997, 3, 193-201.
- (15) R. Albert, K. Dax, A. E. Stütz, H. Weidmann, J. Carbohydr. Chem. 1983, 2, 279-92.
- (16) H. B. Borén, P. J. Garegg, L. Kenne, A. Pilotti, S. Svensson, C. G. Swahn, Acta Chem. Scand. 1973, 27, 2740-2748.
- (17) P. Gopinath, S. Nilaya, M. M. Muraleedharan, Org. Lett. 2011, 8, 1932-1935.
- (18) S. Kawamorita, G. Hamasaka, H. Ohmiya, K. Hara, A. Fukuoka, M. Sawamura, Org. Lett. 2008, 20, 4697-4700.