Bicyclic guanidine-catalyzed asymmetric Michael additions of 3-benzyl-substituted oxindoles to *N*-maleimides

Lixin Li,[†] Wenchao Chen,[†] Wenguo Yang,[†] Yuanhang Pan,[‡] Hongjun Liu,[‡] Choon-Hong Tan,^{*,†‡} Zhiyong Jiang^{*,†}

[†]Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, China, [‡]Department of chemistry, National University of Singapore, 3 ScienceDrive 3, 117543, Singapore

Email: chmjzy@henu.edu.cn; chmtanch@nus.edu.sg

Supporting Information

1.	General Information	
2.	Typical Experimental Procedures	2
3	Characterization of Products	3
5.		4-22
4.	X- Ray Crystal Data for Compound 4t	22-23
5.	Copies of NMR Spectra	24-67

1. General Information

General procedures and methods.

All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated plates. After elution, plate was visualized under UV illumination at 254 nm for UV active material. Further visualization was achieved by staining KMnO₄, ceric molybdate, or anisaldehyde solution. For those using the aqueous stains, the TLC plates were heated on a hot plate.

Columns for flash chromatography (FC) contained silica gel 200-300 mesh. Columns were packed as slurry of silica gel in petroleum ether and equilibrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump.

Proton nuclear magnetic resonance (¹H NMR), carbon NMR (¹³C NMR) spectra were recorded in CDCl₃ otherwise stated. ¹H (400 MHz), ¹³C (100 MHz) with complete proton decoupling were performed on a 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm), using the residual solvent signal as an internal standard:CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.0, triplet). Multiplicities were given as: *s* (singlet), *d* (doublet), *t* (triplet), *q* (quartet), *quintet*, *m* (multiplets), *dd* (doublet of doublets), *dt* (doublet of triplets), and *br* (broad). Coupling constants (*J*) were recorded in Hertz (Hz). The number of proton atoms (*n*) for a given resonance was indicated by *n*H. The number of carbon atoms (*n*) for a given resonance was indicated by *n*C. Low and high resolution mass spectra were obtained in EI and ESI modes. MS and HRMS were reported in units of mass of charge ratio (m/z).

Materials

All commercial reagents were purchased of the highest purity grade. They were used without further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl acetate (EtOAc), were distilled. All compounds synthesized were stored in a 0 °C freezer and light-sensitive compounds were protected with aluminium foil.

2. Typical Experimental Procedure

2a (22.4 mg, 0.12 mmol, 1.2 equiv.) and guanidine **3** (2.2 mg, 0.01 mmol, 0.1 equiv.) were dissolved in toulene (1.0 ml). The reaction mixtures were stirred at – 50 °C about 30 minutes. then added **1a** (31.3 mg, 0.1 mmol, 1.0 equiv.) into the solution at this temperature, the reaction mixtures were stirred about 40 hours at this temperature, and were directly loaded onto a short silica gel column, followed by gradient elution with PE/EA mixture (5/1-3/1 ratio). Removing the solvent in *vacuo*, afforded white solid **4a** (45.4 mg, 91% yield).

3. Characterization of Products

4a, white solid, M.p. 49.5 - 50.1 °C; 91% yield; 95% *ee*; $[\alpha]_{20}^{D} = +150.0$ (*c* 0.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.34 (m, 5H), 7.18 - 7.06 (m, 4H), 7.03 - 6.96 (m, 3H), 6.82 (d, *J* = 7.4 Hz, 1H), 6.78 (d, *J* = 7.2 Hz, 2H), 6.66 (t, *J* = 7.6 Hz, 1H), 6.60 (d, *J* = 6.8 Hz, 2H), 6.35 (d, *J* = 7.8 Hz, 1H), 4.79 (d, *J* = 15.9 Hz, 1H), 4.68 (dd, *J* = 41.7, 13.9 Hz, 2H), 4.44 (d, *J* = 15.9 Hz, 1H), 4.06 (d, *J* = 13.2 Hz, 1H), 3.56 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.39 (d, *J* = 13.2 Hz, 1H), 2.73 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.77 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 176.4, 174.9, 143.4, 135.4, 135.3, 134.7, 130.1, 129.1, 129.0, 128.7, 128.6, 128.6, 127.8, 127.3, 126.6, 126.2, 124.2, 123.0, 109.5, 55.6, 44.7, 43.6, 42.6, 41.2, 31.3; LRMS (ESI) m/z 501.2 (M+H⁺); HRMS (ESI) m/z 501.2174 (M+H⁺), Calc. for C₃₃H₂₉N₂O₃ 501.2173.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 9.3 min (minor) and 11.7 min (major).

4b, white solid, M.p. 99.1 - 101.9 °C; 97% yield; 93% *ee*; [α]^D₂₀ = +131.0 (*c* 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.3 Hz, 2H), 7.26 (s, 1H), 7.24 (s, 1H), 7.18 - 6.96 (m, 7H), 6.78 (t, *J* = 6.9 Hz, 3H), 6.68 (t, *J* = 7.6 Hz, 1H), 6.60 (d, *J* = 6.9 Hz, 2H), 6.36 (d, *J* = 7.9 Hz, 1H), 4.79 (d, *J* = 15.9 Hz, 1H), 4.62 (dd, *J* = 43.4, 14.0 Hz, 2H), 4.44 (d, *J* = 15.9 Hz, 1H),

1H), 4.03 (d, J = 13.2 Hz, 1H), 3.56 (dd, J = 9.1, 5.0 Hz, 1H), 3.38 (d, J = 13.2 Hz, 1H), 2.74 (dd, J = 18.3, 9.1 Hz, 1H), 1.78 (dd, J = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 176.4, 174.8, 143.4, 135.2, 134.6, 134.4, 131.8, 130.9, 130.1, 129.2, 128.7, 127.8, 127.4, 126.6, 126.2, 124.0, 122.9, 122.2, 109.6, 55.6, 44.7, 43.6, 41.9, 41.2, 31.3; LRMS (ESI) m/z 579.1 (M+H⁺); HRMS (ESI) m/z 579.1296 (M+H⁺), Calc. for C₃₃H₂₈BrN₂O₃ 579.1278. The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 11.2 min (minor) and 14.2 min (major).

4c, white solid, M.p. 101.1 - 102.3 °C; 91% yield; 92% *ee*; $[\alpha]_{20}^{D}$ = +109.8 (*c* 0.86, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.6 Hz, 1H), 7.17 - 7.06 (m, 2H), 7.03 - 6.96 (m, 2H), 6.87 (d, *J* = 8.6 Hz, 1H), 6.83 (d, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 7.3 Hz, 1H), 6.67 (t, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 6.9 Hz, 1H), 6.34 (d, *J* = 7.8 Hz, 1H), 4.78 (d, *J* = 15.9 Hz, 1H), 4.61 (dd, *J* = 39.6, 13.8 Hz, 1H), 4.44 (d, *J* = 15.9 Hz, 1H), 4.05 (d, *J* = 13.2 Hz, 1H), 3.83 (s, 2H), 3.54 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.38 (d, *J* = 13.2 Hz, 1H), 2.71 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.74 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 176.5, 175.0, 159.4, 143.3, 135.3, 134.7, 130.6, 130.1, 129.0, 128.6, 127.8, 127.3, 126.6, 126.2, 124.2, 122.9, 113.9, 109.5, 55.7, 55.3, 44.6, 43.6, 42.0, 41.2, 31.3; LRMS (ESI) m/z 553.2 (M+Na⁺); HRMS (ESI) m/z 553.2115 (M+Na⁺), Calc. for C₃₄H₃₀N₂NaO₄ 553.2098.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 11.7 min (minor) and 14.5 min (major).

4d, white solid, M.p. 108.6 - 109.2 °C; 88% yield; 92% *ee*, $[\alpha]_{20}^{D} = +105.0$ (*c* 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.21 - 7.07 (m, 9H), 7.01 (t, *J* = 7.6 Hz, 2H), 6.92 (t, *J* = 7.2 Hz, 1H), 6.82 (d, *J* = 7.2 Hz, 2H), 6.61 (d, *J* = 6.8 Hz, 2H), 6.41 (d, *J* = 8.4 Hz, 1H), 4.85 (d, *J* = 16.9 Hz, 3H), 4.48 (d, *J* = 15.9 Hz, 1H), 4.11 (d, *J* = 13.2 Hz, 1H), 3.65 (dd, *J* = 9.1, 5.7 Hz, 1H), 3.42 (d, *J* = 12.0 Hz, 1H), 2.82 (dd, *J* = 18.2, 9.1 Hz, 1H), 1.93 (dd, *J* = 18.2, 5.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 176.4, 174.7, 143.4, 135.2, 134.6, 133.2, 132.3, 130.1, 129.7, 129.2, 129.1, 129.0, 128.6, 127.8, 127.3, 126.8, 126.6 (two peaks), 126.4, 124.4, 123.0, 109.6, 55.4, 45.0, 43.6, 41.2, 40.1, 31.3; LRMS (EI) m/z 534.2; HRMS (EI) m/z 534.1705, Calc. for C₃₃H₂₇N₂O₃Cl 534.1710.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 9.3 min (minor) and 13.5 min (major).

4e, white solid, M.p. 105.3 - 105.8 °C; 92% yield; 92% *ee*, $[\alpha]_{20}^{p} = +115.1$ (*c* 0.31, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.27 (m, 1H), 7.16 - 7.00 (m, 9H), 6.94 - 6.86 (m, 3H), 6.80 (d, *J* = 7.2 Hz, 2H), 6.59 (d, *J* = 6.8 Hz, 2H), 6.38 (d, *J* = 7.8 Hz, 1H), 4.85 (d, *J* = 15.9 Hz, 1H), 4.74 (q, *J* = 14.9 Hz, 2H), 4.46 (d, *J* = 15.9 Hz, 1H), 4.13 (d, *J* = 13.2 Hz, 1H), 3.79 (s, 3H), 3.59 (dd, *J* = 9.1, 5.6 Hz, 1H), 3.40 (d, *J* = 13.2 Hz, 1H), 2.77 (dd, *J* = 18.1, 9.1 Hz, 1H), 1.83 (dd, *J* = 18.1, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 176.5, 174.8, 157.1, 143.5, 135.4, 134.7, 130.2, 129.1 (two peaks), 129.0, 128.6, 127.8, 127.3, 126.6 (two peaks), 126.5, 124.5, 123.0 (two peaks), 120.3, 110.4, 109.5, 55.6, 55.3, 44.8, 43.6, 41.3, 37.9, 31.3; LRMS (EI) m/z 530.2; HRMS (EI) m/z 530.2205, Calc. for C₃₄H₃₀N₂O₄ 530.2206. The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 9.8 min

4f, white solid, M.p. 151.6 - 152.7 °C; 92% yield; 93% *ee*; $[\alpha]_{20}^{D} = +132.7$ (*c* 0.0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.49 (m, 2H), 7.46 - 7.38 (m, 2H), 7.26 - 7.22 (m, 2H), 7.19 - 7.08 (m, 6H), 7.03 (t, *J* = 7.5 Hz, 2H), 6.86 (d, *J* = 7.2 Hz, 2H), 6.64 (d, *J* = 6.8 Hz, 2H), 6.46 (d, *J* = 7.5 Hz, 1H), 4.90 (d, *J* = 15.9 Hz, 1H), 4.51 (d, *J* = 15.9 Hz, 1H), 4.13 (d, *J* = 13.1 Hz, 1H), 3.76 (dd, *J* = 9.2, 5.1 Hz, 1H), 3.48 (d, *J* = 13.3 Hz, 1H), 2.91 (dd, *J* = 18.4, 9.2 Hz, 1H), 2.01 (dd, *J* = 18.4, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 176.3, 174.2, 143.6, 135.2, 134.6, 131.6, 130.2, 129.5, 129.3, 128.9, 128.7, 127.9, 127.4, 126.7, 126.6 (two peaks), 126.4, 124.2, 123.0, 109.8, 55.8, 45.1, 43.7, 41.2, 31.5; LRMS (ESI) m/z 509.2 (M+Na⁺); HRMS (ESI) m/z 509.1832 (M+Na⁺), Calc. for C₃₂H₂₆N₂NaO₃ 509.1836.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 11.7 min (minor) and 19.7 min (major).

4g, white solid, M.p. 150.1 - 151.2 °C; 90% yield; 90% *ee*; $[\alpha]_{20}^{D} = +181.3$ (*c* 0.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.6 Hz, 2H), 7.39 (d, *J* = 7.3 Hz, 1H), 7.20 - 7.10 (m, 8H), 7.03 (t, *J* = 7.6 Hz, 2H), 6.87 - 6.82 (m, 2H), 6.62 (d, *J* = 6.9 Hz, 2H), 6.45 (d, *J* = 7.6 Hz, 1H), 4.91 (d, *J* = 15.9 Hz, 1H), 4.50 (d, *J* = 15.9 Hz, 1H), 4.14 (d, *J* = 13.3 Hz, 1H), 3.75 (dd, *J* = 9.2, 5.0 Hz, 1H), 3.48 (d, *J* = 13.3 Hz, 1H), 2.90 (dd, *J* = 18.4, 9.2 Hz, 1H), 1.98 (dd, *J* = 18.4, 5.0 Hz, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5 (two peaks),

174.5, 151.9, 143.6, 135.2, 134.6, 130.2, 129.5, 128.8, 128.7, 127.9, 127.4, 126.7, 126.6, 126.4, 126.3, 126.0, 124.3, 123.0, 109.8, 55.8, 45.0, 43.6, 41.2, 34.7, 31.5, 31.2; LRMS (EI) m/z 542.3; HRMS (EI) m/z 542.2571, Calc. for C₃₆H₃₄N₂O₃ 542.2569.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0ml/min; 25 °C; 254 nm; retention time: 9.0 min (minor) and 11.8 min (major).

4h, white solid, M.p. 157.8 - 158.6 °C; 89% yield, 92% *ee*; $[\alpha]_{20}^{D} = +46.1$ (*c* 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.7 Hz, 1H), 7.43 (t, *J* = 1.8 Hz, 1H), 7.37 (dd, *J* = 14.7, 6.9 Hz, 2H), 7.23 - 7.09 (m, 7H), 7.03 (t, *J* = 7.6 Hz, 2H), 6.84 (d, *J* = 7.3 Hz, 2H), 6.62 (d, *J* = 7.0 Hz, 2H), 6.46 (d, *J* = 7.6 Hz, 1H), 4.90 (d, *J* = 15.9 Hz, 1H), 4.50 (d, *J* = 15.9 Hz, 1H), 4.09 (d, *J* = 13.3 Hz, 1H), 3.75 (dd, *J* = 9.2, 5.2 Hz, 1H), 3.46 (d, *J* = 13.3 Hz, 1H), 2.91 (dd, *J* = 18.4, 9.3 Hz, 1H), 2.03 (dd, *J* = 18.8, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 175.8, 173.8, 143.6, 135.1, 134.6, 132.7, 132.0, 130.4, 130.2, 129.7, 129.6, 128.7, 127.9, 127.4, 126.8, 126.6, 126.4, 125.2, 124.1, 123.1, 122.6, 109.9, 55.7, 45.2, 43.7, 41.2, 31.5; LRMS (EI) m/z 564.1; HRMS (EI) m/z 564.1054, Calc. for C₃₂H₂₅N₂O₃Br 564.1049. The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0ml/min; 25 °C; 254 nm; retention time: 10.9 min (minor) and 15.5 min (major).

4i, white powder, M.p. 168.7 - 170.2 °C; 97% yield; 91% *ee*; $[\alpha]_{20}^{D} = +151.7$ (*c* 0.29, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.31 - 7.27 (m, 1H), 7.19 - 7.06 (m, 5H), 7.01 (t, *J* = 7.5 Hz, 3H), 6.83 (d, *J* = 7.2 Hz, 2H), 6.61 (d, *J* = 6.7 Hz, 2H), 6.41 (d, *J* = 7.7 Hz, 1H), 4.84 (d, *J* = 15.9 Hz, 1H), 4.47 (d, *J* = 15.9 Hz, 1H), 4.14 (d, *J* = 13.2 Hz, 1H), 3.64 - 3.50 (m, 3H), 3.42 (d, *J* = 13.3 Hz, 1H), 2.70 (dd, *J* = 18.2, 9.1 Hz, 1H), 1.77 (dd, *J* = 18.2, 5.2 Hz, 1H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 176.5, 175.0, 143.5, 135.3, 134.7, 130.2, 129.3, 128.6, 127.8, 127.3, 126.6, 126.5, 124.2, 122.9, 109.6, 55.5, 44.8, 43.6, 41.2, 33.8, 31.3, 13.0; LRMS (ESI) m/z 461.2 (M+Na⁺); HRMS (ESI) m/z 461.1841 (M+Na⁺), Calc. for C₂₈H₂₆N₂NaO₃ 461.1836.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0ml/min; 25 °C; 254 nm; retention time: 8.5 min (minor) and 12.3 min (major).

4j, white solid, M.p. 77.6 - 78.4 °C; 89% yield; 90% *ee*; $[\alpha]_{20}^{D} = +169.1$ (*c* 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.32 (m, 5H), 7.23 - 7.17 (m, 3H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.03 (td, *J* = 7.8, 1.1 Hz, 1H), 6.79 (d, *J* = 7.0 Hz, 1H), 6.67 - 6.59 (m, 5H), 6.41 (d, *J* = 7.9 Hz, 1H), 4.89 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 13.9 Hz, 1H), 4.61 (d, *J* = 13.9 Hz, 1H), 4.41 (d, *J* = 15.8 Hz, 1H), 4.02 (d, *J* = 13.3 Hz, 1H), 3.53 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.34 (d, *J* = 13.3 Hz, 1H), 2.72 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.73 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 176.1, 174.8, 143.3, 135.4, 134.5, 134.3, 131.8, 130.9, 129.3, 129.1, 128.7 (two peaks), 128.1, 127.5, 126.6, 125.7, 124.1, 123.1, 120.8, 109.6, 55.4, 44.6, 43.7, 42.6, 40.4, 31.2; LRMS (ESI) m/z 601.1 (M+Na⁺); HRMS (ESI) m/z 579.1283, Calc. for C₃₃H₂₈BrN₂O₃ 579.1278.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 10.8 min (minor) and 18.9 min (major).

4k, white solid, M.p. 80.2 - 81.8 °C; 88% yield; 92% *ee*; $[\alpha]_{20}^{D} = +170.5$ (*c* 0.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.33 (m, 5H), 7.23 - 7.16 (m, 4H), 7.03 (td, *J* = 7.8, 1.0 Hz, 1H), 6.93 (s, 1H), 6.83 (t, *J* = 7.8 Hz, 1H), 6.77 (d, *J* = 7.2 Hz, 1H), 6.72 - 6.67 (m, 3H), 6.65 (d, *J* = 7.5 Hz, 1H), 6.41 (d, *J* = 7.9 Hz, 1H), 4.79 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 13.9 Hz, 1H), 4.65 - 4.57 (m, 1H), 4.49 (d, *J* = 15.8 Hz, 1H), 4.03 (d, *J* = 13.2 Hz, 1H), 3.53 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.34 (d, *J* = 13.3 Hz, 1H), 2.73 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.73 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 176.1, 174.8, 143.3, 137.6, 135.4, 134.7,

132.9, 129.8, 129.3 (two peaks), 129.1, 128.8 (two peaks), 128.7, 128.1, 127.5, 126.6, 125.7, 124.1, 123.1, 121.8, 109.6, 55.4, 44.4, 43.7, 42.6, 40.7, 31.3; LRMS (ESI) m/z 579.1 (M+H⁺); HRMS (ESI) m/z 579.1290 (M+H⁺), Calc. for C₃₃H₂₈BrN₂O₃ 579.1278.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 10.2 min (minor) and 13.7 min (major).

4I, white solid, M.p. 85.4 - 86.4 °C; 93% yield; 99% *ee*; $[\alpha]_{20}^{D} = +80.0$ (*c* 0.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.31 (m, 6H), 7.24 - 7.18 (m, 3H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.98 - 6.86 (m, 6H), 6.62 (t, *J* = 7.6 Hz, 1H), 6.50 (d, *J* = 7.8 Hz, 1H), 4.81 - 4.62 (m, 4H), 4.32 (d, *J* = 13.8 Hz, 1H), 3.68 (d, *J* = 13.9 Hz, 1H), 3.59 (dd, *J* = 9.1, 5.1 Hz, 1H), 2.70 (dd, *J* = 18.2, 9.1 Hz, 1H), 1.74 (dd, *J* = 18.2, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 176.5, 174.8, 143.1, 135.4 (two peaks), 135.0, 132.9, 131.2, 129.2, 129.1, 128.7, 128.6, 128.3, 128.0, 127.6, 127.2, 126.8, 125.8, 125.7, 125.2, 122.8, 109.1, 54.8, 44.2, 44.0, 42.5, 39.2, 31.2; LRMS (ESI) m/z 601.1 (M+Na⁺); HRMS (ESI) m/z 579.1291 (M+H⁺), Calc. for C₃₃H₂₈BrN₂O₃ 579.1278.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 13.0 min (major).

4m, white soild, M.p. 78.6 - 79.2 °C; 81% yield; 90% *ee*; $[\alpha]_{20}^{D} = +183.6$ (*c* 0.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.33 (m, 5H), 7.20 - 7.18 (m, 3H), 7.05 - 7.01 (m, 1H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 6.9 Hz, 1H), 6.72 - 6.57 (m, 5H), 6.41 (d, *J* = 7.8 Hz, 1H), 4.88 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 13.9 Hz, 1H), 4.62 (d, *J* = 13.9 Hz, 1H), 4.41 (d, *J* = 15.8 Hz, 1H), 4.04 (d, *J* = 13.3 Hz, 1H), 3.53 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.35 (d, *J* = 13.3 Hz, 1H), 2.72 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.73 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 176.2, 174.8, 143.3, 135.4, 134.5, 133.8, 132.6, 131.5, 129.3, 129.1, 128.7, 128.6, 128.1, 128.0, 127.5, 126.6, 125.8, 124.1, 123.1, 109.6, 55.4, 44.6, 43.7, 42.6, 40.4, 31.2; LRMS (ESI) m/z 557.2 (M+Na⁺); HRMS (ESI) m/z 557.1607 (M+Na⁺), Calc. for C₃₃H₂₇ClN₂NaO₃ 557.1602.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 9.3 min (minor) and 16.2 min (major).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

4n, white solid, M.p. 39.6 - 40.2 °C; 77% yield; 99% *ee*; $[\alpha]_{20}^{p} = +80.5$ (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.29 (m, 5H), 7.19 - 7.09 (m, 3H), 7.01 (td, *J* = 7.8, 1.1 Hz, 1H), 6.92 (t, *J* = 7.9 Hz, 1H), 6.83 (d, *J* = 6.9 Hz, 1H), 6.66 (t, *J* = 7.6 Hz, 2H), 6.60 (d, *J* = 6.6 Hz, 2H), 6.45 (d, *J* = 7.6 Hz, 1H), 6.36 (d, *J* = 7.8 Hz, 1H), 6.22 (d, *J* = 1.8 Hz, 1H), 4.84 (d, *J* = 15.9 Hz, 1H), 4.67 (dd, *J* = 43.1, 13.9 Hz, 2H), 4.43 (d, *J* = 15.9 Hz, 1H), 4.05 (d, *J* = 13.2 Hz, 1H), 3.55 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.43 (s, 3H), 3.37 (d, *J* = 13.2 Hz, 1H), 2.74 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.77 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 176.4, 174.9, 158.9, 143.4, 136.7, 135.4, 134.7, 129.1, 128.8, 128.6, 128.0, 127.4, 126.5, 126.3, 124.2, 122.9, 122.6, 114.6, 113.3, 109.6, 55.6, 54.9, 44.7, 43.6, 42.6, 41.3, 31.3; LRMS (ESI) m/z 553.3 (M+Na⁺); HRMS (ESI) m/z 553.2096 (M+Na⁺), Calc. for C₃₄H₃₀N₂NaO₄ 553.2098.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 11.4 min (minor) and 14.4 min (major).

40, white solid, M.p. 75.5 - 77.8 °C; 88% yield; 97% *ee*; $[\alpha]_{20}^{D} = +129.5$ (*c* 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.31 (m, 5H), 7.21 - 7.15 (m, 3H), 7.10 - 6.93 (m, 3H), 6.83 - 6.80 (m, 3H), 6.68 - 6.53 (m, 3H), 6.38 (d, *J* = 7.8 Hz, 1H), 4.82 (d, *J* = 15.8 Hz, 1H), 4.67 (dd, *J* = 34.2, 13.9 Hz, 2H), 4.56 (d, *J* = 15.8 Hz, 1H), 4.24 (d, *J* = 13.3 Hz, 1H), 3.56 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.42 (s, 3H), 3.35 (d, *J* = 13.3 Hz, 1H), 2.70 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.80 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9 (two peaks), 175.1, 157.5, 143.2, 135.5, 135.2, 131.6, 129.1, 128.6 (two peaks), 128.0, 127.4, 126.9, 126.6, 125.1, 124.0, 122.2, 119.9, 110.1, 108.8, 55.1, 54.5, 44.4, 43.7, 42.5, 33.9, 31.4; LRMS (ESI) m/z 531.2286 (M+H⁺), Calc. for C₃₄H₃₁N₂O₄ 531.2286.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 10.9 min (minor) and 13.1 min (major).

4p, white solid, M.p. 51.2 - 51.7 °C; 90% yield; 99% *ee*; $[\alpha]_{20}^{D} = +190.0$ (*c* 0.19, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.5 Hz, 1H), 7.73 - 7.66 (m, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.46 - 7.32 (m, 7H), 7.13 (t, *J* = 7.3 Hz, 1H), 7.10 - 6.98 (m, 3H), 6.94 (d, *J* = 6.3 Hz, 1H), 6.91 - 6.83 (m, 2H), 6.57 - 6.46 (m, 3H), 6.26 (d, *J* = 7.8 Hz, 1H), 4.83 - 4.61 (m, 4H), 4.35 (d, *J* = 15.7 Hz, 1H), 3.97 (d, *J* = 14.0 Hz, 1H), 3.72 (dd, *J* = 9.1, 5.2 Hz, 1H), 2.77 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.75 (dd, *J* = 18.3, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 176.9, 174.9, 143.3, 135.4, 134.7, 133.5, 132.1, 131.9, 129.1, 128.9, 128.7, 128.5, 128.2,

128.1, 127.4, 127.3, 126.7, 126.0, 125.3 (two peaks), 124.8, 124.7, 124.6, 122.6, 109.2, 55.6, 44.8, 43.7, 42.6, 36.1, 31.4; LRMS (ESI) m/z 573.2 (M+Na⁺); HRMS (ESI) m/z 573.2138 (M+Na⁺), Calc. for C₃₇H₃₀N₂NaO₃ 573.2149.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 11.9 min (minor) and 17.0 min (major).

4q, white solid, M.p. 35.6 - 36.7 °C; 81% yield; 96% *ee*; $[\alpha]_{20}^{D} = +251.6$ (*c* 0.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.30 (m, 5H), 7.20 - 7.13 (m, 3H), 7.07 (td, *J* = 7.8, 1.2 Hz, 1H), 6.93 (dd, *J* = 5.1, 0.9 Hz, 1H), 6.80 (d, *J* = 6.8 Hz, 1H), 6.75 - 6.65 (m, 4H), 6.57 (d, *J* = 3.2 Hz, 1H), 6.46 (d, *J* = 7.8 Hz, 1H), 4.88 (d, *J* = 15.8 Hz, 1H), 4.66 (dd, *J* = 41.3, 13.9 Hz, 2H), 4.51 (d, *J* = 15.8 Hz, 1H), 4.27 (d, *J* = 14.4 Hz, 1H), 3.66 (d, *J* = 14.4 Hz, 1H), 3.52 (dd, *J* = 9.1, 5.1 Hz, 1H), 2.73 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.78 (dd, *J* = 18.3, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 176.3, 174.8, 143.8, 136.8, 135.4, 134.8, 129.4, 129.1, 128.7 (two peaks), 128.1, 127.4, 126.7, 126.2, 124.5, 124.2, 123.2, 109.6, 55.3, 44.4, 43.8, 42.6, 35.4, 31.3; LRMS (ESI) m/z 529.1 (M+Na⁺); HRMS (ESI) m/z 529.1563 (M+Na⁺), Calc. for C₃₁H₂₆N₂NaO₃S 529.1556.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 10.1 min (minor) and 13.8 min (major).

4r, white solid, M.p. 70.6 - 71.4 °C; 89% yield; 94% *ee*; $[\alpha]_{20}^{D} = +130.9$ (*c* 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 4.4 Hz, 4H), 7.32 - 7.28 (m, 1H), 7.20 - 7.11 (m, 5H), 7.07 - 7.02 (m, 3H), 6.84 (d, *J* = 7.2 Hz, 2H), 6.61 (d, *J* = 6.9 Hz, 2H), 6.28 (t, *J* = 9.5 Hz, 1H), 4.74 (d, *J* = 15.8 Hz, 1H), 4.69 (d, *J* = 4.3 Hz, 2H), 4.46 (d, *J* = 15.9 Hz, 1H), 4.08 (d, *J* = 13.2 Hz, 1H), 3.59 (dd, *J* = 9.1, 5.9 Hz, 1H), 3.41 (d, *J* = 13.3 Hz, 1H), 2.76 (dd, *J* = 18.1, 9.1 Hz, 1H), 1.89 (dd, *J* = 18.1, 5.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 176.1, 174.5, 142.0, 135.2, 134.8, 134.3, 130.1, 129.2, 128.9, 128.8, 128.6, 128.5 (two peaks), 128.1, 128.0, 127.6, 126.8, 126.6, 124.7, 110.5, 55.5, 44.9, 43.8, 42.7, 41.5, 31.3; LRMS (ESI) m/z 557.1 (M+Na⁺); HRMS (ESI) m/z 557.1611 (M+Na⁺), Calc. for C₃₃H₂₇ClN₂NaO₃ 557.1602.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 9.5 min (minor) and 13.1 min (major).

4s, white powder, M.p. 54.1 - 56.2 °C; 92% yield; 99% *ee*; $[\alpha]_{20}^{p} = +180.4$ (*c* 0.49, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.30 (m, 5H), 7.18 - 7.08 (m, 4H), 7.02 (t, *J* = 7.5 Hz, 2H), 6.87 (s, 1H), 6.83 (t, *J* = 6.9 Hz, 3H), 6.59 (d, *J* = 6.7 Hz, 2H), 6.25 (d, *J* = 7.9 Hz, 1H), 4.77 (d, *J* = 15.9 Hz, 1H), 4.68 (s, 2H), 4.44 (d, *J* = 15.9 Hz, 1H), 4.10 (d, *J* = 13.2 Hz, 1H), 3.58 (dd, *J* = 9.1, 5.6 Hz, 1H), 3.40 (d, *J* = 13.2 Hz, 1H), 2.72 (dd, *J* = 18.2, 9.1 Hz, 1H), 2.06 (s, 3H), 1.80 (dd, *J* = 18.2, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 176.3, 174.9, 141.0, 135.4 (two peaks), 134.8, 132.6, 130.1, 129.5, 128.8, 128.7, 128.5, 128.0, 127.8, 127.2, 126.6, 126.5 (two peaks), 124.7, 109.2, 55.5, 44.8, 43.6, 42.5, 41.3, 31.3, 21.0; LRMS (ESI) m/z 537.2 (M+Na⁺); HRMS (ESI) m/z 537.2153 (M+Na⁺), Calc. for C₃₄H₃₀N₂NaO₃ 537.2149. The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 12.2 min (major).

4t, white powder, M.p. 84.2 - 85.6 °C; 91% yield; 97% *ee*; $[\alpha]_{20}^{D}$ = +229.2 (*c* 0.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 5H), 7.17 - 7.10 (m, 4H), 7.02 (t, *J* = 7.5 Hz, 2H), 6.79

- 6.72 (m, 3H), 6.64 - 6.59 (m, 3H), 6.49 (d, J = 1.6 Hz, 1H), 4.75 (d, J = 4.0 Hz, 1H), 4.71 (s, 1H), 4.60 (d, J = 13.9 Hz, 1H), 4.41 (d, J = 15.9 Hz, 1H), 4.01 (d, J = 13.3 Hz, 1H), 3.54 (dd, J = 9.1, 5.1 Hz, 1H), 3.37 (d, J = 13.3 Hz, 1H), 2.74 (dd, J = 18.3, 9.1 Hz, 1H), 1.77 (dd, J = 18.3, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 176.4, 174.6, 144.7, 135.4, 134.9, 134.2, 130.1, 129.1, 128.8, 128.7, 128.0, 128.2, 127.6, 126.8, 126.6, 125.9, 125.4, 125.3, 125.0, 122.7, 112.8, 55.4, 44.5, 43.8, 42.6, 41.2, 31.3; LRMS (ESI) m/z 601.1 (M+Na⁺); HRMS (ESI) m/z 601.1101 (M+Na⁺), Calc. for C₃₃H₂₇BrN₂NaO₃ 601.1097.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 8.5 min (minor) and 10.4 min (major).

4u, white powder, M.p. 72.7 - 73.4 °C; 89% yield; 90% *ee*; $[α]_{20}^{D}$ = +183.4 (*c* 0.93, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.31 (m, 5H), 7.21 - 7.05 (m, 4H), 6.98 (t, *J* = 7.6 Hz, 2H), 6.84 - 6.73 (m, 5H), 6.64 - 6.55 (m, 2H), 4.80 (d, *J* = 15.5 Hz, 1H), 4.70 (dd, *J* = 14.7, 8.2 Hz, 2H), 4.61 (d, *J* = 13.9 Hz, 1H), 4.01 (d, *J* = 13.3 Hz, 1H), 3.53 (dd, *J* = 9.1, 5.1 Hz, 1H), 3.38 (d, *J* = 13.3 Hz, 1H), 2.71 (dd, *J* = 18.3, 9.1 Hz, 1H), 1.78 (dd, *J* = 18.3, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 176.2, 174.6, 136.2, 135.4, 134.8, 130.0, 129.2, 128.7, 128.5, 128.1, 127.9, 127.3, 126.9, 126.8, 123.7, 123.6, 120.1, 117.4, 117.2, 55.8, 45.2, 44.7, 42.6, 41.3, 31.2; LRMS (ESI) m/z 519.1; HRMS (ESI) m/z 518.1989, Calc. for C₃₃H₂₇FN₂O₃ 518.1994.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 8.7 min (minor) and 9.8 min (major).

5a, white solid, M.p. 135.2 - 136.7 °C, 88% yield; 93% *ee*; $[\alpha]_{20}^{D} = +147.4$ (*c* 0.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.55 -7.41 (m, 3H), 7.33 (d, *J* = 7.5 Hz, 1H), 7.26 -7.18 (m, 3H), 7.13 - 6.98 (m, 4H), 6.86 (dd, *J* = 8.0, 1.4 Hz, 2H), 6.69 (d, *J* = 7.7 Hz, 1H), 4.03 (d, *J* = 13.3 Hz, 1H), 3.67 (dd, *J* = 9.3, 5.1 Hz, 1H), 3.42 (d, *J* = 13.3 Hz, 1H), 2.92 (dd, *J* = 18.4, 9.3 Hz, 1H), 2.11 (dd, *J* = 18.4, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 176.3, 174.3, 141.1, 135.0, 130.0, 129.5, 129.3, 128.9, 127.7, 126.7, 126.6, 124.6, 123.1, 110.2, 56.2, 44.4, 41.1, 31.6; LRMS (EI) m/z 396.2; HRMS (EI) m/z 396.1575, Calc. for C₂₅H₂₀N₂O₃ 396.1567.

The *ee* was determined by HPLC analysis. CHIRALCEL IA (4.6 mm i.d. x 250 mm); Hexane/2-propanol = 70/30; flow rate 1.0 ml/min; 25 °C; 254 nm; retention time: 15.8 min (minor) and 22.6 min (major).

4. X- Ray Crystal Data for Compound 4t

Datablock: 1

Bond precision:	C-C = 0.0058	A	Wavelength=	0.71073			
Cell:	a=11.654(11) alpha=90	b=8.990(beta=108	(8) 3.273(17)	c=14.054(13) gamma=90			
Temperature:	296 K						
	Calculated		Reported				
Volume	1398(2)		1398(2)				
Space group	P 21		P 21				
Hall group	P 2yb		P 2yb				
Moiety formula	C33 H27 Br N2	03	C33 H27 Br	N2 03			
Sum formula	C33 H27 Br N2	03	C33 H27 Br	N2 03			
Mr	579.47		579.48				
Dx,g cm-3	1.377		1.376				
Z	2		2				
Mu (mm-1)	1.507		1.507				
F000	596.0		596.0				
F000'	595.65						
h,k,lmax	15,11,18		15,11,18				
Nref	3614[6798]		5970				
Tmin,Tmax	0.566,0.697						
Tmin'	0.480						
Correction method= Not given							
Data completenes	as= 1.65/0.88	Theta	Theta(max) = 28.080				
R(reflections)=	0.0386(3721)	wR2(r	wR2(reflections)= 0.0798(5970)				
S = 0.843	Npa						

5. Copies of NMR Spectra

