SUPPORTING INFORMATION FOR

nBu₄NI-catalyzed C3-formylation of indoles with N-methylaniline

Lan-Tao Li, Juan Huang, Hong-Ying Li, Li-Juan Wen, Peng Wang and Bin Wang

College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and

Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 94 Weijin

Road, Tianjin 300071, China.

Corresponding author: Bin Wang

wangbin@nankai.edu.cn

Table of Contents

- 1. General experimental methods
- 2. General procedure for the *n*Bu₄NI-catalyzed formylation of indoles
- with N-methylaniline
- 3. Optimization of reaction conditions
- 4. Preparation of 3-formylindole with compound 5
- 5. The characterization of the products
- 6. ¹H and ¹³C NMR charts of the products
- 7. References

1. General experimental methods

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE AV400 (400MHz and 100MHz). Signal positions were recorded in ppm with the abbreviations s, d, t, m and b denoting singlet, doublet, triplet, multiplet and broadened respectively. All NMR chemical shifts were referenced to residual solvent peaks or to Si(CH3)₄ as an internal standard, spectra recorded in CDCl₃ were referenced to residual CHCl₃ at 7.26 ppm for ¹H or 77.0 ppm for ¹³C, spectra recorded in CD₃OD were referenced to residual CD₂HOD at 3.31 ppm for ¹H or 49.15 ppm for ¹³C, spectra recorded in (CD₃)₂SO were referenced to residual (CD₂H)SO(CD₃)at 2.50 ppm for ¹H or 39.52 ppm for ¹³C. All coupling constants J were quoted in Hz. Data were reported as follows: chemical shift, multiplicity, coupling constant and integration. Reactions were monitored by thin-layer chromatography (TLC) on 0.25mm silica gel glass plates coated with 60 F_{254} . Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether (60-90°C)/ethyl acetate as eluant. Reactions were carried out under a nitrogen atmosphere. Commercially available reagents were used as received without purification.

2. General procedure for the Bu₄NI-catalyzed formylation of indoles

with N-methylaniline

To a mixture of indole (0.5 mmol, 1 equiv), PivOH (255.3 mg, 2.5 mmol, 5 equiv), and *n*BuNI (18.5 mg, 0.05 mmol, 0.1 equiv) in a 50 mL Schlenk tube were added DMSO (1 mL) under N₂. Then N-methylaniline (107 μ L, 1.0 mmol, 2 equiv) and TBPB (373 μ L, 2.0 mmol, 4 equiv) were added separately. The mixture was stirred at 80°C for 8h, quenched with saturated NaHCO₃ solution (10 mL). The mixture was extracted by ethyl acetate for 3 times. The combined organic phase was washed with brine and dried with anhydrous Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the formylation products.

3. Optimization of reaction conditions^a

entry ^a	1a (mmol)	2a (mmol)	catalyst	oxidant (mmol)	Yield
			(mmol)		(%)
1	0.5	1	<i>n</i> Bu ₄ NCl (0.05)	TBPB (2)	37 ^b
2	0.5	1	<i>n</i> Bu ₄ NBr (0.05)	TBPB (2)	29 ^b
3	0.5	1	<i>n</i> Bu ₄ NI (0.05)	TBHP(2) ^c	0
4	0.5	1	<i>n</i> Bu ₄ NI (0.05)	IBX(2)	trace
5	0.5	1	<i>n</i> Bu ₄ NI (0.05)	NBS (2)	trace
6	0.5	1	<i>n</i> Bu ₄ NI (0.05)	NIS (2)	0
7	0.5	1	<i>n</i> Bu ₄ NI (0.05)	$PhI(OAc)_2(2)$	trace
8	0.5	1	<i>n</i> Bu ₄ NI (0.05)	Oxone (2)	0
9	0.5	1	<i>n</i> Bu ₄ NI (0.05)	$K_{2}S_{2}O_{8}(2)$	0
10	0.5	1	<i>n</i> Bu ₄ NI (0.05)	m-CPBA (2)	0
11	0.5	1	<i>n</i> Bu ₄ NI (0.05)	<i>p</i> -BQ (2)	0
12	0.5	1	<i>n</i> Bu ₄ NI(0.05)	DDQ (2)	0

^ageneral reaction conditions: to a mixture of (0.5 mmol), catalyst (0.05 mmol), PivOH (2.5 mmol), oxidant (2 mmol) in a schlank tube was added DMSO (1 mL) under N₂. N-methylaniline (1.0 mmol) was added, then the mixture was heated at 80 °C for 8h. ^bGC yield. ^csolution of TBHP in decane (5.0-6.0 M) was used.

4. Preparation of 3-formylindole with compound 5

To a mixture of compound **5** (0.5 mmol, 1 equiv), PivOH (255.3 mg, 2.5 mmol, 5 equiv), and *n*BuNI (18.5 mg, 0.05 mmol, 0.1 equiv) in a 50 mL Schlenk tube were added DMSO (1 mL) under N₂. Then TBPB (373 μ L, 2.0 mmol, 4 equiv) were added separately. The mixture was stirred at 80°C for 8h, quenched with saturated NaHCO₃ solution (10 mL). The mixture was extracted by ethyl acetate for 3 times. The combined organic phase was washed with brine and dried with anhydrous Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the formylation product **3a** in 70% yield.

5. The characterization of the products

 $3a^1$

¹H-NMR (DMSO-*d*₆, 400MHz): 12.1 (b, 1H), 9.94(s, 1H), 8.29(s, 1H), 8.10(d, 7.2Hz, 1H), 7.51(d, 8.0Hz, 1H), 7.28-7.20(m, 2H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.00, 138.53, 137.07, 124.14, 123.49, 122.16, 120.85, 118.18, 112.45

 $\mathbf{3b}^1$

¹H-NMR (DMSO-*d*₆, 400MHz): 12.2(b, 1H), 9.92(s, 1H), 8.35(d, 3.2Hz, 1H), 7.76(dd, 2.4Hz, 9.6Hz, 1H), 7.53(dd, 4.8Hz, 8.8Hz, 1H), 7.11(td, 2.8Hz, 9.2Hz, 1H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.04, 158.74 (239.6Hz), 139.63, 133.61, 124.73 (7Hz), 118.14, 113.77 (9.5Hz), 111.61 (25.8Hz), 105.70 (24.3Hz)

 $\mathbf{3c}^1$

¹H-NMR (DMSO-*d*₆, 400MHz): 12.3(b, 1H), 9.93(s, 1H), 8.36(d, 3.2Hz, 1H), 8.06(d, 2.2Hz, 1H), 7.54(d, 8.4Hz, 1H), 7.28(dd, 2.2Hz, 8.6Hz, 1H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.10, 139.39, 135.48, 126.77, 125.27, 123.47, 119.87, 117.55, 114.11

3d²

¹H-NMR (CD₃OD, 400MHz): 9.86(s, 1H), 8.05(s, 1H), 7.99(d, 8.0Hz, 1H), 7.16(t, 7.6Hz, 1H), 7.09(d, 7.2Hz, 1H), 2.90(q, 7.6Hz, 2H), 1.31(t, 7.6Hz, 3H)

¹³C-NMR (CD₃OD, 100MHz): 187.57, 139.56, 137.63, 129.50, 125.84, 124.13, 124.00, 120.57, 120.20, 25.21, 15.10

¹H-NMR (DMSO-*d*₆, 400MHz): 12.1(b, 1H), 9.93(s, 1H), 8.27(d, 3.2Hz, 1H), 7.93(d, 7.6Hz, 1H), 7.15(t, 7.6Hz, 1H), 7.08(d, 7.2Hz, 1H), 2.89(t, 7.4Hz, 2H), 1.26(t, 7.4Hz, 3H)

¹³C-NMR (DMSO-*d*₆, 100MHz): 184.92, 138.12, 135.74, 128.04, 124.08, 122.42,

122.25, 118.56, 118.43, 23.52, 14.55

3e³

¹H-NMR (DMSO-*d*₆, 400MHz): 12.2(b, 1H), 9.93(s, 1H), 8.32(d, 3.2Hz, 1H), 8.02(d, 8.4Hz, 1H), 7.71(d, 1.6Hz, 1H), 7.36(dd, 1.6Hz, 8.4Hz, 1H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.15, 139.18, 137.91, 125.05, 123.14, 122.46, 117.97, 115.91, 115.15

3f¹

¹H-NMR (DMSO- d_6 , 400MHz): 12.3(b, 1H), 9.91(s, 1H), 8.43(d, 1.6Hz, 1H), 8.30(d, 3.2Hz, 1H), 7.54(dd, 1.6Hz, 8.6Hz, 1H), 7.37(d, 8.4Hz, 1H) ¹³C-NMR (DMSO- d_6 , 100MHz): 185.15, 138.89, 136.15, 131.53, 129.12, 126.60, 117.14, 114.92, 86.58

 $\mathbf{3g}^1$

¹H-NMR (CD₃OD, 400MHz): 10.0(s, 1H), 8.09(d, 7.2Hz, 1H), 7.34(d, 7.2Hz, 1H), 7.18(t, 4.4Hz, 2H), 2.70(s, 3H) ¹³C-NMR (CD₃OD, 100MHz): 186.55, 151.03, 137.34, 127.38, 124.33, 123.57, 121.68, 115.60, 112.33, 11.80

 $\mathbf{3h}^4$

¹H-NMR (DMSO-*d*₆, 400MHz): 12.3(b, 1H), 9.93(s, 1H), 8.19(d, 3.2Hz, 1H), 7.67(d, 7.6Hz, 1H), 7.57(d, 7.2Hz, 2H), 7.42(t, 7.4Hz, 2H), 7.35(d, 7.2Hz, 1H), 7.12(t, 8.0Hz, 1H), 6.93(d, 8.0Hz, 1H), 5.29(s, 2H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.12, 145.26, 137.81, 137.03, 128.43, 127.90,

127.68, 127.18, 125.83, 122.95, 118.68, 113.57, 105.54, 69.38

3i¹

¹H-NMR (DMSO-*d*₆, 400MHz): 12.6(b, 1H), 10.00(s, 1H), 8.55(d, 3.2Hz, 1H), 8.24(d, 8.0Hz, 1H), 8.04(s, 1H), 7.59(dd, 1.4Hz, 8.2Hz, 1H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.44, 141.30, 135.95, 127.38, 125.08, 121.74, 119.81, 118.04, 117.43, 105.13

3j¹

¹H-NMR (DMSO-*d*₆, 400MHz): 12.0(b, 1H), 9.89(s, 1H), 8.21(d, 3.2Hz, 1H), 7.58(d, 2.8Hz, 1H), 7.40(d, 8.8Hz, 1H), 6.88(dd, 2.4Hz, 8.8Hz, 1H), 3.78(s, 3H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 184.78, 155.59, 138.38, 131.76, 124.86, 118.00, 113.26, 113.15, 102.45, 55.23

 $3k^1$

¹H-NMR (DMSO-*d*₆, 400MHz): 12.4(b, 1H), 9.98(s, 1H), 8.50(d, 3.2Hz, 1H), 8.18(d, 8.4Hz, 1H), 8.14(s, 1H), 7.83(d, 8.4Hz, 1H), 3.87(s, 3H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.25, 166.64, 140.94, 136.47, 127.76, 124.53, 122.77, 120.68, 118.04, 114.18, 52.06

3|¹

¹H-NMR (CD₃OD, 400MHz):9.86(s, 1H), 8.06(s, 1H), 7.98(d, 7.6Hz, 1H), 7.13(t, 7.4Hz, 1H), 7.06(d, 7.2Hz, 1H), 2.51(s, 3H) ¹³C-NMR (CD₃OD, 100MHz): 187.63, 139.57, 138.43, 125.71, 125.60, 123.99,

123.05, 120.57, 120.13, 16.90

¹H-NMR (DMSO-*d*₆, 400MHz): 12.2(b, 1H), 9.95(s, 1H), 8.29(d, 3.2Hz, 1H), 7.93(d, 7.6Hz, 1H), 7.13(t, 7.6Hz, 1H), 7.06(d, 7.2Hz, 1H), 2.50(s, 3H)

¹³C-NMR (DMSO-*d*₆, 100MHz): 185.01, 138.17, 136.55, 124.01, 123.92, 122.32, 121.75, 118.56, 118.38, 16.67

 $3m^1$

¹H-NMR (DMSO-*d*₆, 400MHz): 12.3(b, 1H), 9.93(s, 1H), 8.34(d, 3.2Hz, 1H), 8.22(d, 1.6Hz, 1H), 7.49(d, 8.4Hz, 1H), 7.39(dd, 2.0Hz, 8.8Hz, 1H) ¹³C-NMR (DMSO-*d*₆, 100MHz): 185.13, 139.23, 135.74, 126.04, 125.89, 122.91, 117.43, 114.80, 114.55

3n⁵

¹H-NMR (CDCl₃, 400MHz): 9.99(s, 1H), 8.33(d, 6.4Hz, 1H), 7.66(s, 1H), 7.37(s, 3H), 3.86(s, 3H)

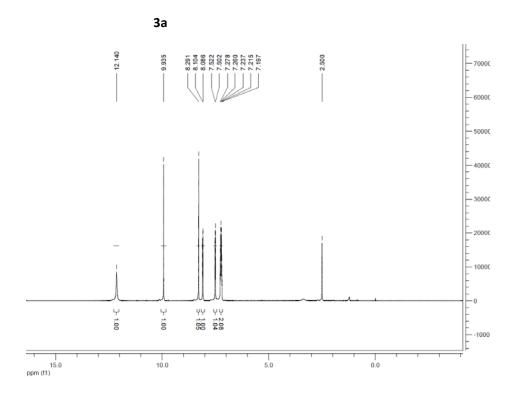
¹³C-NMR (CDCl₃, 100MHz): 184.48, 139.35, 137.91, 125.28, 124.04, 122.95, 122.02, 118.05, 109.90, 33.68

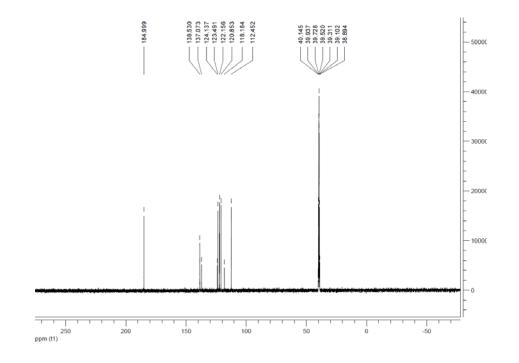
30⁶

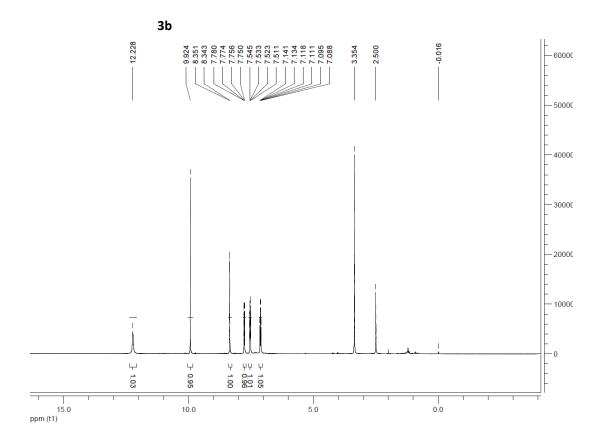
¹H-NMR (DMSO- d_6 , 400MHz): 9.94(s, 1H), 8.48(s, 1H), 8.12(d, 6.8Hz, 1H), 7.59(d, 8.0Hz, 1H), 7.34-7.26(m, 7H), 5.55(s, 2H) ¹³C-NMR (DMSO- d_6 , 100MHz): 184.68, 140.97, 136.94, 136.75, 128.71, 127.77, 127.33, 124.78, 123.60, 122.54, 121.06, 117.38, 111.39, 49.78

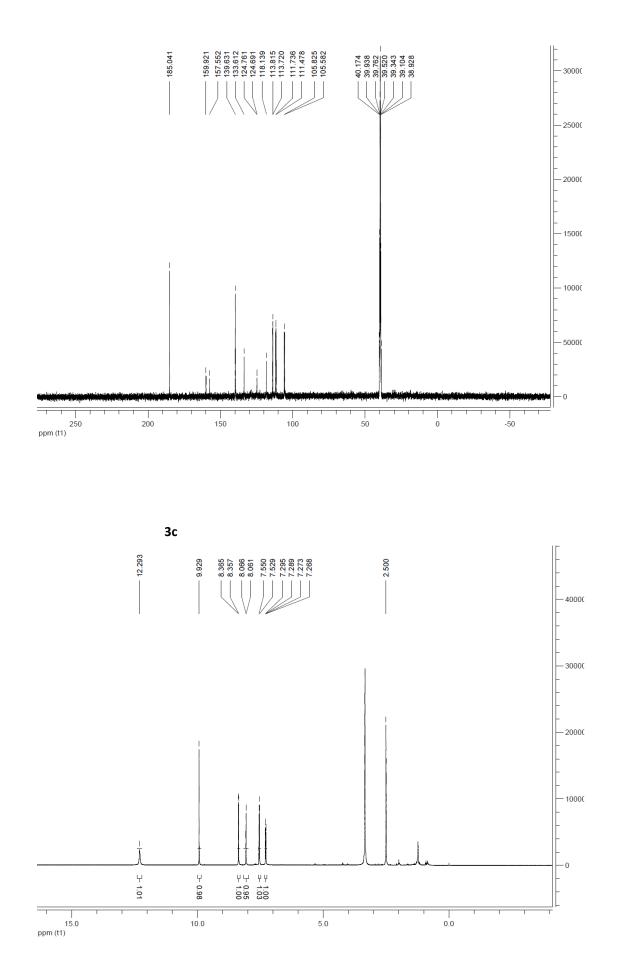
3p⁷

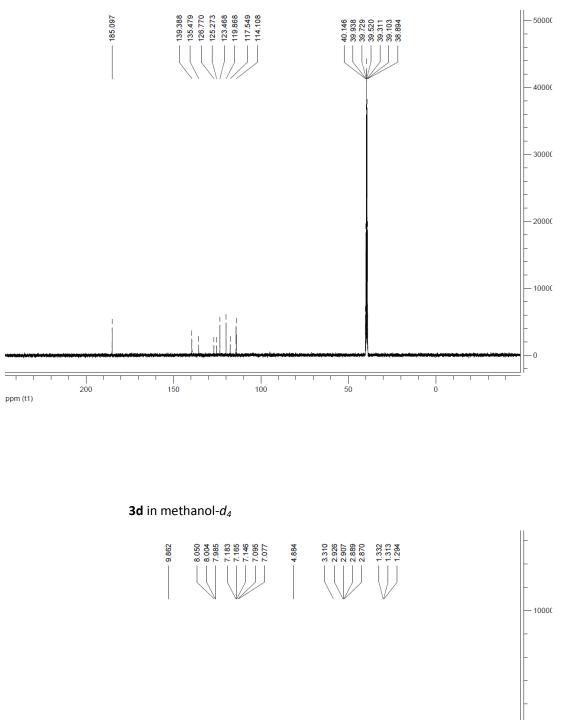
¹H-NMR (DMSO- d_6 , 400MHz): 10.0(s, 1H), 8.61(s, 1H), 8.24-8.20(m, 1H), 7.70-7.63(m, 4H), 7.56-7.54(m, 2H), 7.37-7.34(m, 2H) ¹³C-NMR (DMSO- d_6 , 100MHz): 185.29, 140.57, 137.61, 136.74, 130.04, 128.15, 124.97, 124.70, 124.49, 123.23, 121.39, 118.80, 111.32

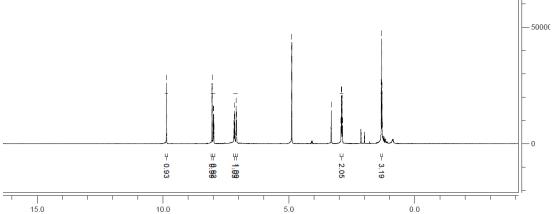

3q⁸

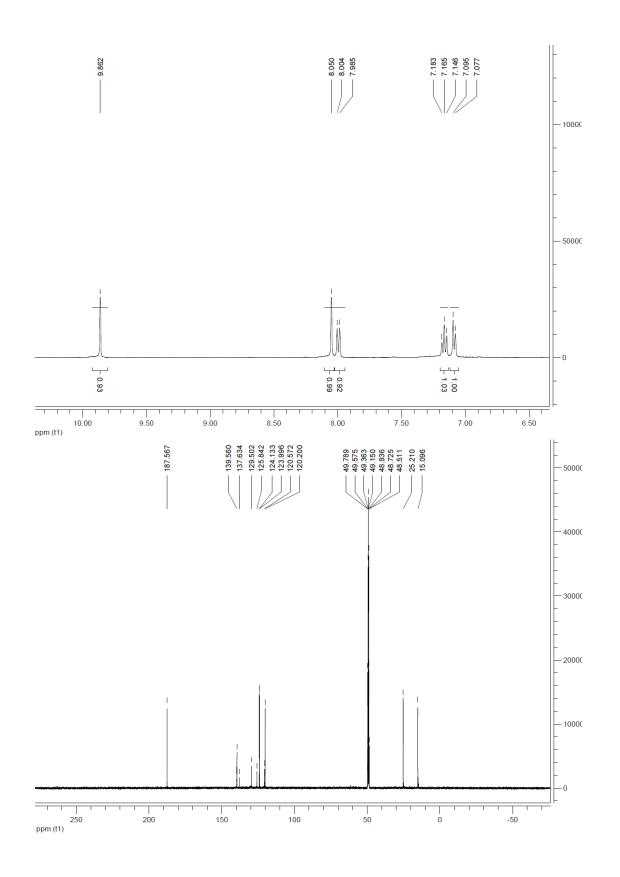

¹H-NMR (CDCl₃, 400MHz): 10.1(s, 1H), 8.34-8.32(m, 2H), 7.95(s, 1H), 7.80-7.78(m, 2H), 7.70(t, 7.4Hz, 1H), 7.60(t, 7.6Hz, 2H), 7.50-7.45(m, 2H) ¹³C-NMR (CDCl₃, 100MHz): 185.69, 168.50, 137.59, 136.81, 132.99, 129.44, 129.01, 126.59, 126.24, 125.58, 122.18, 122.04, 116.08

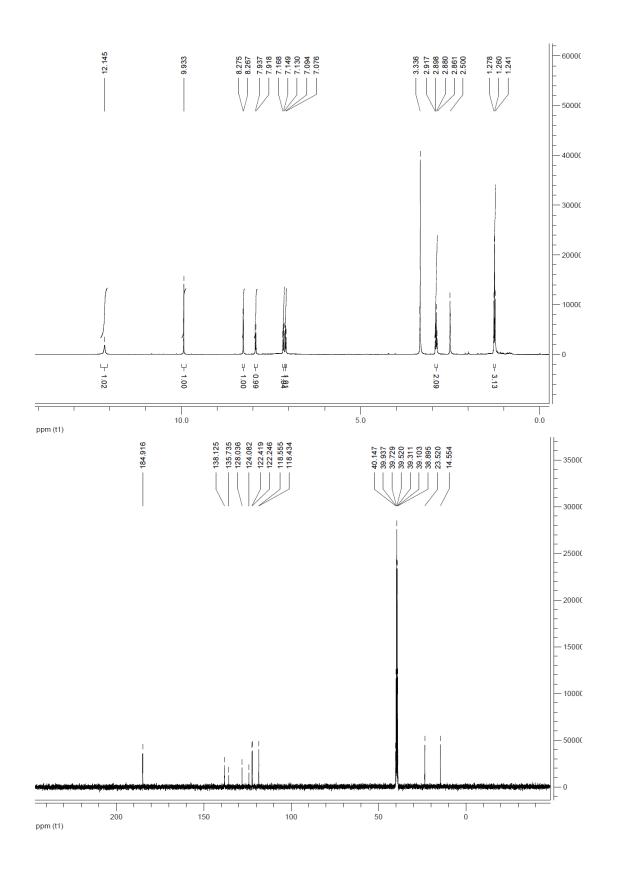

4⁹


¹H-NMR (CDCl₃, 400MHz): 7.06 (d, 8.4Hz, 2H), 6.71(d, 5.6Hz, 2H), 3.81(s, 2H), 2.91(s, 12H) ¹³C-NMR (CDCl₃, 100MHz): 129.41, 113.12, 40.97, 39.88

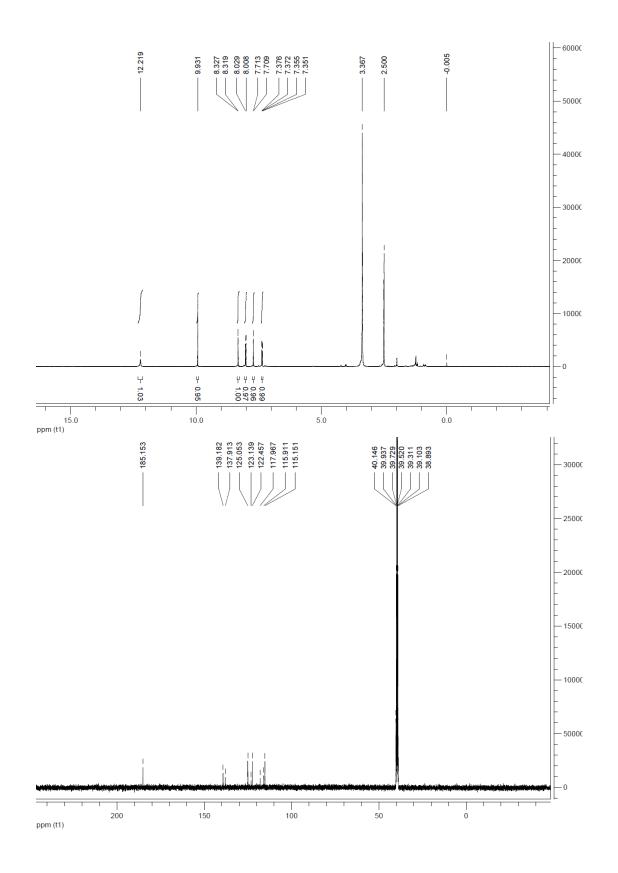

6. ¹H and ¹³C NMR charts of the products

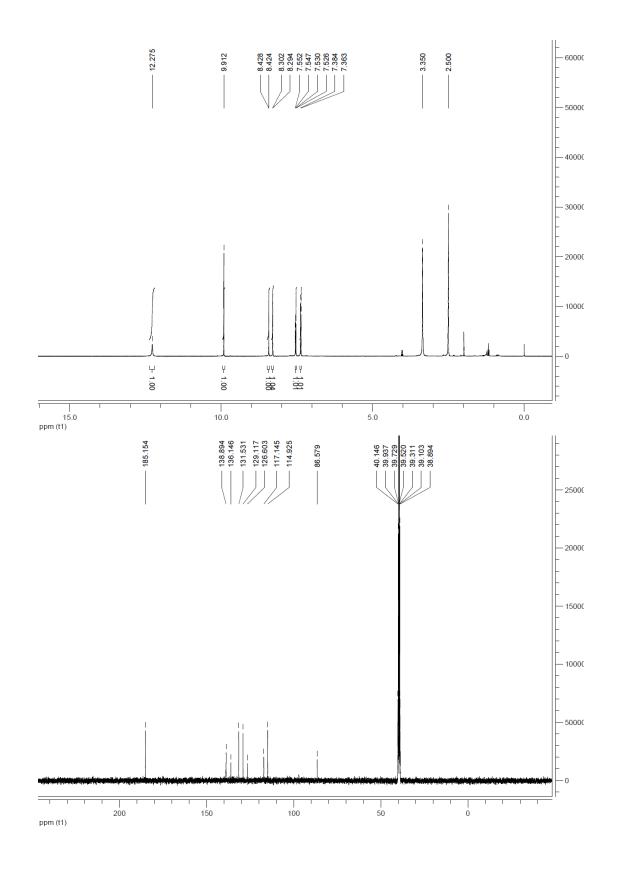


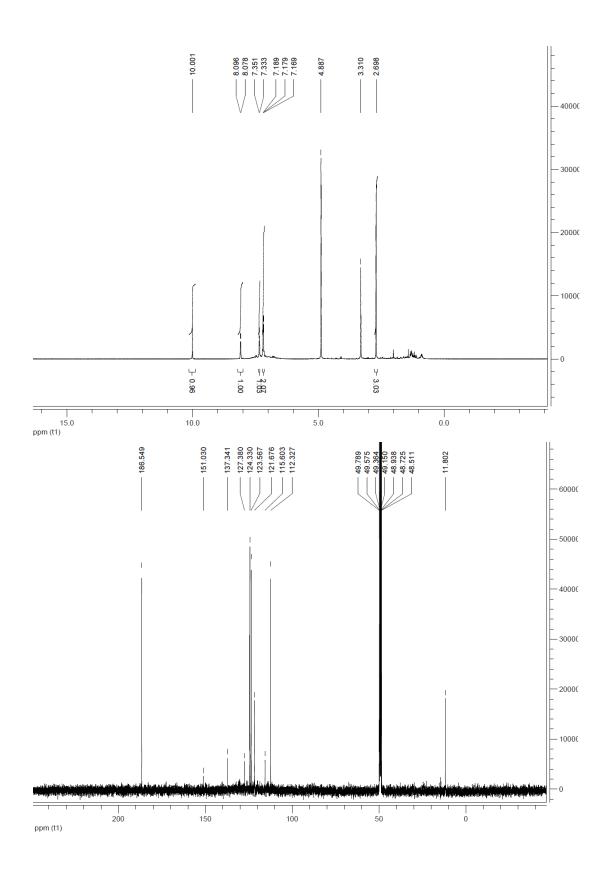


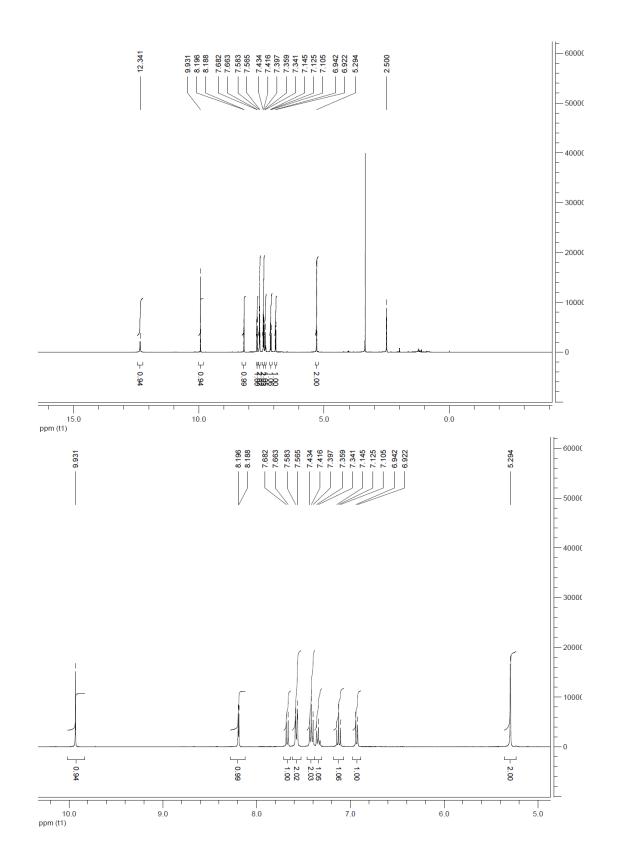


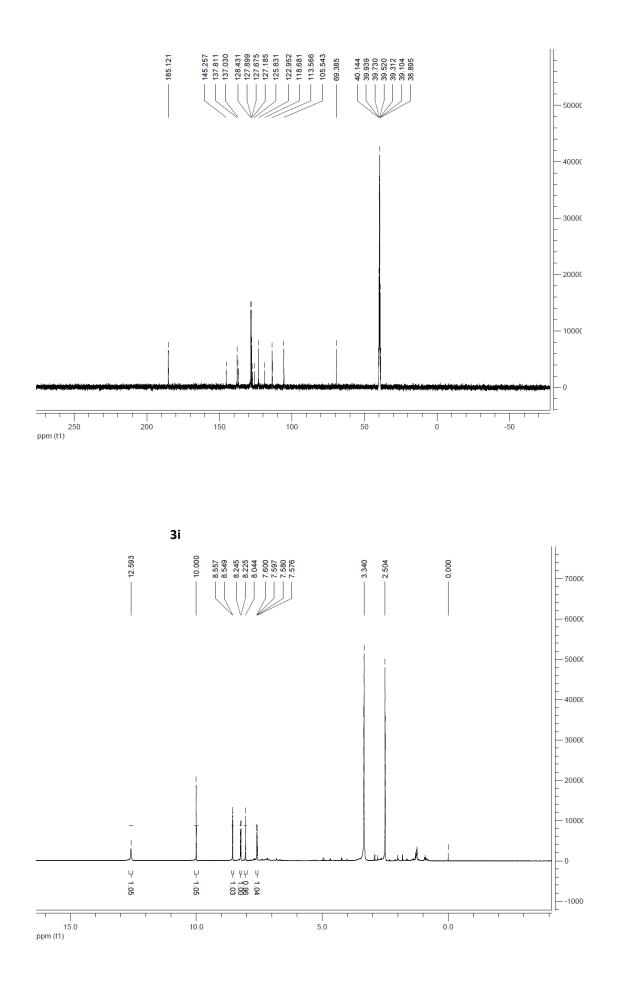
ا 15.0 ppm (t1)

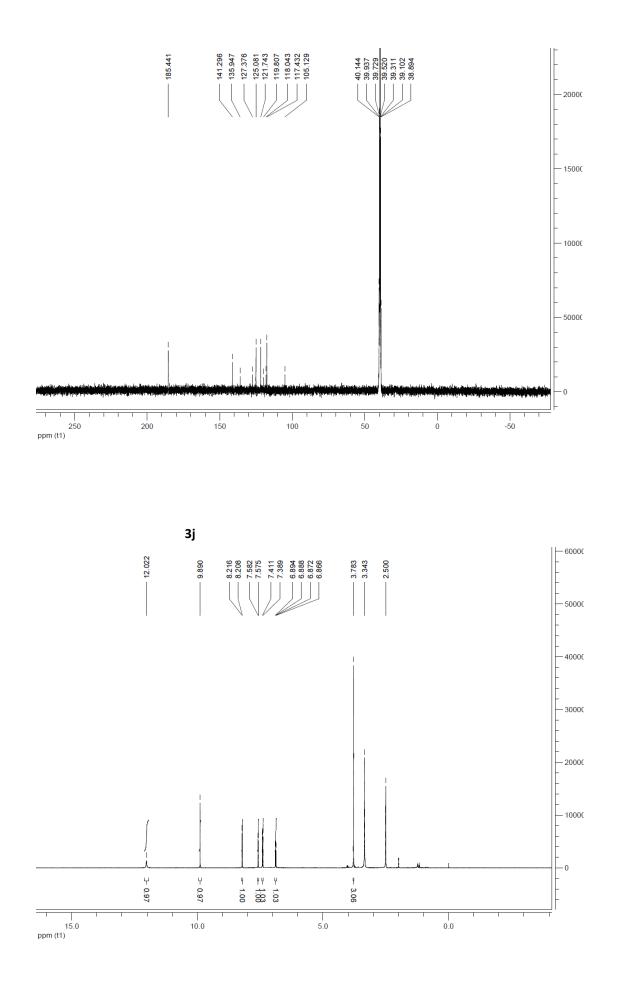

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

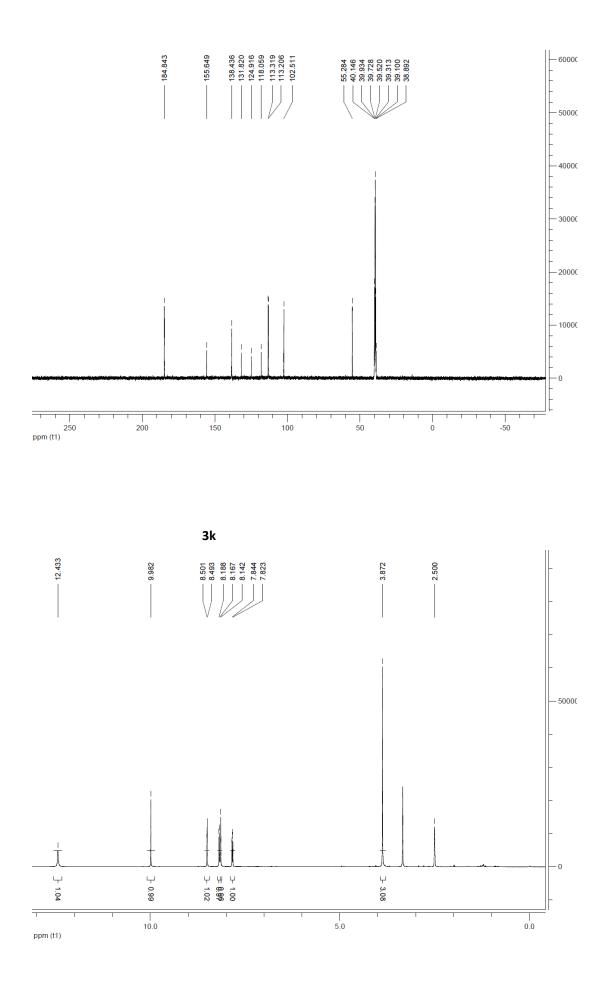

3d in DMSO-*d*₆

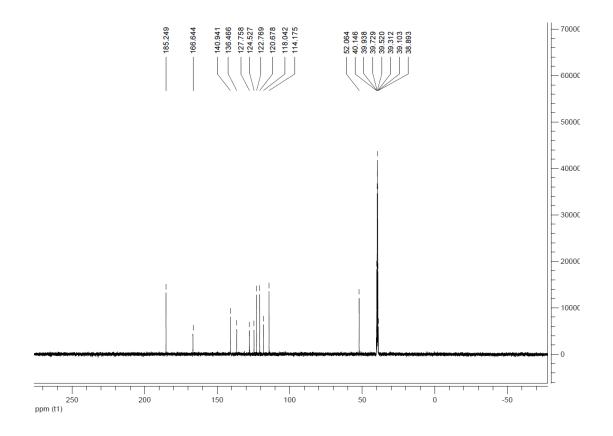

3e

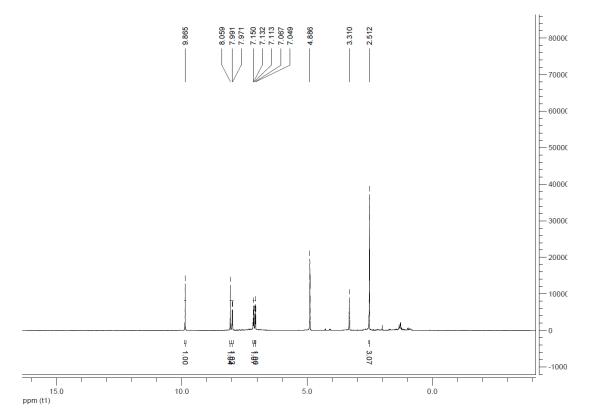

3f

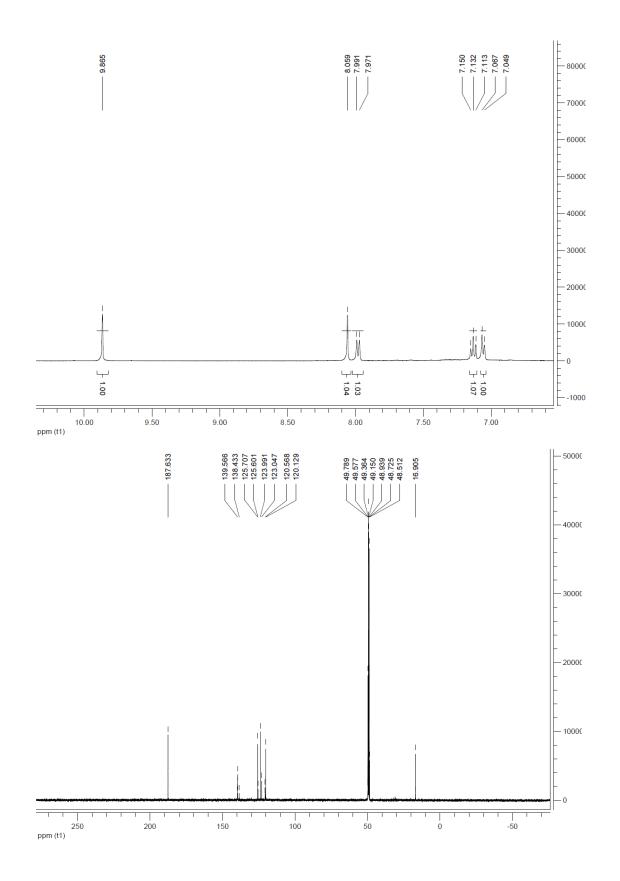



3g in methanol- d_4



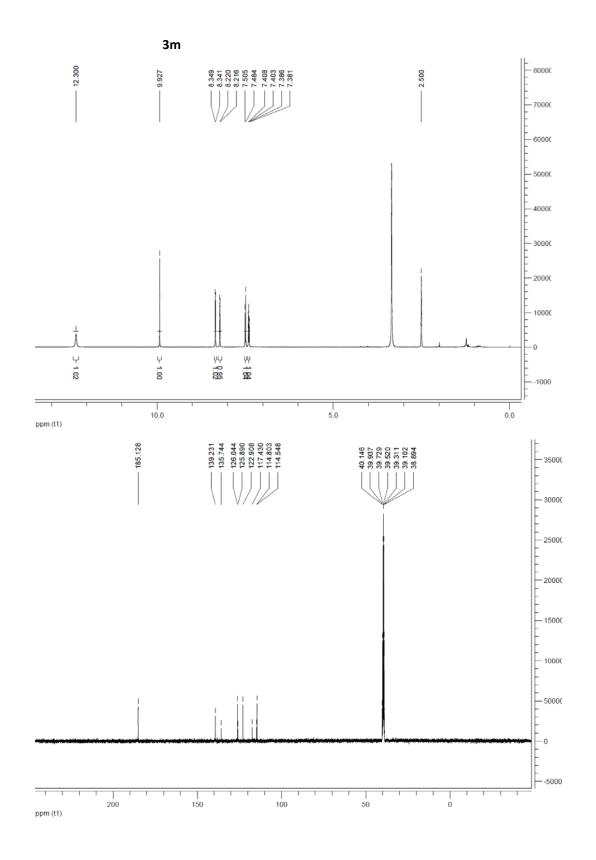

3h

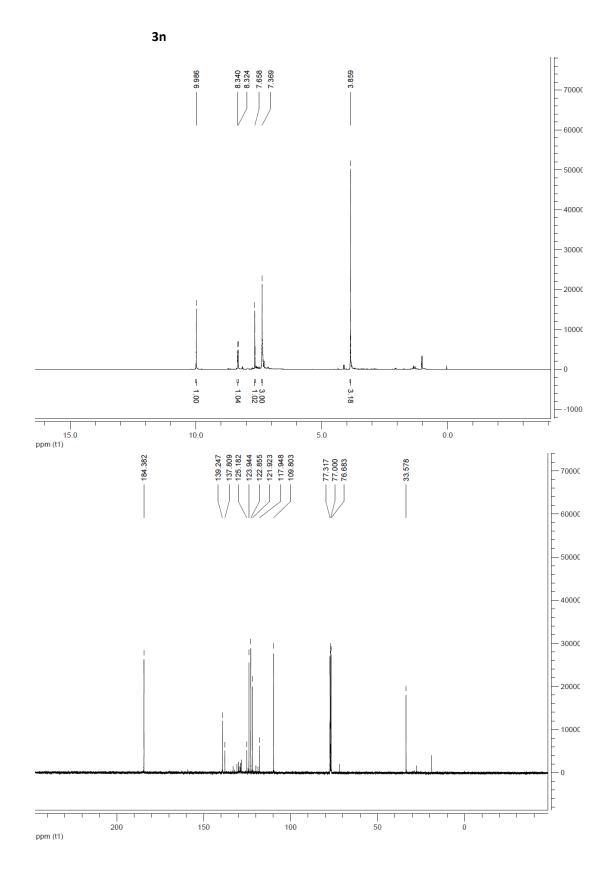


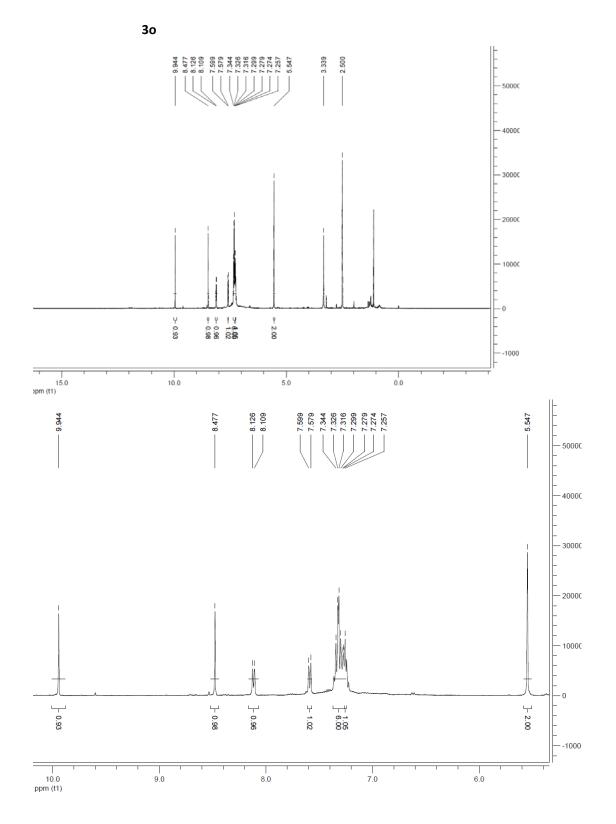


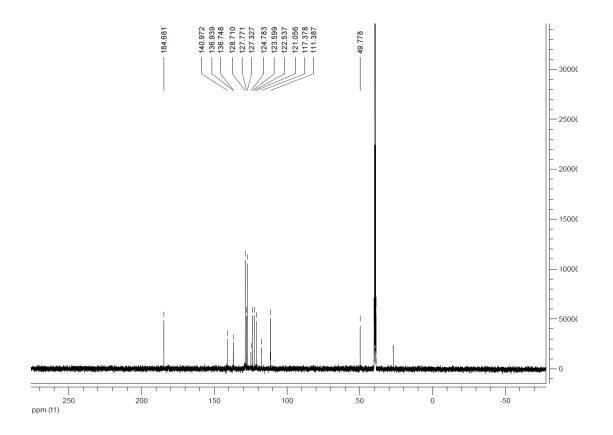


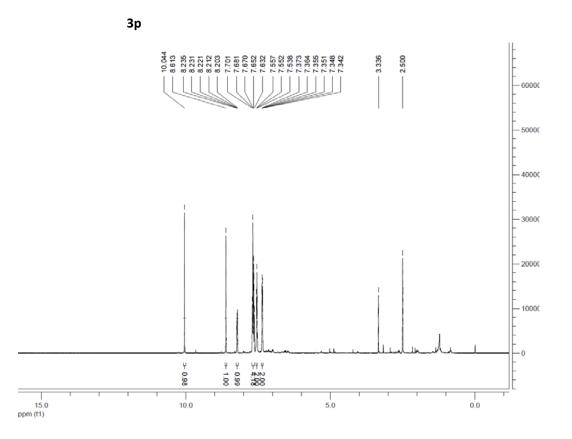
3I in methanol-*d*₄

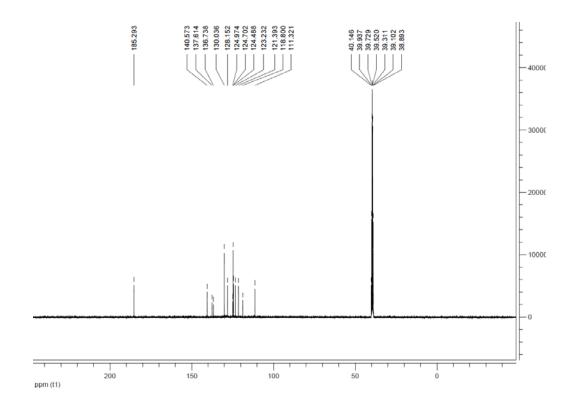


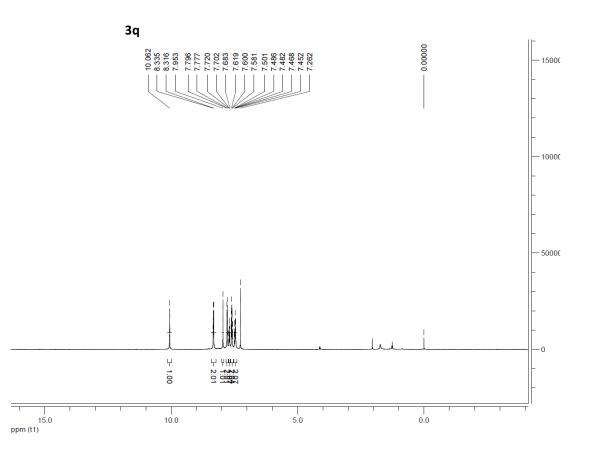


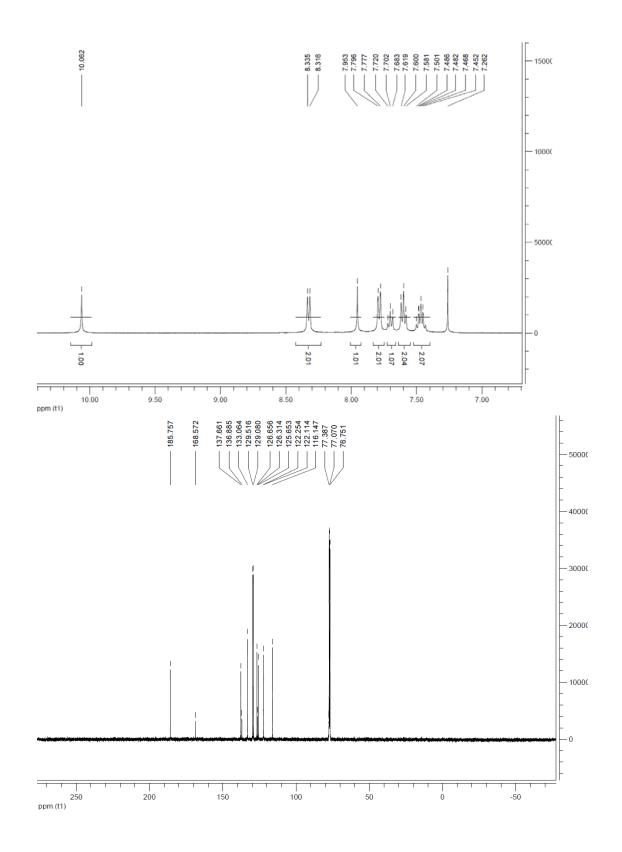

3I in DMSO-*d*₆

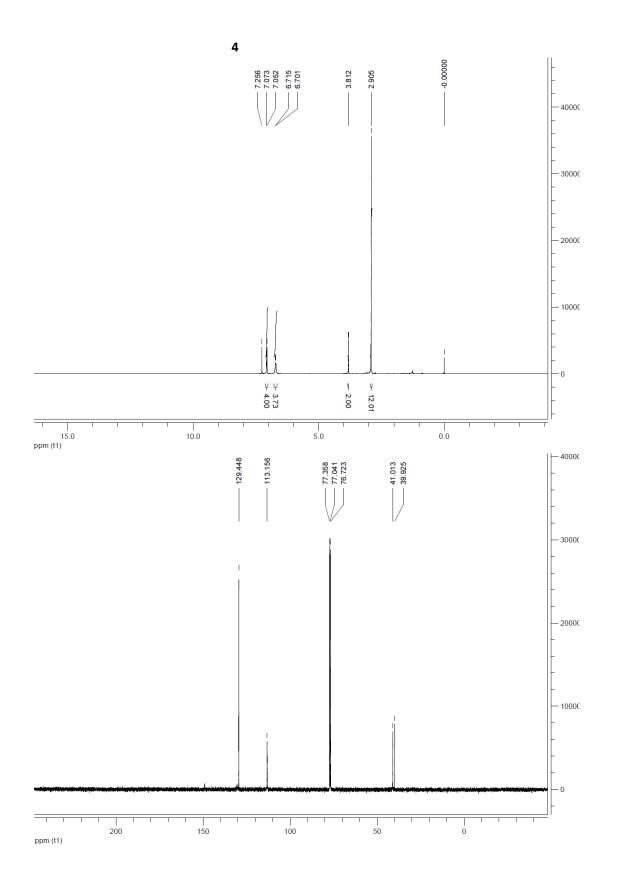



24









Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

7. References

1. W. Wu and W. Su, J. Am. Chem. Soc., 2011, 133, 11924.

2. S.-C. Lin, F.-D. Yang, J.-S. Shiue, S.-M. Yang and J.-M. Fang, J. Org. Chem., 1998, 63, 2909.

3. D. F. Cummings, D. C. Canseco, P. Sheth, J. E. Johnson and J. A. Schetz, Bioorg. Med. Chem., 2010, 18, 4783.

4. H. Ueda, H. Satoh, K. Matsumoto, K. Sugimoto, T. Fukuyama and H. Tokuyama, Angew. Chem. Int. Ed., 2009, 48, 7600.

5. M. G. Bursavich, N. Brooijmans, L. Feldberg, I. Hollander, S. Kim, S. Lombardi, K. Park, R. Mallon and A. M. Gilbert, *Bioorg. Med. Chem. Lett.*, 2010, 20, 2586.

6. N. R. Penthala, T. R. Yerramreddy and P. A. Crooks, Bioorg. Med. Chem. Lett., 2011, 21, 1411.

7. C. Sagnes, G. Fournet and B. Joseph, Synlett, 2009, 433.

8. R. Aggarwal, F. Benedetti, F. Berti, S. Buchini, A. Colombatti, F. Dinon, V. Galasso and S. Norbedo, *Chem. Eur. J.*, 2003, 9, 3132.

9. S. Murata, M. Miura and M. Nomura, J. Org. Chem., 1989, 54, 4700.