Electronic Supplementary Information

Compositional dependence of the stability of AuCu alloy nanoparticles

Zhichuan Xu, ^a Erica Lai, ^a Yang Shao-Horn, ^a* and Kimberly Hamad-Schifferli^{a,b}*

^aDepartment of Mechanical Engineering, ^bDepartment of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA. E-mail: schiffer@mit.edu, shaohorn@mit.edu

Experimental details

Au_xCu_v NP synthesis

Au_xCu_y NPs were synthesized by reducing HAuCl₄ and Cu(acac)₂ in oleylamine. In a typical synthesis of Au₁Cu₁, 0.25 mmol HAuCl₄, 0.25 mmol Cu(acac)₂, and 2 mmol 1,2-hexadecanediol were mixed and dissolved in 10 mL oleylamine at 40 °C under an Ar blanket. The solution was then heated to 160 °C at a heating rate of 2 °C min⁻¹. The reaction was maintained at 160 °C for 2 h and then cooled down to room temperature. As-prepared AuCu NPs were collected and washed by adding ~100 mL ethanol and following centrifugation. The composition was varied by changing the precursor ratio. Au_xCu_y NPs dispersed well in non-polar solvents such as hexane and toluene.

Cu synthesis

Cu NPs were synthesized by reducing Cu(acac)₂ in a mixture of oleylamine and oleic acid. Typically, 0.25 mmol Cu(acac)₂ was mixed and dissolved in 10 mL oleylamine and 1 mL oleic acid at 40 °C under an Ar blanket. The solution was then heated up to 160 °C with a heating rate of 2 °C min⁻¹. The reaction was maintained at 160 °C for 2 h and then cooled down to room temperature. As-prepared Cu NPs were collected and washed by adding ~100 mL ethanol and following centrifugation.

Au synthesis

Au NPs were synthesized by reducing HAuCl₄ in oleylamine. Typically, 0.25 mmol HAuCl₄ was mixed and dissolved in 10 mL oleylamine under an Ar blanket. The solution was then heated up to 120 °C with a heating rate of 2 °C min⁻¹. The reaction was maintained at 120 °C for 1 h and then allowed to cool down to room temperature. As-prepared Au NPs were collected and washed by adding ~100 mL ethanol and following centrifugation.

Stability with respect to oxidation tests

As-prepared NPs were dissolved in toluene and the solutions were treated at a certain temperature for 24 or 48 hours. The temperature inside the reaction flask was controlled by an oil bath. To keep the solvent from evaporating, a circulator is used to provide ~4 °C cooling water for condenser. At each time stage, a small amount of sample was taken from the solution for recording the surface plasmon absorption.

Nanoparticle Characterization

The TEM study was carried out on a JEOL 200CX transmission electron microscope at 120 kV. The samples were prepared by dropping NP solutions onto nickel TEM grids with amorphous carbon film. The UV-Vis absorption spectra were recorded by a Cary 100 UV-Vis

spectrometer. The X-ray diffraction pattern was collected on a PANalytical X'pert Pro with Cu K α radiation ($\lambda = 1.5418$ Å). The samples were prepared by dropping highly concentrated NP solution onto glass slides. The composition of nanoparticles was determined by ICP-MS. The EDS analysis on single nanoparticles was conducted on a JEOL 2010F transmission electron microscope at 200 kV. The sample was prepared on a Ni TEM grid.

Electrochemical Measurements

The nanoparticles were loaded onto Vulcan carbon (XC-72) with a mass ratio of 40 wt% and then washed with isopropanol for three times to remove excess surfactant. As-prepared catalysts were dispersed in de-ionized water to give a catalyst ink solution of 1 mg/mL. 10 μ L ink solution was dropped onto a glass carbon electrode (GCE, 5mm in diameter) and then dried slowly in a water vapor to form a flat thin film fully covering the surface of GCE. The electrochemical measurements were performed on a Pine Instrument. A Pt wire and a saturated calomel electrode (SCE, Analytical Sensor, Inc.) were used as the counter electrode and the reference electrode, respectively. The cyclic voltammograms of catalysts were recorded in Ar- and CO₂-saturated 0.5 M KHCO₃ with a scan rate of 10 mV/s at the potential window from -1.3 to 0.7 V (vs RHE). The electrolyte has a pH of 7.6 at room temperature and the potential was calibrated to versus the reversible hydrogen electrode (RHE) by a factor of 692 mV.

Tables and Figures

Table S1. Elemental	composition	determined	by ICP-MS.
---------------------	-------------	------------	------------

Sample	Au ₂ Cu ₁	Au ₁ Cu ₁	Au_1Cu_2
Atomic% Au	64.4	47.2	33.9
Atomic% Cu	35.6	52.8	66.1
Ratio Au:Cu	1.8:1	1:1.1	1:1.9

Table S2. Oxidation rate constants.

Sample	Au	Au ₂ Cu ₁	Au ₁ Cu ₁	$Au_1Cu_2 \\$	Cu
<i>k</i> _A (OD min ⁻¹)	0	0	1.26X10 ⁻⁴	2.16X10 ⁻³	2.61X10 ⁻²
<i>k</i> ₄ (nm min⁻¹)	0	0.0121	0.0297	0.105	2.07

Figure S1. TEM images and size histograms of Au₂Cu₁ (a,d), Au₁Cu₁ (b,e), and Au₁Cu₂ (c,f) NPs.

Figure S2. TEM images and size histograms of Au (a,c) and Cu (b,d) NPs.

Spot	Element	Weight%	Atomic%
1	Cu K	26.06	52.22
	Au L	73.94	47.78
2	Cu K	28.98	55.85
	Au L	71.02	44.15
3	Cu K	29.20	56.11
	Au L	70.80	43.89

Figure S3. EDS elemental analysis results on single nanoparticles (Au₁Cu₁).

Figure S4. XRD patterns of Au₂Cu₁, Au₁Cu₁, and Au₁Cu₂ NPs.

Figure S5. XRD patterns of carbon supported Au_2Cu_1 before and after oxidation in air. The d-spacing (*a*) shifted from 4.026Å to 4.064 Å, indicating that the oxidation leads to the segregation of copper oxides on the surface and depletes Cu in the nanoparticle core and thus the d-spacing of remaining Au core shifts toward the value of pure Au.

Figure S6. Photos of the Au_1Cu_1 solution before oxidation (1), after oxidation for 5, 10, 30, 60, 120, 300, 600, and 1440 min (from 2 to 9).

Figure S7. TEM images of NPs after oxidation: a) Au, b) Au_2Cu_1 , c) Au_1Cu_1 , d) Au_1Cu_2 , and e) Cu after oxidation at 110°C. f) Au_1Cu_1 after oxidation at 95°C.

Figure S8 (a) Toluene supernatant of AuCu NPs after stability test at 110 °C; (b) toluene supernatant of Cu NPs after oxidation at 110 °C; (c) copper (II) ions heated in the mixture of oleylamine and toluene; (d) the mixture of oleylamine and toluene.

Figure S9. Temperature dependence of oxidation of Au₁Cu₁. (a) λ_{peak} as a function of oxidation time for Au₁Cu₁ at 25°C (circles), 75°C (up triangles), 95°C (down triangles), and 110°C (diamonds). (b) A_{peak} as a function of oxidation time for Au₁Cu₁ at 25°C (circles), 75°C (up triangles), 95°C (down triangles), and 110°C (diamonds).

Figure S10. (a) λ_{peak} of Cu NPs oxidized at 25°C, (b) A_{peak} of Cu NPs oxidized at 25°C