Unexpected formation of stannolanes and trigonal bipyramidal tin complexes by radical cyclization reaction

Akio Kamimura,^{*,a} Shingo Ishikawa,^a Fumiaki Noguchi,^a Takaaki Moriyama,^a Masahiro So, ^a Toshihiro Murafuji,^b and Hidemitsu Uno^c

^aDepartment of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University Ube 755-8611, Japan,

^bDepartment of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University Yamaguchi 753-8511, Japan,

^cDepartment of Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, 790-8577, Japan

Contents

General experimental	S2
Preparation of compounds 2, 3 and 4	S2
ORTEP and CIF check file for 4c	S25
ORTEP and CIF check file for 2a	S30
¹ H and ¹³ C NMR spectra for compounds 2 , 3 and 4	S36

General

All ¹H and ¹³C NMR spectra were recorded on JEOL JNM-ECA500 Delta2 (500 MHz for ¹H, 125 MHz for ¹³C, and 186 MHz for ¹¹⁹Sn) spectrometer. All the reactions in this paper were performed under nitrogen atmosphere unless otherwise mentioned. CH₂Cl₂ was dried over CaH₂, and distilled under nitrogen before use. Dry THF was purchased from Kanto Kagaku Co. Ltd. High resolution mass spectra (HRMS) were measured at Integrated Center for Sciences, Ehime University, Matsuyama, Japan.

Preparation of (*3S*,*3aS*)-methyl 5,5-dibutyl-3-(p-tolyl)-2-tosyl-1,2,3,3a,4,5hexahydrostannolo[3,4-c]pyrrole-3a-carboxylate (2a): A mixture of (S)-methyl 2-((4-methyl-*N*-(prop-2-yn-1-yl)phenylsulfon-amido)(*p*-tolyl)methyl)acrylate (1a)(256.1 mg, 0.64 mmol), Bu₃SnH (0.21 mL, 0.77 mmol), and Et₃B in hexane solution (1.0 M, 0.77 mL) in toluene (64 mL) was placed in 100 mL two necked flask and purged by air at room temperature. After stirring for 1 h at room temperature, sat NH₄Clag (10 mL) was added. The organic phase was separated and aqueous phase was extracted with EtOAc (3×30 mL). The organic phases were combined, washed with brine (10 mL), and dried over Na₂SO₄. After filtration, the filtrate was concentrated. The residue was purified by flash chromatography (silica gel/hexane:EtOAc 50:1, 20:1, and 10:1) to give **2a** in 80% yield (320.7 mg, 80%). White solid, mp 68–69 °C; $[\alpha]_{\rm D}$ +17.1 (c 1.01, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 63.8 min ((R)-2a), t_R 79.5 min ((S)-2a) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 80/20, 1.0mL/min] as >99%ee; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.50 \text{ (d, } J = 8.3 \text{ Hz}, 2 \text{ H}), 7.14 \text{ (d, } J = 8.0 \text{ Hz}, 2 \text{ H}), 6.99 \text{ (d, } J = 7.9 \text{ Hz})$ Hz, 2 H), 6.88 (d, J = 7.4 Hz, 2 H), 6.61 (s, 1 H, J^{119} Sn $^{-1}$ H = 113.4 Hz), 5.38 (s, 1 H), 4.13 (dd, J = 13.3, 2.1 Hz, 1 H), 4.08 (dd, J = 13.3, 1.3 Hz, 1 H), 3.44 (s, 3 H), 2.36 (s, 3 H), 3.44 (s,

H), 2.28 (s, 3 H), 1.49 – 1.02 (m, 12 H), 0.90 (d, J = 13.2 Hz, 1 H), 0.83 (t, J = 7.3 Hz, 3 H), 0.74 (t, J = 7.3 Hz, 3 H), 0.26 (d, J = 13.2 Hz, 1 H, J^{119} Sn⁻¹H = 54.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 175.2 (s), 157.8 (d, J^{13} C⁻¹¹⁹Sn = 52.2 Hz), 142.7 (s), 137.2 (s), 136.8 (s), 136.2 (s), 129.2 (s), 128.9 (s), 127.9 (s), 127.5 (s), 69.0 (d, J^{13} C⁻¹¹⁹Sn = 15.3 Hz), 68.5 (d, J^{13} C⁻¹¹⁹Sn = 32.2 Hz), 52.7 (s), 50.6 (d, J^{13} C⁻¹¹⁹Sn = 60.2 Hz), 29.0 (d, J^{13} C⁻¹¹⁹Sn = 22.4 Hz), 28.8 (d, J^{13} C⁻¹¹⁹Sn = 22.9 Hz), 27.1 (d, J^{13} C⁻¹¹⁹Sn = 56.7 Hz), 27.0 (d, J^{13} C⁻¹¹⁹Sn = 55.9 Hz), 21.5 (s), 21.2 (s), 13.73 (s), 13.73 (s), 13.67 (d, J^{13} C⁻¹¹⁹Sn = 350.8 Hz), 12.4 (d, J^{13} C⁻¹¹⁷Sn = 322.4Hz, J^{13} C⁻¹¹⁹Sn = 337.2 Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 141.6; IR (neat) 2920, 1726, 1614, 1344, 1159, 908 cm⁻¹; HRMS (FAB M+1) m/z 632.1856. Calcd for C₃₀H₄₂NO₄SSn m/z 632.1856.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-phenyl-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole-3a-carbo xylate (2b):

Colorless oil; $[\alpha]_D$ +11.3 (c 1.01, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 17.8 min ((*R*)-2b), t_R 34.7 min ((*S*)-2b) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 88/12, 1.0mL/min] as >99%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.3 Hz, 2 H), 7.13 (d, *J* = 8.1 Hz, 2 H), 7.18 – 7.12 (m, 3 H), 6.90 (br, 2 H), 6.68 (s, 1 H, *J*¹¹⁹Sn–¹H = 115.4 Hz), 5.42 (s, 1 H), 4.12 (dd, *J* = 12.9, 2.0 Hz, 1 H), 4.02 (d, *J* = 13.0 Hz, 1 H), 2.36 (s, 3 H), 1.36 (s, 9 H), 1.54 – 1.01 (m, 12 H), 0.92 (d, *J* = 13.3 Hz, 1 H), 0.85 (t, *J* = 7.3 Hz, 3 H), 0.74 (t, *J*

S3

= 7.0 Hz, 3 H), 0.23 (d, J = 13.2 Hz, 1 H, J^{119} Sn $^{-1}$ H = 53.4 Hz); 13 C NMR (CDCl₃, 126 MHz) δ 173.1, 158.2 (J^{119} Sn $^{-13}$ C = 54.3 Hz), 142.6, 138.2, 136.0, 132.9, 128.9, 128.2, 127.9, 127.8, 126.9, 81.20, 69.47 (J^{119} Sn $^{-13}$ C = 16.1 Hz), 68.4 (J^{119} Sn $^{-13}$ C = 30.5 Hz), 50.4 (J^{119} Sn $^{-13}$ C = 63.2 Hz), 28.7 (J^{119} Sn $^{-13}$ C = 22.1 Hz), 28.4 (J^{119} Sn $^{-13}$ C = 26.1 Hz), 27.5, 26.8 (J^{119} Sn $^{-13}$ C = 56.4 Hz), 26.7 (J^{119} Sn $^{-13}$ C = 58.2 Hz), 21.2, 13.42, 13.37, 12.8 (J^{117} Sn $^{-13}$ C = 285.0 Hz, J^{119} Sn $^{-13}$ C = 304.1 Hz), 12.6 (J^{117} Sn $^{-13}$ C = 278.3 Hz, J^{119} Sn $^{-13}$ C = 293.5 Hz), 12.0 (J^{117} Sn $^{-13}$ C = 320.0 Hz, J^{119} Sn $^{-13}$ C = 337.2 Hz); 119 Sn NMR (186 MHz, CDCl₃) δ 142.2; IR (neat) 2922, 1717, 1616, 1343, 1161, 908 cm $^{-1}$; HRMS (FAB⁺ M+1) *m/z* 660.2185. calcd for C₃₂H₄₆NO₄SSn 660.2170.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-(*p*-tolyl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole-3a-carb oxylate (2c)

Pale yellow oil; $[\alpha]_D -1.1$ (c 1.06, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 23.2 min ((*R*)-2c), t_R 47.7 min ((*S*)-2c) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 88/12, 1.0mL/min] as 96%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2 H), 7.08 (d, *J* = 8.1 Hz, 2 H), 6.95 (d, *J* = 7.6 Hz, 2 H), 6.84 (br, 2 H), 6.56 (s, 1 H, *J*¹¹⁹Sn–¹H = 115.4 Hz), 5.41 (s, 1 H), 4.14 (dd, *J* = 12.9, 2.1 Hz, 1 H), 4.01 (d, *J* = 12.9 Hz, 1 H), 2.34 (s, 3 H), 2.28 (s, 3 H), 1.37 (s, 9 H), 1.54 – 1.00 (m, 12 H), 0.93 (d, *J* = 11.9 Hz, 1 H), 0.85 (t, *J* = 7.3 Hz, 3 H), 0.75 (t, *J* = 7.0 Hz, 3 H), 0.27 (d, *J* = 13.2 Hz, 1 H, *J*¹¹⁹Sn–¹H = 53.2 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 158.3 (*J*¹¹⁹Sn–¹³C = 55.9 Hz), 142.4, 136.8, 136.4, 128.9, 128.9, 128.5, 127.8, 127.6, 127.1, 81.2, 69.4 (J^{119} Sn $-^{13}$ C = 16.3 Hz), 68.2 (J^{119} Sn $-^{13}$ C = 30.4 Hz), 50.4 (J^{119} Sn $-^{13}$ C = 60.4 Hz), 28.7, 28.4 (J^{119} Sn $-^{13}$ C = 22.7 Hz), 27.4, 26.8 (J^{119} Sn $-^{13}$ C = 55.7 Hz), 26.7 (J^{119} Sn $-^{13}$ C = 56.4 Hz), 21.1, 20.8, 13.4, 13.3, 12.7 (J^{117} Sn $-^{13}$ C = 330.4 Hz, J^{119} Sn $-^{13}$ C = 345.6 Hz), 12.5 (J^{117} Sn $-^{13}$ C = 284.6 Hz, J^{119} Sn $-^{13}$ C = 309.4 Hz), 11.9 (d, J^{117} Sn $-^{13}$ C = 319.6 Hz, J^{119} Sn $-^{13}$ C = 336.6 Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 140.7; IR (neat) 2922, 1717, 1616, 1342, 1161, 909 cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 674.2338. calcd for C₃₃H₄₈NO₄SSn 674.2326.

(3S,3aS)-tert-butyl

5,5-dibutyl-2-(methylsulfonyl)-3-(p-tolyl)-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyr role-3a-carboxylate (2d)

Colorless oil; $[\alpha]_D$ +10.6 (c 1.10, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 22.1 min ((*R*)-2d), t_R 50.5 min ((*S*)-2d) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 88/12, 1.0mL/min] as 96%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.07 (d, *J* = 8.0 Hz, 2 H), 6.99 (d, *J* = 7.7 Hz, 2 H), 6.64 (s, 1 H, *J*¹¹⁹Sn-¹H = 115.6 Hz), 5.30 (s, 1 H), 4.20 (dd, *J* = 13.0, 1.8 Hz, 1 H), 4.11 (d, *J* = 13.1 Hz, 1 H), 2.62 (s, 3 H), 2.29 (s, 3 H), 1.65 – 1.05 (m, 12 H), 1.47 (s, 9 H), 0.97 (d, *J* = 13.2 Hz, 1 H), 0.86 (t, *J* = 7.3 Hz, 3 H), 0.78 (t, *J* = 7.0 Hz, 3 H), 0.28 (d, *J* = 13.2 Hz, 1 H, *J*¹¹⁹Sn-¹H = 53.4 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 174.1, 158.3 (*J*¹¹⁹Sn-¹³C = 55.9 Hz), 137.5, 136.9, 129.1, 128.4 (*J*¹¹⁷Sn-¹³C = 335.2 Hz, *J*¹¹⁹Sn-¹³C = 350.6 Hz), 81.8 (*J*¹¹⁹Sn-¹³C = 39.5 Hz), 69.6 (*J*¹¹⁹Sn-¹³C = 14.9 Hz), 68.0 (*J*¹¹⁹Sn-¹³C = 30.7 Hz), 50.8 (*J*¹¹⁹Sn-¹³C = 61.3 Hz), 37.9, 29.1 (*J*¹¹⁹Sn-¹³C = 22.2 Hz), 28.8 (J^{119} Sn 13 C = 22.6 Hz), 27.9, 27.1 (J^{119} Sn 13 C = 56.9 Hz), 27.0 (J^{119} Sn 13 C = 56.6 Hz), 21.2, 13.7, 13.6, 13.1 (J^{117} Sn 13 C = 332.0 Hz, J^{119} Sn 13 C = 347.2 Hz), 12.6 (J^{117} Sn $^{-13}$ C = 290.8 Hz, J^{119} Sn $^{-13}$ C = 306.5 Hz), 12.4 (J^{117} Sn $^{-13}$ C = 322.5 Hz, J^{119} Sn $^{-13}$ C = 339.0 Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 144.8; IR (neat) 1714, 1337, 1155 cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 598.2013 calcd for C₂₇H₄₄NO₄SSn 598.2013.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-(4-chlorophenyl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrol e-3a-carboxylate (2e)

Pale yellow oil; $[\alpha]_D -0.8$ (c 1.05, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 13.3 min ((*R*)-**2e**), t_R 19.5 min ((*S*)-**2e**) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 88/12, 1.0mL/min] as >99%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.3 Hz, 2 H), 7.13 (d, *J* = 8.1 Hz, 4 H), 6.90 (br, 2 H), 6.58 (s, 1 H, *J*¹¹⁹Sn–¹H = 115.4 Hz), 5.42 (s, 1 H), 4.12 (dd, *J* = 12.9, 2.0 Hz, 1 H), 4.02 (d, *J* = 13.0 Hz, 1 H), 2.36 (s, 3 H), 1.36 (s, 9 H), 1.54 – 1.00 (m, 12 H), 0.90 (d, *J* = 13.2 Hz, 1 H), 0.85 (t, *J* = 7.3 Hz, 3 H), 0.77 (t, *J* = 7.0 Hz, 3 H), 0.19 (d, *J* = 14.2 Hz, 1 H, *J*¹¹⁹Sn–¹H = 53.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 157.4 (*J*¹¹⁹Sn–¹³C = 55.2 Hz), 142.6, 138.2, 136.0, 132.9, 129.1, 128.9, 128.2, 127.8, 126.9, 81.2, 69.1 (*J*¹¹⁹Sn–¹³C = 17.0 Hz), 67.5 (*J*¹¹⁹Sn–¹³C = 29.6 Hz), 50.1 (*J*¹¹⁹Sn–¹³C = 60.2 Hz), 28.5 (*J*¹¹⁹Sn–¹³C = 56.7 Hz), 28.3 (*J*¹¹⁹Sn–¹³C = 23.1 Hz), 27.2, 26.6 (*J*¹¹⁹Sn–¹³C = 57.7 Hz), 26.5 (*J*¹¹⁹Sn–¹³C = 56.7 Hz), 21.0, 13.2, 13.1, 12.7 (*J*¹¹⁷Sn–¹³C = 333.2 Hz, *J*¹¹⁹Sn–¹³C = 348.6 Hz), 12.3 (*J*¹¹⁷Sn–¹³C = 278.3 Hz, *J*¹¹⁹Sn–¹³C = 280.8 Hz), 11.9 $(J^{117}\text{Sn}^{-13}\text{C} = 316.4 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 328.5 \text{ Hz}); {}^{119}\text{Sn} \text{ NMR}$ (186 MHz, CDCl₃) δ 140.1; IR (neat) 2922, 1717, 1616, 1343, 1161, 908 cm⁻¹; HRMS (FAB⁺ M+1) m/z694.1771. calcd for C₃₂H₄₅ClNO₄SSn 694.1780.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-(4-methoxyphenyl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrr ole-3a-carboxylate (2f)

Colorless oil; $[\alpha]_D$ +1.4 (c 1.00, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 23.7 min ((R)-2f), t_R 46.6 min ((S)-2f) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 85/15, 1.0mL/min] as 95%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 8.3 Hz, 2 H), 7.09 (d, J = 8.2 Hz, 2 H), 6.87 (br, 2 H), 6.68 (d, J = 8.3 Hz, 2 H), 6.56 (s, 1 H, J^{119} Sn $^{-1}$ H = 115.4 Hz), 5.41 (s, 1 H), 4.15 (dd, J = 13.0, 2.1 Hz, 1 H), 3.99 (d, J = 13.8 Hz, 1 H), 2.33 (s, 3 H), 3.76 (s, 3 H), 1.38 (s, 9 H), 1.54 - 1.04 (m, 12 H), 0.91 (d, J = 13.3 Hz, 1 H), 0.85 (t, J = 7.3 Hz, 3 H), 0.76 (t, J = 7.1 Hz, 3 H), 0.28 (d, J = 12.7 Hz, 1 H, J^{119} Sn $^{-1}$ H = 53.2 Hz); 13 C NMR $(126 \text{ MHz, CDCl}_3) \delta 173.7, 158.3 (J^{119}\text{Sn}^{-13}\text{C} = 55.2 \text{ Hz}), 158.9, 142.4, 136.4, 131.6,$ 129.0, 128.9, 127.7, 127.1, 113.2, 81.3, 69.5 (J^{119} Sn $^{-13}$ C = 16.4 Hz), 68.0 (J^{119} Sn $^{-13}$ C = 31.9 Hz), 55.0, 50.3 $(J^{119}\text{Sn}^{-13}\text{C} = 61.4 \text{ Hz})$, 28.7 $(J^{119}\text{Sn}^{-13}\text{C} = 21.8 \text{ Hz})$, 28.5 $(J^{119}\text{Sn}^{-13}\text{C} = 22.8 \text{ Hz}), 27.4, 26.8 (J^{119}\text{Sn}^{-13}\text{C} = 57.0 \text{ Hz}), 26.7 (J^{119}\text{Sn}^{-13}\text{C} = 56.7 \text{ Hz}),$ 21.2, 13.4, 13.3, 12.8 (J^{117} Sn $^{-13}$ C = 330.2 Hz, J^{119} Sn $^{-13}$ C = 346.0 Hz), 12.5 (J^{117} Sn $^{-13}$ C = 261.2 Hz, J^{119} Sn $^{-13}$ C = 296.2 Hz), 12.0 (J^{117} Sn $^{-13}$ C = 319.2 Hz, J^{119} Sn $^{-13}$ C = 336.8 ¹¹⁹Sn Hz); NMR (186 MHz, CDCl₃) 140.0; δ IR (neat) 2930, 1719, 1612, 1343, 1247, 1161, 1098, 910 cm⁻¹; HRMS (FAB⁺ M+1) m/z 690.2261. calcd for C₃₃H₄₈NO₅SSn 690.2275.

(3*S*,3a*S*)-*tert*-butyl

5,5-dibutyl-3-(*o*-tolyl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole-3a-carb

oxylate (2g)

Colorless oil; $[\alpha]_D$ +16.9 (c 1.00, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 17.4 min ((R)-2g), t_R 19.1 min ((S)-2g) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 88/12, 1.0mL/min] as 98%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 7.10 (d, J = 8.9 Hz, 1 H), 7.05 (td, J = 7.4, 1.1 Hz, 1 H, 6.87 (t, J = 7.3 Hz, 1 H), 6.60 (d, J = 7.4 H), 6.60 (d, J = 77.9 Hz, 1 H), 6.58 (s, 1 H, J^{119} Sn $^{-1}$ H = 115.4 Hz), 5.83 (s, 1 H), 4.17 (dd, J = 12.8, 2.2Hz, 1 H), 4.06 (dd, J = 12.9, 0.9 Hz, 1 H), 2.45 (s, 3 H), 2.34 (s, 3 H), 1.37 (s, 9 H), 1.55 -1.02 (m, 12 H), 0.95 (d, J = 13.2 Hz, 1 H), 0.84 (t, J = 7.3 Hz, 3 H), 0.73 (t, J = 7.0 Hz, 3 H), 0.18 (d, J = 13.2 Hz, 1 H, J^{119} Sn $^{-1}$ H = 54.2 Hz); 13 C NMR (126 MHz, CDCl₃) δ 173.9. 158.0 $(J^{119}\text{Sn}^{-13}\text{C} = 55.6 \text{ Hz})$, 142.6, 138.0, 136.3, 136.2, 129.7, 129.0, 128.1, 127.2, 127.0, 126.5, 125.8, 81.3, 69.4 (J^{119} Sn $-^{13}$ C = 17.0 Hz), 64.1 (J^{119} Sn $-^{13}$ C = 31.0 Hz), 50.6 $(J^{119}\text{Sn}^{-13}\text{C} = 60.7 \text{ Hz})$, 28.8 $(J^{119}\text{Sn}^{-13}\text{C} = 22.0 \text{ Hz})$, 28.3 $(J^{119}\text{Sn}^{-13}\text{C} = 22.8 \text{ Hz})$ Hz), 27.5, 26.9 (J^{119} Sn $^{-13}$ C = 55.3 Hz), 26.7 (J^{119} Sn $^{-13}$ C = 55.2 Hz), 21.2, 19.7, 13.4, 13.3, 12.7 $(J^{117}\text{Sn}^{-13}\text{C} = 329.4 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 345.0 \text{ Hz}), 12.1 (J^{117}\text{Sn}^{-13}\text{C} = 266.8 \text{ Hz})$ Hz, J^{119} Sn $^{-13}$ C = 281.8 Hz), 11.9 (J^{117} Sn $^{-13}$ C = 324.0 Hz, J^{119} Sn $^{-13}$ C = 340.0 Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 139.3; IR (neat) 2924, 1717, 1616, 1341, 1159, 908

cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 674.2320. calcd for C₃₃H₄₈NO₄SSn 674.2326.

(3*S*,3a*S*)-*tert*-butyl

5,5-dibutyl-3-(naphthalen-2-yl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrol e-3a-carboxylate (2h)

Pale yellow oil; $[\alpha]_D - 21.9$ (c 1.03, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 20.9 min ((R)-2h), t_R 30.3 min ((S)-2h) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 88/12, 1.0mL/min] as 96%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 8.2 Hz, 2 H), 7.82 – 7.39 (m, 6 H), 7.06 – 6.93 (m, 1 H), 6.90 (d, J = 8.0 Hz, 2 H), 6.63 (s, 1 H, J^{119} Sn $-^{1}$ H = 114.6 Hz), 5.61 (s, 1 H), 4.26 (dd, J = 13.0, 2.1 Hz, 1 H), 4.12 (d, J = 13.5 Hz, 1 H), 2.20 (s, 3 H), 1.42 (s, 9 H), 1.56 - 1.02 (m, 12 H), 0.96 (d, J = 13.3 Hz, 1 H), 0.83 (t, J = 7.3 Hz, 3 H), 0.64 - 1.02 (m, 12 H), 0.96 (d, J = 13.3 Hz, 1 H), 0.83 (t, J = 7.3 Hz, 3 H), 0.64 - 1.02 (m, 12 H), 0.96 (d, J = 13.3 Hz, 1 H), 0.83 (t, J = 7.3 Hz, 3 H), 0.64 - 1.02 (m, 12 H), 0.96 (d, J = 13.3 Hz, 1 H), 0.83 (t, J = 7.3 Hz, 3 H), 0.64 - 1.02 (m, 12 H), 0.96 (d, J = 13.3 Hz, 1 H), 0.83 (t, J = 7.3 Hz, 3 H), 0.64 - 1.02 (m, 12 H), 0.96 (d, J = 13.3 Hz, 1 H), 0.83 (t, J = 7.3 Hz, 3 H), 0.64 - 1.02 (m, 12 H), 0.96 (m, 12 H), 0.90.50 (m, 3 H), 0.25 (d, J = 13.3 Hz, 1 H, J^{119} Sn $^{-1}$ H = 53.2 Hz); 13 C NMR (126 MHz, CDCl₃) δ 173.8, 158.5 (J^{119} Sn $^{-13}$ C = 54.6 Hz), 142.6, 136.9, 136.5, 133.1, 132.9, 129.5, 129.0, 128.2, 128.1, 128.0, 127.8, 127.5, 127.2, 126.0, 125.9, 81.8, 69.8 (J^{119} Sn $^{-13}$ C = 16.0 Hz), 68.9 (J^{119} Sn $-^{13}$ C = 30.7 Hz), 50.9 (J^{119} Sn $-^{13}$ C = 61.7 Hz), 29.0 (J^{119} Sn $-^{13}$ C = 22.1 Hz), 28.7 $(J^{119}\text{Sn}^{-13}\text{C} = 22.6 \text{ Hz})$, 27.8, 27.1 $(J^{119}\text{Sn}^{-13}\text{C} = 56.3 \text{ Hz})$, 26.9 $(J^{119}\text{Sn}^{-13}\text{C} = 59.5 \text{ Hz}), 21.4, 17.7, 13.7, 13.4, 13.1 (J^{117}\text{Sn}^{-13}\text{C} = 331.6 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C}$ = 347.1 Hz), 12.2 (J^{117} Sn $^{-13}$ C = 319.2 Hz, J^{119} Sn $^{-13}$ C = 346.6 Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 157.2; IR (neat) 2924, 1716, 1344, 1251, 1139, 665 cm⁻¹; HRMS $(FAB^+ M+2) m/z 711.2394$. calcd for C₃₆H₄₉NO₄SSn 711.2404.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-(4-fluorophenyl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole -3a-carboxylate (2i)

Bu Bu Sn CO₂tBu

Pale yellow oil; $[\alpha]_D$ +9.87 (c 1.02, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 13.7 min ((R)-2i), t_R 21.4 min ((S)-2i) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 88/12, 1.0mL/min] as 92%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 2 H), 7.12 (d, J = 8.4 Hz, 2 H), 6.94 (s, 2 H), 6.85 (t, J = 8.4 Hz, 2H), 6.58 (s, 1 H, J^{119} Sn $-^{1}$ H = 115.1 Hz), 5.45 (s, 1 H), 4.13 (dd, J = 12.9, 2.1 Hz, 1 H), 4.02 (d, J = 13.3 Hz, 1 H), 2.34 (s, 3 H), 1.56 - 1.03 (m, 12 H), 1.37 (s, 9 H), 0.91 (d, J = 13.1 Hz, 1 H), 0.85 (t, J = 7.3 Hz, 3 H), 0.76 (t, J = 7.0 Hz, 3 H), 0.20 (d, J = 13.3 Hz, 1 H, J^{119} Sn $^{-1}$ H = 52.9 Hz); 13 C NMR (126 MHz, CDCl₃) δ 173.5, 163.1, 161.1, 157.8 (J^{119} Sn $^{-13}$ C = 54.5 Hz), 142.7, 136.3, 135.6, 135.5, 129.1, 128.2, 127.2, 114.8 ($J^{19}F^{-13}C = 21.4$ Hz), 81.6, 69.5 ($J^{119}Sn^{-13}C = 16.4$ Hz), 67.7 $(J^{119}\text{Sn}^{-13}\text{C} = 30.7 \text{ Hz}), 50.4 (J^{119}\text{Sn}^{-13}\text{C} = 60.2 \text{ Hz}), 28.9 (J^{119}\text{Sn}^{-13}\text{C} = 22.0 \text{ Hz}), 28.6$ $(J^{119}\text{Sn}^{-13}\text{C} = 22.7 \text{ Hz}), 27.6, 27.0 (J^{119}\text{Sn}^{-13}\text{C} = 51.6 \text{ Hz}), 26.9 \text{ (d, J} = 54.4 \text{ Hz}), 21.3,$ 13.5, 13.4, 13.0 $(J^{117}\text{Sn}^{-13}\text{C} = 330.0 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 346.0 \text{ Hz}), 12.7 (J^{117}\text{Sn}^{-13}\text{C} = 346.0 \text{ Hz})$ 270.2 Hz, J^{119} Sn $^{-13}$ C = 292.9 Hz), 12.2 (J^{117} Sn $^{-13}$ C = 322.4 Hz, J^{119} Sn $^{-13}$ C = 338.0 Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 140.6; IR (neat) 2924, 1716, 1508, 1344, 1161 cm⁻¹; HRMS (FAB⁺ M+1) m/z 678.2072. calcd for C₃₂H₄₅FNO₄SSn 678.2075.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-(m-tolyl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole-3a-car

boxylate (2j)

Pale yellow oil; $[\alpha]_D - 1.84$ (c 1.03, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 18.6 min ((*R*)-2j), t_R 33.9 min ((*S*)-2j) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 88/12, 1.0mL/min] as 96%ee; ¹H NMR (500 MHz, CDCl₃) TM 7.40 (d, J = 8.3 Hz, 2 H), 7.07 (d, J = 8.4 Hz, 2 H), 7.03 (d, J = 7.5 Hz, 1 H), 6.96 (d, J = 7.6 Hz, 1 H), 6.81 - 6.70 (m, 1 H), 6.67 - 6.58 (m, 1 H),6.56 (s, 1 H, ${}^{3}J^{119}$ Sn ${}^{-1}$ H = 115.4 Hz), 5.41 (s, 1 H), 4.18 (dd, J = 12.9, 2.1 Hz, 1 H), 4.01 (dd, J = 12.9, 1.1 Hz, 1 H), 2.32 (s, 3 H), 2.17 (s, 3 H), 1.39 (s, 9 H), 1.54 – 1.04 (m, 12 H), 0.92 (d, J = 13.3 Hz, 1 H), 0.85 (t, J = 7.3 Hz, 3 H), 0.74 (t, J = 7.1 Hz, 3 H), 0.25 (d, $J = 13.3 \text{ Hz}, 1 \text{ H}, J^{119}\text{Sn}^{-1}\text{H} = 53.2 \text{ Hz}); {}^{13}\text{C} \text{ NMR} (126 \text{ MHz}, \text{CDCl}_3) \delta 173.7, 158.4$ $(J^{119}\text{Sn}^{-13}\text{C} = 55.5 \text{ Hz}), 142.4, 139.14, 137.3, 136.5, 128.9, 128.1, 127.8, 127.7, 127.2, 1$ 81.4, 69.5 (J^{119} Sn $-^{13}$ C = 16.3 Hz), 68.6 (J^{119} Sn $-^{13}$ C = 31.4 Hz), 50.6 (J^{119} Sn $-^{13}$ C = 61.7 Hz), 28.9 $(J^{119}\text{Sn}^{-13}\text{C} = 22.1 \text{ Hz})$, 28.5 $(J^{119}\text{Sn}^{-13}\text{C} = 22.7 \text{ Hz})$, 27.6, 27.0 $(J^{119}\text{Sn}^{-13}\text{C} = 22.7 \text{ Hz})$ 55.3 Hz), 26.8 (J^{119} Sn $^{-13}$ C = 55.8 Hz), 21.3, 21.2, 13.5, 13.4, 12.9 (J^{117} Sn $^{-13}$ C = 330.3 Hz, J^{119} Sn $^{-13}$ C = 347.7 Hz), 12.7 (J^{117} Sn $^{-13}$ C = 287.9 Hz, J^{119} Sn $^{-13}$ C = 302.1 Hz), 12.1 $(J^{117}\text{Sn}^{-13}\text{C} = 320.1 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 335.4 \text{ Hz});$ ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 140.3; IR (neat) 2922, 1716, 1344, 1159 cm⁻¹; HRMS (FAB⁺ M+1) m/z 674.2314. calcd for C₃₃H₄₈NO₄SSn 674.2326.

(3S,3aS)-tert-butyl

5,5-dibutyl-2-tosyl-3-(4-(trifluoromethyl)phenyl)-1,2,3,3a,4,5-hexahydrostannolo[3,

4-c]pyrrole-3a-carboxylate (2k)

Pale yellow oil; $[\alpha]_D$ +2.24 (c 1.07, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 8.9 min ((R)-2k), t_R 10.3 min ((S)-2k) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 88/12, 1.0mL/min] as 96%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.3 Hz, 2 H), 7.40 (d, J = 7.9 Hz, 2 H), 7.09 (dd, J = 8.5, 0.5 Hz, 2 H), 7.11 - 7.03 (m, 2 H), 6.61 (s, 1 H, ${}^{3}J^{119}$ Sn ${}^{-1}$ H = 115.3 Hz), 5.49 (s, 1 H), 4.16 (dd, J = 13.0, 2.1 Hz, 1 H), 4.08 (dd, J = 12.9, 1.1 Hz, 1 H), 2.33 (s, 3 H), 1.37 (s, 9 H), 1.56 - 0.98 (m, 12 H), 0.92 (d, J = 13.3 Hz, 1 H), 0.85 (t, J = 7.3 Hz, 3 H), 0.72 (t, J = 7.1 Hz, 3 H), 0.12 (d, J = 13.3 Hz, 1 H, J^{119} Sn $^{-1}$ H = 53.2 Hz); 13 C NMR $(126 \text{ MHz}, \text{CDCl}_3) \delta 173.3, 157.5 (J^{119}\text{Sn}^{-13}\text{C} = 53.6 \text{ Hz}), 143.8, 142.9, 136.2, 129.6 (q. 120)$ $J^{19}F^{-13}C = 32.3$ Hz), 129.1, 128.7, 127.1, 124.9 (g, $J^{19}F^{-13}C = 3.8$ Hz), 81.8, 69.5 $(J^{119}\text{Sn}^{-13}\text{C} = 16.7 \text{ Hz}), 67.9 (J^{119}\text{Sn}^{-13}\text{C} = 29.9 \text{ Hz}), 50.6 (J^{119}\text{Sn}^{-13}\text{C} = 54.5 \text{ Hz}), 28.9$ $(J^{119}\text{Sn}^{-13}\text{C} = 22.2 \text{ Hz}), 28.6 (J^{119}\text{Sn}^{-13}\text{C} = 23.0 \text{ Hz}), 27.6, 27.0 (J^{119}\text{Sn}^{-13}\text{C} = 57.4 \text{ Hz}),$ 26.7 $(J^{119}\text{Sn}^{-13}\text{C} = 57.4 \text{ Hz})$, 21.3, 13.6, 13.3, 13.1 $(J^{117}\text{Sn}^{-13}\text{C} = 301.6 \text{ Hz})$ J^{119} Sn $-^{13}$ C = 336.5 Hz), 12.7 (J^{117} Sn $-^{13}$ C = 259.0 Hz, J^{119} Sn $-^{13}$ C = 278.4 Hz), 12.2 $(J^{117}\text{Sn}^{-13}\text{C} = 334.1 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 349.5 \text{ Hz});$ ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 141.1; IR (neat) 2926, 1716, 1508, 1344, 1161 cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 728.2054. calcd for C₃₃H₄₅F₃NO₄SSn 728.2043.

(3R,3aS)-tert-butyl

5,5-dibutyl-3-(furan-2-yl)-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole-3acarboxylate (2l)

Pale vellow oil; $[\alpha]_{D}$ +16.9 (c 1.09, CHCl₃); the enantiomeric purity was determined by HPLC analysis, t_R 17.3 min ((R)-2I), t_R 23.4 min ((S)-2I) [CHIRALPAK IC (0.46 cm x 25 cm) (from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 88/12, 1.0mL/min] as 87%ee; ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 8.3 Hz, 2 H), 7.10 (d, J = 8.5 Hz, 2 H), 7.02 (t, J = 1.0 Hz, 1 H), 6.49 (s, 1 H, ${}^{3}J^{119}$ Sn ${}^{-1}$ H = 116.0 Hz), 6.19 (d, J = 1.3 Hz, 2 H), 5.52 (s, 1 H), 4.18 (dd, J = 12.9, 2.1 Hz, 1 H), 3.86 (dd, J = 12.9, 1.3 Hz, 1 H), 2.34 (s, 3 H),1.45 (s, 9 H), 1.57 - 1.09 (m, 12 H), 1.03 (d, J = 13.1 Hz, 1 H), 0.86 (t, J = 7.3 Hz, 3 H),0.79 (t, J = 7.2 Hz, 3 H), 0.24 (d, J = 13.1 Hz, 1 H, J^{119} Sn $^{-1}$ H = 52.8 Hz); 13 C NMR $(126 \text{ MHz, CDCl}_3) \delta 173.1, 158.6 (J^{119}\text{Sn}^{-13}\text{C} = 52.2 \text{ Hz}), 152.0, 142.4, 141.9, 136.2,$ 129.1, 127.0, 126.3, 109.9, 109.8, 81.8, 69.5 (J^{119} Sn $-^{13}$ C = 17.8 Hz), 62.3 (J^{119} Sn $-^{13}$ C = 34.1 Hz), 49.7 (J^{119} Sn $^{-13}$ C = 62.8 Hz), 28.9 (J^{119} Sn $^{-13}$ C = 19.9 Hz), 28.7 (J^{119} Sn $^{-13}$ C = 22.5 Hz), 27.7, 27.0 (J^{119} Sn $^{-13}$ C = 54.4 Hz), 26.9 (J^{119} Sn $^{-13}$ C = 56.3 Hz), 21.4, 13.6 $(J^{117}\text{Sn}^{-13}\text{C} = 289.1 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 309.9 \text{ Hz}), 13.1 (J^{117}\text{Sn}^{-13}\text{C} = 333.6 \text{ Hz})$ J^{119} Sn $-^{13}$ C = 349.2 Hz), 12.3 (J^{117} Sn $-^{13}$ C = 321.5 Hz, J^{119} Sn $-^{13}$ C = 334.8 Hz), 12.2; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 141.6; IR (neat) 2928, 1718, 1346, 1161 cm⁻¹; HRMS $(FAB^+ M+1) m/z 650.1963$. calcd for C₃₀H₄₄NO₅SSn 650.1962.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-isopropyl-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole-3a-ca rboxylate (2m)

Colorless oil; $[\alpha]_D +9.9$ (c 0.97, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2 H), 7.21 (d, J = 8.0 Hz, 2 H), 5.84 (s, 1 H), 4.40 (dd, J = 15.0, 1.9 Hz, 1 H), 4.08 (d, J = 15.2 Hz, 1 H), 3.34 (d, J = 9.1 Hz, 1 H), 2.38 (s, 3 H), 2.29 – 2.18 (m, 1H), 1.93 (d, J = 11.6 Hz, 1 H), 1.38 (s, 9 H), 1.66 – 1.09 (m, 12 H), 1.18 (d, J = 6.8 Hz, 3 H), 0.98 (d, J = 6.5 Hz, 3 H), 0.88 (t, J = 7.3 Hz, 3 H), 0.80 (t, J = 7.3 Hz, 3 H), 0.17 (d, J = 11.7 Hz, 1 H, J^{119} Sn–¹H = 54.7 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 161.0 (J^{119} Sn–¹³C = 39.6 Hz), 143.3, 135.5, 129.4, 128.5, 124.5 (J^{117} Sn–¹³C = 310.6 Hz, J^{119} Sn–¹³C = 53.6 Hz), 31.3, 32.2, 29.1 (J^{119} Sn–¹³C = 23.2 Hz), 28.9 (J^{119} Sn–¹³C = 20.4 Hz), 27.9, 27.2 (J^{119} Sn–¹³C = 51.0 Hz), 27.1 (d, J^{119} Sn–¹³C = 58.9 Hz), 21.7, 20.4, 17.6 (J^{117} Sn–¹³C = 321.6 Hz, J^{119} Sn–¹³C = 314.8 Hz, J^{119} Sn–¹³C = 329.4 Hz); ¹¹⁹Sn–¹³C = 346.2 Hz), 12.4 (J^{117} Sn–¹³C = 314.8 Hz, J^{119} Sn–¹³C = 329.4 Hz); ¹¹⁹Sn–¹³C = 321.6 Hz, J^{119} Sn–¹³C = 314.8 Hz, J^{119} Sn–¹³C = 329.4 Hz); ¹¹⁹Sn–¹³C = 321.6 Hz, J^{119} Sn–¹³C = 314.8 Hz, J^{119} Sn–¹³C = 329.4 Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 127.3; IR (neat) 2922, 1716, 1346, 1159 cm⁻¹; HRMS (FAB⁺ M+2) m/z 627.2410. calcd for C₂₉H₄₉NO₄SSn 627.2404.

(3S,3aS)-tert-butyl

5,5-dibutyl-3-propyl-2-tosyl-1,2,3,3a,4,5-hexahydrostannolo[3,4-c]pyrrole-3a-carbo xylate (2n)

Bu Bu CO₂tBu

Colorless oil; isolated as an inseparable 1:1 mixture of the two diastereomer; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 1 H), 7.67 (d, *J* = 8.3 Hz, 1 H), 7.25 (d, *J* = 8.8 Hz, 1 H), 7.23 (d, *J* = 8.8 Hz, 1 H), 6.40 (s, 0.5 H), 6.10 (s, 0.5 H), 4.48 (dd, *J* = 5.8, 4.5 Hz, 0.5 H), 4.40 (dd, *J* = 14.6, 2.1 Hz, 0.5 H), 4.07 (dd, *J* = 14.6, 1.0 Hz, 0.5 H), 3.89 (dd, *J* = 13.2, 2.2 Hz, 0.5 H), 3.77 (dd, *J* = 13.2, 1.2 Hz, 0.5 H), 3.33 (dd, *J* = 10.4, 4.5 Hz, 0.5 H), 2.38 (s, 1.5 H), 2.36 (s, 1.5 H), 2.26–2.17 (m, 2 H), 1.40 (s, 4.5 H), 1.25 (s, 4.5 H), 1.67 – 0.96 (m, 15 H), 0.93 – 0.78 (m, 9 H), 0.26 (d, *J* = 11.9 Hz, 0.5 H, *J*¹¹⁹Sn–¹H = 54.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 174.0, 171.7, 160.0, 159.9, 143.2, 142.9, 136.9, 135.3, 129.5, 129.4, 127.7, 127.5, 125.4, 124.9, 81.7, 81.2, 72.2, 68.7, 68.6, 64.1, 54.3, 49.8, 35.8, 34.9, 29.2, 29.1, 29.0, 28.8, 27.93, 27.92, 27.63, 27.62, 27.2, 27.1, 27.0, 26.9, 21.6, 21.5, 20.7, 19.6, 18.8, 17.6, 14.5, 14.2, 13.8, 13.75, 13.73, 13.70, 13.1, 13.0, 12.6, 12.5, 12.3; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 137.0, 132.7; HRMS (FAB⁺ M+2) *m/z* 627.2404. calcd for C₂₉H₄₉NO₄SSn 627.2404

Prepararion of TBP tin complex (4b): To a solution of **2b** (120,0 mg, 0.18 mmol) in ether (20 mL) was added 12 M HCl aq (0.5 mL) and the resulting biphasic mixture was stirred at room temperature for 18 h. The organic phase was separated, washed with brine (10 ml x 2), and dried over Na₂SO₄. After filtration, the filtrate was concentrated in vacuo and the residue was purified through flash chromatography (hexane-EtOAc (20:1) to give **4b** in 100% yield (123.0 mg, 0.18 mmol).

White solid; mp 58 – 59 °C; $[\alpha]_D$ –36.0 (c 1.05, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.09 (m, 5 H), 6.99 (d, *J* = 8.4 Hz, 2 H), 6.89 (br, 2 H), 5.26 (s, 1 H), 5.11 (s, 2 H), 4.55 (dt, J = 13.3, 2.0 Hz, 1 H), 4.07 (d, J = 13.3 Hz, 1 H), 2.30 (s, 3 H), 1.58 (s, 9 H), 1.44 – 1.14 (m, 12 H), 1.08 (d, J = 13.9 Hz, 1 H), 0.91 (t, J = 7.3 Hz, 3 H), 0.88 (t, J = 7.3 Hz, 3 H), 0.87 (d, J = 13.1 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 178.90 (J^{119} Sn⁻¹³C = 14.9 Hz), 147.23 (J^{119} Sn⁻¹³C = 28.5 Hz), 142.7, 137.1, 136.3, 129.0, 128.3, 128.2, 127.8, 126.7, 110.4, 86.7, 70.9 (J^{119} Sn⁻¹³C = 38.1 Hz), 60.9 (J^{119} Sn⁻¹³C = 19.9 Hz), 52.4, 27.9 (J^{119} Sn⁻¹³C = 25.5 Hz), 27.9 (J^{119} Sn⁻¹³C = 76.7 Hz, J^{119} Sn⁻¹³C = 82.6 Hz), 26.4 (J^{117} Sn⁻¹³C = 76.7 Hz, J^{119} Sn⁻¹³C = 439.3 Hz, J^{119} Sn⁻¹³C = 429.5 Hz, J^{119} Sn⁻¹³C = 435.8 Hz, J^{119} Sn⁻¹³C = 455.9 Hz), 13.6, 13.5; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 24.8; IR (neat) 2922, 1659, 1343, 1161, 812 cm⁻¹; HRMS (FAB⁺ M+1) m/z 696.1931. calcd for C₃₂H₄₇ClNO₄SSn 696.1936.

TBP complex (4c)

White solid; mp 92 – 93 °C; $[\alpha]_D$ –36.0 (c 1.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 8.3 Hz, 2 H), 6.99 (d, J = 8.0 Hz, 2 H), 6.91 (br, 2 H), 6.75 (br, 2 H), 5.24 (s, 1 H), 5.10 (s, 1 H), 5.06 (s, 1 H), 4.53 (dt, J = 13.3, 2.2 Hz, 1 H), 4.06 (d, J = 13.4 Hz, 1 H), 2.32 (s, 3 H), 2.28 (s, 3 H), 1.56 (s, 9 H), 1.40 – 1.12 (m, 12 H), 1.08 (d, J = 13.9 Hz, 1 H, J^{119} Sn–¹H = 67.1 Hz), 0.90 (t, J = 7.2 Hz, 3 H), 0.90 (d, J = 14.3 Hz, 1 H, J^{119} Sn–¹H = 72.2 Hz), 0.88 (t, J = 7.3 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 179.1 (J^{119} Sn–¹³C = 16.2 Hz), 147.4 (J^{119} Sn–¹³C = 27.9 Hz), 142.7, 142.7, 138.0, 134.0, 129.0, 128.9, 127.9, 126.8, 110.30, 86.7, 70.9 (J^{119} Sn $-^{13}$ C = 39.5 Hz), 61.0 (J^{119} Sn $-^{13}$ C = 19.8 Hz), 52.5, 27.91 (J^{119} Sn $-^{13}$ C = 26.8 Hz), 27.91 (J^{119} Sn $-^{13}$ C = 26.8 Hz), 27.65, 26.64 (J^{119} Sn $-^{13}$ C = 79.4 H), 26.61 (J^{119} Sn $-^{13}$ C = 77.4 Hz), 21.5, 21.4 (J^{117} Sn $-^{13}$ C = 430.2 Hz, J^{119} Sn $-^{13}$ C = 448.0 Hz), 21.1, 20.3 (J^{117} Sn $-^{13}$ C = 438.0 Hz, J^{119} Sn $-^{13}$ C = 470.2 Hz), 19.8 (J^{117} Sn $-^{13}$ C = 435.2 Hz, J^{119} Sn $-^{13}$ C = 455.0 Hz), 13.7, 13.6; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 25.4; IR (neat) 2924, 1655, 1342, 1159, 907 cm⁻¹; HRMS (FAB⁺ M+1) m/z 710.2088. calcd for C₃₃H₄₉ClNO₄SSn 710.2093.

TBP complex (4e)

Pale yellow oil; $[\alpha]_D -50.6$ (c 1.01, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, J = 8.3 Hz, 1 H), 7.10 (br, 2 H), 7.04 (d, J = 8.1 Hz, 2 H), 6.82 (s, 2 H), 5.27 (s, 1 H), 5.10 (s, 1 H), 5.08 (s, 1 H), 4.54 (d, J = 13.4 Hz, 1 H), 4.09 (d, J = 13.4 Hz, 1 H), 2.34 (s, 3 H), 1.57 (s, 9 H), 1.47 - 1.13 (m, 12 H), 1.02 (d, J = 13.9 Hz, 1 H, J^{119} Sn-¹H = 73.5 Hz), 0.90 (t, J = 7.4 Hz, 3 H), 0.88 (t, J = 7.3 Hz, 3 H), 0.87 (d, J = 14.2 Hz, 1 H, J^{119} Sn-¹H = 72.7 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 178.5 (J^{119} Sn-¹³C = 14.4 Hz), 146.8 (J^{119} Sn-¹³C = 23.5 Hz), 143.1, 136.3, 135.7, 134.1, 129.1, 129.0, 128.5, 126.6, 110.8, 87.0, 70.1 (J^{119} Sn-¹³C = 42.0 Hz), 60.8 (J^{119} Sn-¹³C = 19.8 Hz), 52.4, 27.9 (J^{119} Sn-¹³C = 24.1 Hz), 27.8 (J^{119} Sn-¹³C = 76.1 Hz, J^{119} Sn-¹³C = 79.6 Hz, J^{119} Sn-¹³C = 442.5 Hz, J^{119} Sn-¹³C = 466.9 Hz), 20.3 (J^{117} Sn-¹³C = 440.6 Hz, J^{119} Sn-¹³C = 460.8 Hz), 19.8 (J^{117} Sn-¹³C = 446.4 Hz, J^{119} Sn-¹³C = 466.1 Hz), 13.6, 13.5; ¹¹⁹Sn NMR (186

MHz, CDCl₃) δ 24.7; IR (neat) 2924, 1668, 1344, 1163, 912 cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 730.1546. calcd for C₃₂H₄₆Cl₂NO₄SSn 730.1547.

TBP complex (4f)

Colorless oil; $[\alpha]_D -50.1$ (c 1.02, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, J = 8.3 Hz, 2 H), 7.01 (d, J = 8.1 Hz, 2 H), 6.79 (br, 2 H), 6.66 (br, 2 H), 5.24 (s, 1 H), 5.11 (s, 1 H), 5.05 (s, 1 H), 4.53 (dt, J = 13.4, 2.2 Hz, 1 H)., 4.04 (d, J = 13.3 Hz, 1 H), 3.77 (s, 3 H), 2.32 (s, 3 H), 1.57 (s, 9 H), 1.41 – 1.16 (m, 12 H), 1.10 (d, J = 13.9 Hz, 1 H, $J^{119}Sn^{-1}H = 67.9$ Hz), 0.91 (t, J = 7.3 Hz, 3 H), 0.90 (d, J = 13.2 Hz, 1 H, $J^{119}Sn^{-1}H = 66.5$ Hz), 0.88 (t, J = 7.3 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 179.1 ($J^{119}Sn^{-13}C = 14.9$ Hz), 159.5, 147.4 ($J^{119}Sn^{-13}C = 29.6$ Hz), 142.7, 136.5, 129.2, 129.0, 126.8, 113.8, 110.3, 86.7, 70.6 ($J^{119}Sn^{-13}C = 39.1$ Hz), 61.0 ($J^{119}Sn^{-13}C = 19.4$ Hz), 55.2, 52.3, 27.9 ($J^{119}Sn^{-13}C = 27.3$ Hz), 27.8 ($J^{119}Sn^{-13}C = 26.6$ Hz), 27.6, 26.6 ($J^{117}Sn^{-13}C = 79.1$ Hz, $J^{119}Sn^{-13}C = 82.6$ Hz), 26.5 ($J^{117}Sn^{-13}C = 76.6$ Hz, $J^{119}Sn^{-13}C = 80.3$ Hz), 21.4, 21.3 ($J^{119}Sn^{-13}C = 426.8$ Hz, $J^{119}Sn^{-13}C = 456.1$ Hz), 20.2 ($J^{117}Sn^{-13}C = 439.5$ Hz, $J^{119}Sn^{-13}C = 460.1$ Hz), 19.8 ($J^{117}Sn^{-13}C = 435.4$ Hz, $J^{119}Sn^{-13}C = 455.4$ Hz), 13.6. 13.5; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 25.1; IR (neat) 2926, 1657, 1342, 1250, 1161, 1098, 910 cm⁻¹; HRMS (FAB⁺ M+1) m/z 726.2025. calcd for C₃₃H₄₉CINO₅SSn 726.2042.

TBP complex (4g)

S 19

White solid; mp 84 – 84 °C; $[\alpha]_D - 33.6$ (c 1.05, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.16 – 7.09 (m, 3 H), 7.04 (td, J = 7.5, 1.2 Hz, 1 H)., 6.96 (d, J = 8.0 Hz, 2 H), 6.73 (t, J = 7.2 Hz, 1 H), 6.42 (d, J = 7.8 Hz, 1 H), 5.61 (s, 1 H), 5.35 (s, 1 H), 5.16 (s, 1 H), 4.56 (dt, J = 13.1, 2.3 Hz, 1 H), 4.05 (d, J = 13.0, 1 H), 2.38 (s, 3 H), 2.29 (s, 3 H), 1.61 (s, 9 H), 1.41 – 1.13 (m, 12 H), 0.97 (d, J = 14.1 Hz, 1 H, $J^{119}Sn^{-1}H = 82.8$ Hz), 0.90 (t, J = 7.3 Hz, 3 H), 0.89 (t, J = 7.3 Hz, 3 H), 0.68 (d, J = 14.2 Hz, 1 H, $J^{119}Sn^{-1}H = 55.3$ Hz); ¹³C NMR (126 MHz, CDCl₃) δ 179.2 ($J^{119}Sn^{-13}C = 17.6$ Hz), 147.7 ($J^{119}Sn^{-13}C = 5.3$ Hz), 142.5, 137.2, 136.4, 135.3, 130.3, 128.9, 127.6, 127.2, 126.4, 126.2, 111.9, 87.1, 65.9 ($J^{119}Sn^{-13}C = 24.3$ Hz), 27.7, 26.6 ($J^{117}Sn^{-13}C = 75.6$ Hz, $J^{119}Sn^{-13}C = 79.5$ Hz), 26.5 ($J^{117}Sn^{-13}C = 77.0$ Hz, $J^{119}Sn^{-13}C = 81.0$ Hz), 21.7 ($J^{117}Sn^{-13}C = 403.5$ Hz, $J^{119}Sn^{-13}C = 424.7$ Hz), 21.3, 21.2 ($J^{117}Sn^{-13}C = 441.9$ Hz, $J^{119}Sn^{-13}C = 462.5$ Hz), 19.5, 19.2 ($J^{117}Sn^{-13}C = 439.9$ Hz, $J^{119}Sn^{-13}C = 460.7$ Hz), 13.6, 13.5; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 23.2; IR (neat) 2924, 1667, 1340, 1159, 910 cm⁻¹; HRMS (FAB⁺ M+1) m/z 710.2109. calcd for C₃₃H₄₉CINO₄SSn 710.2093.

TBP complex (4h)

Colorless oil; $[\alpha]_D - 61.5$ (c 1.01, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.42 (m, 6 H), 7.10 (d, J = 6.8 Hz, 2 H), 6.95 – 6.80 (m, 1 H), 6.73 (d, J = 8.0 Hz, 2 H), 5.31 (s, 1 H), 5.26 (s, 1 H), 5.15 (s, 1 H), 4.61 (dd, J = 13.4, 1.6 Hz, 1 H), 4.18 (d, J = 13.5 Hz, 1 H), 2.13 (s, 3 H), 1.60 (s, 9 H), 1.60 – 1.48 (m, 4 H), 1.38 – 1.17 (m, 8 H), 1.07 (d, J = 14.0 Hz, 1 H), 0.97 (dd, J = 13.9, 1.4 Hz, 1 H), 0.87 (t, J = 6.5 Hz, 3 H), 0.85 (t, J = 7.3 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 179.0 (J^{119} Sn⁻¹³C = 14.2 Hz), 147.5 (J^{119} Sn⁻¹³C = 27.5 Hz), 142.9, 136.5, 134.4, 133.1, 132.9, 130.1, 128.9, 128.4, 128.0, 127.6, 126.7, 126.5, 126.4, 125.2, 110.8, 87.0, 71.4 (J^{119} Sn⁻¹³C = 42.5 Hz), 61.1 (J^{119} Sn⁻¹³C = 15.2 Hz), 52.7, 28.1 (J^{119} Sn⁻¹³C = 25.9 Hz), 26.7 (J^{117} Sn⁻¹³C = 76.8 Hz, J^{119} Sn⁻¹³C = 80.3 Hz), 21.8, 21.3 (J^{117} Sn⁻¹³C = 409.6 Hz, J^{119} Sn⁻¹³C = 422.4 Hz), 20.6 (J^{117} Sn⁻¹³C = 439.8 Hz, J^{119} Sn⁻¹³C = 459.2 Hz), 19.8 (J^{117} Sn⁻¹³C = 435.2 Hz, J^{119} Sn⁻¹³C = 455.6 Hz), 13.73, 13.73; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 25.67; IR (neat) 2956, 1660, 1342, 1161, 910 cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 746.2074. calcd for C₃₆H₄₉CINO₄SSn 746.2093.

TBP complex (4i)

Colorless oil; $[\alpha]_D -29.0$ (c 1.10, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 8.3 Hz, 2 H), 7.03 (d, J = 8.1 Hz, 2 H), 6.90 - 6.79 (m, 4 H), 5.27 (s, 1 H), 5.12 (s, 1 H), 5.10 (s, 1 H), 4.55 (dt, J = 13.4, 2.2 Hz, 1 H), 4.07 (d, J = 13.4 Hz, 1 H), 2.33 (s, 3 H), 1.57 (s, 9 H), 1.39 - 1.19 (m, 12 H), 1.06 (d, J = 13.9 Hz, 1 H, J^{119} Sn-¹H = 66.1 Hz),

0.91 (t, J = 7.3 Hz, 3 H), 0.88 (t, J = 7.3 Hz, 3 H), 0.84 (d, J = 13.9 Hz, 1 H, J^{119} Sn⁻¹H = 71.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 178.8 (J^{119} Sn⁻¹³C = 14.1 Hz), 163.7, 161.6, 147.2 (J^{119} Sn⁻¹³C = 27.8 Hz), 143.1, 136.6, 133.32, 133.30, 129.7, 129.2, 126.8, 115.4 (J^{19} F⁻¹³C = 21.4 Hz), 110.8, 87.0, 70.2 (J^{119} Sn⁻¹³C = 40.7 Hz), 61.0 (J^{119} Sn⁻¹³C = 20.1 Hz), 52.5, 28.0 (J^{119} Sn⁻¹³C = 26.3 Hz), 28.0 (J^{119} Sn⁻¹³C = 26.4 Hz), 27.8, 26.7 (J^{117} Sn⁻¹³C = 78.0 Hz, J^{119} Sn⁻¹³C = 79.8 Hz), 26.6 (J^{117} Sn⁻¹³C = 78.8 Hz, J^{119} Sn⁻¹³C = 400.6 Hz, J^{119} Sn⁻¹³C = 421.0 Hz), 21.4, 20.4 (J^{117} Sn⁻¹³C = 439.8 Hz, J^{119} Sn⁻¹³C = 460.6 Hz), 20.0 (d, J^{117} Sn⁻¹³C = 436.0 Hz, J^{119} Sn⁻¹³C = 455.4 Hz), 13.8, 13.6; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 24.5; IR (neat) 2924, 1658, 1508, 1157 cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 714.1844. calcd for C₃₂H₄₆ClFNO₄SSn 714.1842.

TBP complex (4j)

Pale yellow oil; $[\alpha]_D -23.8$ (c 1.06, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, J = 8.3 Hz, 2 H), 6.98 (d, J = 7.9 Hz, 4 H), 6.73 – 6.46 (m, 2 H), 5.25 (s, 1 H), 5.10 (s, 1 H), 5.06 (s, 1 H), 4.56 (dt, J = 13.4, 2.2 Hz, 1 H), 4.08 (d, J = 13.3 Hz, 1 H), 2.30 (s, 3 H), 2.14 (s, 3 H), 1.58 (s, 9 H), 1.44 – 1.16 (m, 12 H), 1.09 (d, J = 13.9 Hz, 1 H, J¹¹⁹Sn⁻¹H = 67.7 Hz), 0.92 (t, J = 7.3 Hz, 3 H), 0.88 (t, J = 7.3 Hz, 3 H), 0.86 (d, J = 13.7 Hz, 1 H, J¹¹⁹Sn⁻¹H = 70.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 179.0 (J¹¹⁹Sn⁻¹³C = 14.8 Hz), 147.3 (J¹¹⁹Sn⁻¹³C = 30.8 Hz), 142.6, 137.9, 136.8, 136.5, 128.9, 128.8, 128.2, 126.7, 110.3, 86.6, 71.0 (J¹¹⁹Sn⁻¹³C = 37.8 Hz), 60.9 (J¹¹⁹Sn⁻¹³C = 19.9 Hz), 52.5, 27.9 (J¹¹⁹Sn⁻¹³C = 27.1 Hz), 27.8 (J¹¹⁹Sn⁻¹³C = 26.0 Hz), 27.6, 26.5 (J¹¹⁷Sn⁻¹³C = 78.3 Hz, J¹¹⁹Sn⁻¹³C = 81.7 Hz), 26.5 (J¹¹⁷Sn⁻¹³C = 75.8 Hz, J¹¹⁹Sn⁻¹H = 79.5 Hz), 21.5, 21.2

 $(J^{117}\text{Sn}^{-13}\text{C} = 409.3 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 426.1 \text{ Hz}), 21.1, 20.2 (J^{117}\text{Sn}^{-13}\text{C} = 440.0 \text{ Hz}, J^{119}\text{Sn}^{-13}\text{C} = 458.5 \text{ Hz}), 19.9 (J^{117}\text{Sn}^{-13}\text{C} = 435.3.3 \text{ Hz}, J^{119}\text{Sn}^{-1}\text{H} = 458.5 \text{ Hz}), 13.6, 13.5; {}^{119}\text{Sn} \text{ NMR} (186 \text{ MHz}, \text{CDCl}_3) \delta 25.2; \text{ IR (neat) } 2924, 1658, 1342, 1159 \text{ cm}^{-1}; \text{HRMS (FAB}^+ \text{M}^{+1}) m/z \ 710.2103. \text{ calcd for } \text{C}_{33}\text{H}_{49}\text{ClNO}_4\text{SSn} \ 710.2093.$

TBP complex (4k)

Pale yellow oil; $[\alpha]_D -33.0$ (c 1.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃) TM 7.36 (d, J = 6.4 Hz, 2 H), 7.18 (d, J = 8.2 Hz, 2 H), 7.06 – 6.94 (m, 2 H), 6.98 (d, J = 8.3 Hz, 2 H), 5.30 (s, 1 H), 5.15 (s, 1 H), 5.12 (s, 1 H), 4.58 (d, J = 13.5 Hz, 1 H), 4.15 (d, J = 13.5 Hz, 1 H), 2.29 (s, 3 H), 1.58 (s, 9 H), 1.64 – 1.19 (m, 12 H), 0.99 (d, J = 13.9 Hz, 1 H, $J^{119}Sn^{-1}H = 65.6$ Hz), 0.89 (t, J = 7.3 Hz, 3 H), 0.88 (t, J = 7.4 Hz, 3 H), 0.85 (d, J = 14.0 Hz, 1 H, $J^{119}Sn^{-1}H = 72.6$ Hz); ¹³C NMR (126 MHz, CDCl₃) δ 178.2 ($J^{119}Sn^{-13}C = 14.3$ Hz), 146.6 ($J^{119}Sn^{-13}C = 22.5$ Hz), 143.2, 141.2, 136.2, 130.2 (q, $J^{19}F^{-13}C = 32.6$ Hz), 129.1, 126.5, 125.2 (q, $J^{19}F^{-13}C = 3.7$ Hz), 123.7 (q, $J^{19}F^{-13}C = 272.3$ Hz), 111.0, 87.1, 70.1 ($J^{119}Sn^{-13}C = 43.5$ Hz), 60.7 ($J^{119}Sn^{-13}C = 83.2$ Hz), 26.4 ($J^{117}Sn^{-13}C = 73.6$ Hz, $J^{119}Sn^{-13}C = 86.7$ Hz), 21.7 ($J^{117}Sn^{-13}C = 398.4$ Hz, $J^{119}Sn^{-13}C = 416.9$ Hz), 21.1, 20.4 ($J^{117}Sn^{-13}C = 457.1$ Hz), 13.5, 13.4; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 24.4; IR (neat) 2926, 1668, 1323, 1161 cm⁻¹; HRMS (FAB⁺ M+1) m/z 764.1808. calcd for C₃₃H₄₆ClF₃NO₄SSn 764.1810.

TBP complex (41)

Pale yellow oil; $[\alpha]_D - 34.9$ (c 1.13, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, J = 8.3 Hz, 2 H), 7.09 (d, J = 8.2 Hz, 2 H), 7.05 (d, J = 1.5 Hz, 1 H), 6.19 (dd, J = 3.2, 1.8 Hz, 1 H), 6.13 (d, J = 3.2 Hz, 1 H), 5.18 (s, 1 H), 5.13 (s, 2 H), 4.50 (d, J = 12.9 Hz, 1 H), 3.98 (d, J = 12.8 Hz, 1 H), 2.34 (s, 3 H), 1.73 – 1.58 (m, 4 H), 1.56 (s, 9 H), 1.49 – 1.25 (m, 8 H), 1.25 (d, J = 14.1 Hz, 1 H), 0.95 (t, J = 7.3 Hz, 3 H), 0.90 (t, J = 7.3 Hz, 3 H), 0.66 (d, J = 13.8 Hz, 1 H, J^{119} Sn⁻¹H = 64.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 178.8 (J^{119} Sn⁻¹³C = 12.0 Hz), 149.7, 147.2 (J^{119} Sn⁻¹³C = 44.9 Hz), 142.7, 136.2, 129.2, 126.6, 110.5, 109.9, 109.4, 86.5, 64.4 (J^{119} Sn⁻¹³C = 28.0 Hz), 60.9 (J^{119} Sn⁻¹³C = 20.3 Hz), 51.8, 27.9 (J^{119} Sn⁻¹³C = 26.4 Hz), 27.8 (J^{119} Sn⁻¹³C = 77.3 Hz, J^{119} Sn⁻¹³C = 402.0 Hz, J^{119} Sn⁻¹³C = 422.4 Hz), 20.2 (J^{117} Sn⁻¹³C = 432.4 Hz, J^{119} Sn⁻¹³C = 452.4 Hz), 19.7 (J^{117} Sn⁻¹³C = 436.8 Hz, J^{119} Sn⁻¹³C = 457.2 Hz), 13.6, 13.5; ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ 28.2; IR (neat) 2942, 1661, 1344, 1161 cm⁻¹; HRMS (FAB⁺ M+1) *m/z* 686.1730. calcd for C₃₀H₄₅CINO₅SSn 686.1729.

Radical cyclization of 1c under high Bu₃SnH concentration conditions (Scheme 2) A mixture of 1c (172.0 mg, 0.40 mmol) and AIBN (6.9 mg, 0.04 mmol) in Bu₃SnH (0.13 mL, 0.47 mmol) was heated at 110°C for 1.5 h. The reselting reaction mixture was subjected to column chromatography (hexane then hexane-EtOAc 50:1 to 20:1) to give 2c (111.7 mg, 0.17 mmol) and 3c (125.1 mg, 0.17 mmol) in 42% and 44% yield, respectively.

(2S,3S)-tert-butyl

4-methylene-2-(p-tolyl)-1-tosyl-3-((tributylstannyl)methyl)pyrrolidine-3-carboxylat e (3c)

Colorless oil; $[\alpha]_D -21.3$ (c 1.04, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, J = 8.3 Hz, 2 H), 6.95 (d, J = 8.1 Hz, 2 H), 6.90 (d, J = 7.8 Hz, 2 H), 6.82 (d, J = 7.2 Hz, 2 H), 5.17 (s, 2 H), 5.12 (s, 1 H), 4.40 (dt, J = 13.0, 2.2 Hz, 1 H), 3.96 (d, J = 13.0 Hz, 1 H), 2.29 (s, 3 H), 2.27 (s, 3 H), 1.47 (s, 9 H), 1.39 – 1.15 (m, 12 H), 1.00 (d, J = 12.8 Hz, 1 H), 0.82 (t, J = 7.1 Hz, 9 H), 0.76 – 0.59 (m, 6 H), 0.37 (d, J = 13.0 Hz, 1 H, $J^{119}\text{Sn}^{-1}\text{H} = 44.9$ Hz); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 150.0 ($J^{119}\text{Sn}^{-13}\text{C} = 40.3$ Hz), 142.3, 137.5, 136.9 ($J^{119}\text{Sn}^{-13}\text{C} = 47.4$ Hz), 135.4, 128.9, 128.8, 127.0, 109.2, 70.2 ($J^{119}\text{Sn}^{-13}\text{C} = 19.1$ Hz), 61.4 ($J^{119}\text{Sn}^{-13}\text{C} = 18.9$ Hz), 82.1, 52.1, 29.1 ($J^{119}\text{Sn}^{-13}\text{C} = 271.2$ Hz, $J^{119}\text{Sn}^{-13}\text{C} = 283.9$ Hz), 11.0 ($J^{117}\text{Sn}^{-13}\text{C} = 315.2$ Hz, $J^{119}\text{Sn}^{-13}\text{C} = 329.9$ Hz); ¹¹⁹Sn NMR (186 MHz, CDCl₃) δ –23.1; IR (neat) 2988, 1716, 1342, 1161, 910 cm⁻¹; Anal. Calcd. for C₃₀H₄₁NO₄SSn: C, 57.16; H, 6.56; N, 2.22. Found: C, 57.20; H, 6.57; N, 2.20; HRMS (FAB⁺ M+1) m/z 732.3100. calcd for C₃₇H₃₈NO₄SSn 732.3109.

checkCIF/PLATON (full publication check)

Structure factors have been supplied for datablock(s) I

No syntax errors found.	CIF
dictionary	
Please wait while processing	Interpreting
this report	
Structure factor report	

Datablock: I

Bond precisio	on: C-C =	= 0.0061 A	Wavelength=1.54187	
Cell:	a=9. 1613(5)	b=10. 3390 (6)	c=36. 334 (2)	
ä	alpha=90	beta=90	gamma=90	
Temperature:	100 K			
	Calcul	ated	Reported	
Volume	3441.5	(3)	3441.5(4)	
Space group	P 21 2	1 21	P 21 21 21	
Hall group	P 2ac	2ab	P 2ac 2ab	
Moiety formul	a C33 H4	8 CI N 04 S Sn	C33 H48 CI N O4 S Sn	
Sum formula	C33 H4	8 CI N 04 S Sn	C33 H48 CI N O4 S Sn	
Mr	708.95		708.95	
Dx,g cm-3	1.368		1.368	
Z	4		4	
Mu (mm-1)	7.462		7. 471	
F000	1472.0		1472.0	
F000'	1478. 3	1		
h,k,lmax	11, 12,	43	10, 12, 43	
Nref	3587[6291]	6254	
Tmin,Tmax	0. 242,	0. 224	0. 119, 0. 224	

```
Tmin'
                   0.155
Correction method= MULTI-SCAN
Data completeness= 1,74/0,99
                                Theta (max) = 68.180
R(reflections) = 0.0382(5773)
                                   wR2(reflections) = 0.0792(6253)
S = 0.881
                      Npar= 371
```

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

RINTA01_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.123 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.08 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) 1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 11 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF 1

Alert level G

REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is

correct. If it is not, please give the correct count in the

_publ_section_exptl_refinement section of the

submitted CIF.

From the CIF: _diffrn_reflns_theta_max			
From the CIF: _reflns_number_total		6254	
Count of symmetry unique reflns	3587		
Completeness (_total/calc)	174.35%		
TEST3: Check Friedels for noncentro structure			
Estimate of Friedel pairs measured	2667		
Fraction of Friedel pairs measured	0.744		

```
      Are heavy atom types Z>Si present
      yes

      PLAT791_ALERT_4_G Note: The Model has Chirality at C3

      (Verify)
      S

      PLAT791_ALERT_4_G Note: The Model has Chirality at C4

      (Verify)
      S

      PLAT99_ALERT_3_G Percentage of Observed Data at Theta(Max)

      still
      80 Perc.
```

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider

carefully

5 ALERT level C = Check. Ensure it is not caused by an omission or oversight

4 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

1 ALERT type 2 Indicator that the structure model may be wrong or deficient

4 ALERT type 3 Indicator that the structure quality may be low

4 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF viathe web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 21/12/2011; check.def file version of 16/12/2011

Datablock I - ellipsoid plot

checkCIF/PLATON (full publication check)

Structure factors have been supplied for datablock(s) I

No syntax errors found.	CIF
dictionary	
Please wait while processing	Interpreting
this report	
Structure factor report	

Datablock: I

Bond precision: C-C = 0.0156 A		Wavelength=0.71075		
Cell: a=8.5	992 (8) b=9. 5675 (9)	c=19. 3422 (18)		
alpha	=82.229(3) beta=79.942(2)	gamma=89.865(3)		
Temperature: 296 K				
	Calculated	Reported		
Volume	1552. 1 (3)	1552. 1 (3)		
Space group	P 1	P 1		
Hall group	P 1	P 1		
Moiety formula	C30 H41 N 04 S Sn	C30 H41 N 04 S Sn		
Sum formula	C30 H41 N 04 S Sn	C30 H41 N 04 S Sn		
Mr	630. 42	630. 41		
Dx,g cm-3	1. 349	1.349		
Z	2	2		
Mu (mm-1)	0. 923	0.923		
F000	652.0	652. 0		
F000'	651.17			
h,k,lmax	11, 12, 25	11, 12, 25		
Nref	7111[14222]	11472		
Tmin,Tmax	0. 766, 0. 912	0. 661, 0. 912		

 Tmin'
 0.751

 Correction method=
 MULTI-SCAN

 Data completeness=
 1.61/0.81
 Theta(max) = 27.470

 R(reflections) =
 0.0519(6095)
 wR2(reflections) = 0.1535(11468)

 S =
 1.092
 Npar = 686

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT220	_ALERT_	_2_C Large No	on-Solve	nt (2	
Ueq(max	()/Ueq(m	nin)	3.9 Rati	0		
PLAT222	_ALERT_	_3_C Large No	on-Solve	nt H	1	
Uiso(ma:	x)/Uiso(r	min)	5.0 Rati	0		
PLAT230	_ALERT_	_2_C Hirshfeld	l Test Di	ff for	C17	
C22		5.2 su				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld D	Differer	nce Sn1	
C11		0.16 Ang.				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld D	Differer	nce C18	
C19		0.16 Ang.				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld D	Differer	nce C20	
C23		0.17 Ang.				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld [Differer	nce C26	
C27		0.16 Ang.				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld D	Differer	nce Sn2	
C37		0.16 Ang.				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld D	Differer	nce N2	
C35		0.16 Ang.				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld D	Differer	nce C38	
C39		0.24 Ang.				
PLAT234	_ALERT_	_4_C Large Hi	rshfeld D	Differer	nce C51	
C52		0.18 Ang.				
PLAT242	_ALERT_	2_C Check Lo	w	Ueq a	s Compa	red to
Neighbor	rs for	C15				

S 32

```
PLAT242_ALERT_2_C Check Low
                                  Ueq as Compared to
Neighbors for
                  C27
PLAT242_ALERT_2_C Check Low
                                  Ueq as Compared to
Neighbors for
                  C39
PLAT242_ALERT_2_C Check Low
                                  Ueq as Compared to
Neighbors for
                  C43
PLAT242 ALERT 2 C Check Low
                                  Ueq as Compared to
                  C45
Neighbors for
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds .....
0.0156 Ang
PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C37
C38
     ...
              1.43 Ang.
PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C39
C40
    ...
              1.34 Ang.
PLAT411_ALERT_2_C Short Inter H...H Contact H37B
                                                 ...
H13D ..
               2.07 Ang.
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) .....
10
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=
0.600
            11
PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L=
0.600
            67
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ....
1
PLAT915_ALERT_3_C Low Friedel Pair Coverage .....
62 Perc.
```

Alert level G

REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.47 From the CIF: _reflns_number_total 11472

7111

Count of symmetry unique reflns

Completeness	s (_total/calc)	161.33%
TEST3: Check	Friedels for noncentro	structure
Estimate of Fi	riedel pairs measured	4361
Fraction of Fr	edel pairs measured	0.613
Are heavy ato	om types Z>Si present	yes
PLAT002_ALERT_2_G Nu	Imber of Distance or Ang	gle Restraints on
AtSite 7		
PLAT003_ALERT_2_G Nu	imber of Uiso or Uij Rest	rained Atom
Sites 11		
PLAT301_ALERT_3_G No	ote: Main Residue Disor	der
4 Perc.		
PLAT791_ALERT_4_G No	ote: The Model has Chira	lity at C3
(Verify) S		
PLAT791_ALERT_4_G No	ote: The Model has Chira	lity at C4
(Verify) S		
PLAT791_ALERT_4_G No	ote: The Model has Chira	lity at C33
(Verify) S		
PLAT791_ALERT_4_G No	ote: The Model has Chira	lity at C34
(Verify) S		
PLAT860_ALERT_3_G No	ote: Number of Least-Sq	uares
Restraints 1	.43	

0 **ALERT level A** = Most likely a serious problem - resolve or explain

0 **ALERT level B** = A potentially serious problem, consider carefully

25 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

9 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

12 ALERT type 2 Indicator that the structure model may be wrong or deficient

8 ALERT type 3 Indicator that the structure quality may be low

14 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF viathe web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 21/12/2011; check.def file version of 16/12/2011

Datablock I - ellipsoid plot

Download CIF editor (pubICIF) from the IUCr

Download CIF editor (enCIFer) from the CCDC

Test a new CIF entry

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

ſ ر کر ک ſ 1 1

JĴ

~~

f1 (ppm)

---77.00

f1 (ppm)

	1		· · ·	· · ·	'	· · ·	1		·	· ·	·	1	1	' 1	· · ·	1		r l		
190		180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0

f1 (ppm) . ò

S 81

