Synthesis of Isochromenones and Oxepines via Pd-Catalyzed Cascade Cyclization of Alkynes and Arynes Involving a C-H Activation

Kanniyappan Parthasarathy, Han Han, Chandran Prakash and Chien-Hong Cheng*

Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan

chcheng@mx.nthu.edu.tw

Supporting Information

Table of Contents	Page No
Experimental Section	S-2
¹ H and ¹³ C NMR and HRMS Data	S-3
References	S-10
¹ H and ¹³ C NMR Spectra	S-11
ORTEP diagram of compounds 3f , 4c and 4j	S-30
X-ray data of 3f	S-31
X-ray data of 4c	S-39
X-ray data of 4 j	S-47

Experimental Section

General: All reactions were conducted under nitrogen atmosphere on a screw-capped sealed tube. Acetonitrile was dried with CaH₂ and distilled prior to use.¹ Aryne precursors **2a-d** were synthesized according to the reported procedure.² Starting materials alkynes **1a-g** was synthesized according to the literature procedures.³ Other reagents were commercially available and used as purchased.

General Procedure for the Palladium-Catalyzed Synthesis of Isochromenone Derivatives (3): A sealed tube containing $Pd(dba)_2$ (5 mol %), CsF (4 equiv), Tl(OAc) (1.2 equiv) and alkynes (1.00 mmol) was evacuated and purged with nitrogen gas three times. Then, benzyne precursor (1.20 mmol), acetonitrile (2.0 mL) and toluene (1.0 mL) were sequentially added to the system and the reaction mixture was allowed to stir at 85 °C for 8 h. The mixture was filtered through a short Celite pad and the Celite pad was washed with CH₂Cl₂ several times. The filtrate was concentrated and the residue was purified on a silica gel column using hexanes-ethyl acetate as eluent to afford isochromenone derivative **3**. Similar procedures were also used for the preparation of oxepine derivative **4**. The spectral data and a copy of ¹H and ¹³C NMR spectra of all compounds are listed below.

7-Phenyl-4H,6H-dibenzo[de,g]isochromen-6-one (3a)

Yellow solid; m.p. 139-141 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (d, *J* = 8.8 Hz, 1 H), 8.68 (d, *J* = 8.8 Hz, 1 H), 7.78-7.71 (m, 3 H), 7.61 (d, *J* = 7.2 Hz, 1 H), 7.59-7.49 (m, 4 H), 7.36 - 7.27 (m, 2 H), 5.74 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 146.1, 139.7, 132.3, 131.9, 130.0, 129.3, 129.2, 128.8 (2 CH), 128.5, 128.0 (2 CH), 127.8, 127.3 (2 CH), 126.9, 126.5, 122.1, 121.8, 69.0; HRMS calcd for C₂₂H₁₄O₂ 310.0994, found 310.0998.

9,10-Dimethyl-7-phenyl-4*H*,6*H*-dibenzo[*de*,*g*]isochromen-6-one (3b)

Yellow solid; m.p. 164-166 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, *J* = 8.8 Hz, 1 H), 8.47 (s, 1 H), 7.67 (t, *J* = 8.0 Hz, 1 H), 7.53-7.47 (m, 3 H), 7.40 (d, *J* = 8.8 Hz, 1 H), 7.29-7.26 (m, 3 H), 5.69 (s, 2H), 2.52 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.1, 145.9, 139.9, 139.3, 136.9, 130.8, 130.4, 129.8, 128.7 (2 CH), 128.5, 128.0 (2 CH), 127.8, 127.2, 126.6, 126.3, 122.9, 121.9, 121.5, 115.0, 69.0, 20.6, 20.2 ; HRMS calcd for C₂₄H₁₈O₂ 338.1307, found 338.1311.

9,10,-Dioxolo-7-phenyl-4*H*,6*H*-dibenzo [*de*,*g*]isochromen-6-one (3c)

Yellow solid; m.p. 221-223 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (d, J = 8.0 Hz, 1 H), 8.04 (s, 1 H), 7.66 (t, J = 7.2 Hz, 1 H), 7.50-7.46 (m, 3 H), 7.40 (d, J = 6.0 Hz, 1 H), 7.25 (d, J = 6.0 Hz, 2 H), 6.89 (s, 1 H), 6.09 (s, 2 H), 5.68 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.1, 150.2, 148.2, 145.4, 140.1, 129.5, 129.1, 128.8, 128.7(2CH), 128.6, 128.2(2CH), 127.3, 126.5, 126.2, 121.6, 121.4, 107.0, 101.9, 100.5, 69.0; HRMS calcd for C₂₃H₁₄O₄ 354.0892, found 354.0896.

7-Phenyl-9,10,11-tetrahydro-6*H*-benzo[*de*]indeno[5,6-*g*]isochromen-6-one (3d)

Yellow solid; m.p. 196-198 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.63 (d, J = 8.8 Hz, 1 H), 8.50 (s, 1 H), 7.67 (t, J = 8.0 Hz, 1 H), 7.54-7.48 (m, 3 H), 7.41 (d, J = 7.2 Hz, 1 H), 7.38 (s, 1 H), 7.29-7.27 (m, 2 H), 5.69 (s, 2 H), 3.16 (t, J = 6.8 Hz, 2 H), 2.96 (t, J = 6.8 Hz, 2 H), 2.16-2.11 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 147.2, 146.3, 144.7, 140.2, 131.5, 131.1, 129.2, 128.8(2CH), 128.4, 128.0, 127.7, 127.1, 126.5, 126.3, 124.6, 121.7, 121.5, 117.5, 114.9, 69.0, 33.2, 32.8, 25.8; HRMS calcd for C₂₅H₁₈O₂ 350.1307, found 350.1310.

4-Methyl-7-phenyl-4*H*,6*H*-dibenzo[*de*,*g*]isochromen-6-one (3e)

Yellow solid; m.p. 140-142 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (d, *J* = 8.8 Hz, 1 H), 8.67 (d, *J* = 8.8 Hz, 1 H), 7.77-7.70 (m, 2 H), 7.59 (d, *J* = 8.0 Hz, 1 H), 7.53-7.41 (m, 4 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 5.89 (q, *J* = 6.8, 13.6 Hz, 1 H), 1.77 (d, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 162.9, 145.8, 139.7, 133.9, 132.2, 132.0, 129.9, 129.3, 129.1, 128.9, 128.7, 128.2, 128.1, 128.0, 127.5, 127.2, 126.9, 125.6, 122.5, 122.3, 115.9, 76.0, 24.5; HRMS calcd for C₂₃H₁₆O₂ 324.1150, found 324.1142.

4,9,10-Trimethyl-7-phenyl-4*H*,6*H*-dibenzo[*de*,*g*]isochromen-6-one (3f)

Yellow solid; m.p. 232-234 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, J = 8.0 Hz, 1 H), 8.47 (s, 1 H), 7.68 (t, J = 8.0 Hz, 1 H), 7.53-7.47 (m, 3 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.30-7.26 (m, 3 H), 5.87 (q, J = 6.4, 13.2 Hz, 1 H), 2.52 (s, 3 H), 2.30 (s, 3 H), 1.76 (d, J = 6.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 145.6, 140.0, 139.2, 136.8, 133.8, 130.7, 130.5, 129.8, 129.0, 128.9, 128.7, 128.0, 127.1, 126.6, 125.5, 122.9, 121.9, 121.5, 115.1, 75.9, 24.4, 20.6, 20.1; HRMS calcd for C₂₅H₂₀O₂ 352.1463, found 352.1455.

4,7-Diphenyl-4*H*,6*H*-dibenzo[*de*,*g*]isochromen-6-one (3g)

Yellow solid; m.p. 167-169 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.74 (d, *J* = 8.2 Hz, 1 H), 8.69 (d, *J* = 8.2 Hz, 1 H), 7.74 (t, *J* = 6.8 Hz, 1 H), 7.69 (t, *J* = 6.8 Hz, 1 H), 7.60 (d, *J* = 6.8 Hz, 1 H), 7.54-7.46 (m, 4 H), 7.33-7.29 (m, 8 H), 6.74 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 146.2, 140.1, 139.6, 132.2, 132.0, 131.9, 129.9, 129.3, 128.9, 128.8, 128.7, 128.7, 128.6, 128.1, 128.0, 127.4, 127.3 (2CH), 126.8, 126.3, 124.5(2 CH), 122.5, 122.1, 116.2, 81.4; HRMS calcd for C₂₈H₁₈O₂ 386.1307, found 386.1312.

9,10-Dimethyl-4,7-diphenyl-4*H*,6*H*-dibenzo[*de*,*g*]isochromen-6-one (3h)

Yellow solid; m.p. 215-217 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, J = 8.0 Hz, 1 H), 8.50 (s, 1 H), 7.65 (t, J = 11.2 Hz, 1 H), 7.55-7.48 (m, 4 H), 7.34-7.22 (m, 8 H), 6.73 (s, 1 H), 2.56 (s, 3 H), 2.54 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 146.0, 140.2, 139.9, 139.3, 136.9, 131.7, 130.7, 130.5, 129.8, 129.3, 129.1, 128.9, 128.8, 128.6, 128.5, 128.1, 128.0, 127.5, 127.4, 127.2, 127.1, 126.5, 126.1, 124.0, 122.9, 121.9, 115.4, 81.4, 20.6, 20.1; HRMS calcd for C₃₀H₂₂O₂ 414.1620, found 414.1620.

14-Phenyl-9*H*-benzo[*e*]phenanthro[1,10-*bc*]oxepine (4a)

Yellow solid; m.p. 236-238 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.67 (d, *J* = 8.0 Hz, 1 H), 8.36 (d, *J* = 8.5 Hz, 1 H), 7.68 (d, *J* = 8.5 Hz, 1 H), 7.62 (t, *J* = 7.0 Hz, 1 H), 7.56 (d, *J* = 7.0 Hz, 1 H), 7.51-7.45 (m, 2 H), 7.42 (t, *J* = 7.0 Hz, 1 H), 7.27 (d, *J* = 7.5 Hz, 1 H), 7.22 (t, *J* = 7.0 Hz, 1 H), 7.12 (d, *J* = 7.0 Hz, 1 H), 7.10-7.06 (m, 2 H), 6.88 (d, *J* = 7.5 Hz, 1 H), 6.84-6.79 (m, 2 H), 5.62 (d, *J* = 12.0 Hz, 1 H), 4.97 (d, *J* = 12.0 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 158.6, 140.3, 140.0, 137.6, 137.4, 134.9, 133.5, 132.2, 132.0, 128.4, 127.8, 127.5, 127.2, 126.9, 126.8, 126.7, 123.1, 121.1, 116.2, 115.4, 72.4; HRMS calcd for C₂₇H₁₈O 358.1358, found 358.1360.

2,3-Dimethyl-14-phenyl-9*H*-benzo[*e*]phenanthro[1,10-*bc*]oxepine (4b).

Pale yellow solid; m.p. 218-220 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1 H) 8.35 (d, *J* = 7.6 Hz, 1 H), 7.59 (d, *J* = 7.6 Hz, 1 H), 7.49-7.42 (m, 3 H), 7.29-7.22 (m, 2 H), 7.11-7.06 (m, 3 H), 6.89 (d, *J* = 7.2 Hz, 1 H), 6.85-6.79 (m, 3 H), 5.63 (d, *J* = 12.0 Hz, 1 H), 4.97 (d, *J* = 12.0 Hz, 1 H), 2.53 (s, 3 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 137.6, 136.5, 136.3, 135.2, 133.7, 132.2, 132.1, 131.2, 130.6, 129.3, 128.6, 128.1, 127.6, 127.3, 127.1, 126.8, 126.4, 123.7, 121.3, 115.8, 115.6, 72.7, 20.7, 20.4; HRMS calcd for C₂₉H₂₂O 386.1671, found 386.1673.

14-(4-Methoxyphenyl)-9*H*-benzo[*e*]phenanthro[1,10-*bc*]oxepine (4c).

Yellow solid; m.p. 268-270 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.66 (d, J = 8.0 Hz, 1 H), 8.35 (d, J = 8.0 Hz, 1 H), 7.71 (d, J = 8.5 Hz, 1 H), 7.61 (t, J = 7.5 Hz, 1 H), 7.49-7.44 (m, 3 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.10 (t, J = 8.0 Hz, 1 H), 6.97 (d, J = 8.0 Hz, 1 H), 6.86 (t, J = 8.0 Hz, 1 H), 6.79 (d, J = 8.0 Hz, 2 H), 6.62 (d, J = 8.5 Hz, 1 H), 5.60 (d, J = 11.5 Hz, 1 H), 4.96 (d, J = 12.0 Hz, 1 H), 3.79 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 158.5, 158.3, 140.2, 137.3, 137.2, 134.9, 134.3, 133.0, 132.5, 132.2, 132.1, 131.8, 130.7, 127.8, 127.6, 127.0, 126.8, 123.1, 121.2, 116.1, 115.5, 113.6, 113.0, 72.4, 55.2; HRMS calcd for C₂₈H₂₀O₂ 388.1463, found 388.1464.

4-(4-Methoxyphenyl)-2,3-dimethyl-9*H*-benzo[*e*]phenanthro[1,10-*bc*]oxepine (4d).

Pale yellow solid; m.p. 168-170 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.41 (d, J = 8.0 Hz, 1 H), 8.31 (d, J = 8.5 Hz, 1 H), 7.45-7.41 (s, 1 H, m, 1 H merged with same value), 7.05 (d, J = 7.0 Hz, 2 H), 6.96 (t, J = 8.0 Hz, 1 H), 6.85 (t, J = 7.5 Hz, 1 H), 6.76 (d, J = 8.5 Hz, 2 H), 6.61 (d, J = 8.5 Hz, 1 H), 5.59 (d, J = 11.5 Hz, 1 H), 4.93 (d, J = 12.0 Hz, 1 H), 3.78 (s, 3 H), 2.51 (s, 3 H), 2.32 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 158.5, 158.3, 140.5, 137.4, 136.9, 134.9, 134.0, 132.7, 131.9, 130.8, 130.6,

129.0, 127.8, 127.5, 126.5, 126.1, 123.5, 121.1, 115.3, 113.4, 113.1, 72.4, 55.2, 20.4, 20.1; HRMS calcd for C₃₀H₂₄O₂ 416.1776, found 416.1779.

2,3,9-Trimethyl-14-phenyl-9*H*-benzo[*e*]phenanthro[1,10-*bc*]oxepine (4e).

Brown solid; m.p. 165-167 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1 H), 8.29 (d, J = 8.0 Hz, 1 H), 7.55 (d, J = 7.6 Hz, 1 H), 7.46 - 7.38 (s, 1 H, m, 2 H merged with same value), 7.34 (d, J = 7.6 Hz, 2 H), 7.23 (t, J = 7.6 Hz, 1 H), 7.09-7.03 (m, 3 H), 6.84 (d, J = 7.6 Hz, 1 H), 6.81-6.74 (m, 2 H), 6.76 (d, J = 8 .5 Hz, 2 H), 5.84 (q, J = 6.4 Hz, 1 H), 2.15 (s, 3 H), 2.31 (s, 3 H), 1.82 (d, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 140.6, 140.4, 136.0, 135.9, 134.9, 128.3, 127.8, 127.1, 127.0, 126.7, 126.6, 126.5, 123.5, 121.0, 115.4, 115.0, 75.2, 20.4, 20.0, 17.5; HRMS calcd for C₃₀H₂₄O 400.1827, found 400.1828.

2,3,5-Trimethyl-14-phenyl-9*H*-benzo[*e*]phenanthro[1,10-*bc*]oxepine (4f).

Yellow solid; m.p. 173-175 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.44 (t, J = 7.2 Hz, 1 H), 7.37 (s, 1 H), 7.31-7.22 (m, 2 H), 7.11-7.06 (m, 2 H), 6.94 (d, J = 8.0 Hz, 1 H), 6.86-6.80 (m, 2 H), 6.74 (d, J = 7.6 Hz, 1 H), 5.57 (d, J = 11.6 Hz, 1 H), 4.92 (d, J = 12.0 Hz, 1 H), 3.02 (s, 3 H), 2.48 (s, 3 H), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 140.6, 137.4, 135.2, 134.5, 134.3, 132.9, 131.9, 131.0, 130.8, 130.1, 128.2, 127.9, 127.4, 127.3, 127.2, 126.8, 126.5, 126.1, 126.0, 114.1, 71.6, 25.5, 20.5, 20.0; HRMS calcd for C₃₀H₂₄O 400.1827, found 400.1830.

2,3-Dimethyl-15-phenyl-9*H*-[1,3]dioxolo[4,5-*h*]phenanthro[1,10-*cd*][2]benzoxepin

e (4g).

Yellow solid; m.p. 228-230 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1 H), 8.27 (d, J = 8.0 Hz, 1 H), 7.51 (d, J = 7.6 Hz, 1 H), 7.42 (t, J = 7.6 Hz, 1 H), 7.40 (s, 1 H), 7.37 - 7.20 (m, 2 H), 7.15 (t, J = 7.6 Hz, 1 H), 7.02 (d, J = 7.6 Hz, 1 H), 6.91(d, J = 7.6 Hz, 1 H), 6.72 (s, 1 H), 6.23 (s, 1 H), 5.72 (d, J = 14.8 Hz, 2 H), 5.50 (d, J = 12.0 Hz, 1 H), 4.80 (d, J = 12.0 Hz, 1 H), 2.47 (s, 3 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 146.9, 146.1, 140.4, 136.8, 136.0, 134.3, 133.2, 131.2, 131.3, 130.8, 130.3, 128.9, 128.5, 127.7, 127.2, 126.8, 126.6, 123.5, 120.9, 115.5, 115.3, 114.9, 106.8, 100.8, 71.9, 20.4, 20.1; HRMS calcd for C₃₀H₂₂O₃ 430.1569, found 430.1572.

10-Phenyl-5*H*-[1,3]dioxolo[6,7]phenanthro[1,10-*cd*][2]benzoxepine (4h).

Yellow solid; m.p. 203-205 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.4 Hz, 1 H), 8.02 (s, 1 H), 7.55 (d, J = 7.6 Hz, 1 H), 7.44 (t, J = 8.0 Hz, 2 H), 7.25 - 7.20 (m, 2 H), 7.19 - 7.03 (s, 1 H, m, 3 H merged with same value), 6.85 - 6.76 (m, 3 H), 6.05 (d, J = 15.6 Hz, 2 H), 5.59 (d, J = 11.6 Hz, 1 H), 4.93 (d, J = 12.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 148.0, 147.5, 140.6, 140.0, 137.4, 137.3, 134.9, 133.3, 132.0, 131.9, 131.8, 130.4, 128.5, 127.3, 127.2, 127.1, 126.8, 126.7, 126.6, 126.1, 120.9, 115.4, 115.0, 101.4, 101.3, 72.4; HRMS calcd for C₂₈H₁₈O₃ 402.1256, found 402.1259.

5-Chloro-2,3-dimethyl-14-phenyl-9*H*-benzo[*e*]phenanthro[1,10-*bc*]oxepine (4i).

Yellow solid; m.p. 212-214 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 1 H), 7.55-7.43 (m, 3 H), 7.41 (s, 1 H), 7.39-7.25 (m, 3 H), 7.22-7.04 (m, 2 H), 6.93 (d, *J* = 8.0 Hz, 1 H), 6.84-6.79 (m, 2 H), 6.71 (d, *J* = 7.6 Hz, 1 H), 5.52 (d, *J* = 11.6 Hz, 1 H), 4.91 (d, *J* = 11.6 Hz, 1 H), 2.47 (s, 3 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.7, 136.9, 136.5, 134.8, 134.4 (2CH), 132.8, 131.7, 131.3, 130.2, 129.9, 129.6, 128.2, 128.1(2CH), 127.5, 127.4 (2CH), 127.3, 127.0, 126.7, 126.0, 122.5, 121.7, 114.9, 71.7, 20.4, 20.0; HRMS calcd for C₂₉H₂₁CIO 420.1281, found 420.1279.

6-Chloro-2,3,4-tetrahydro-14-phenyl-9*H*-indeno[*e*]phenanthro[1,10-*bc*]oxepine

(4j).

Yellow solid; m.p. 233-235 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1 H), 7.56-7.42 (m, 3 H), 7.41 (s, 1 H), 7.39-7.24 (m, 3 H), 7.22-7.06 (m, 2 H), 6.90 (d, J = 8.4 Hz, 1 H), 6.84-6.81 (m, 2 H), 6.73 (d, J = 7.6 Hz, 1 H), 5.53 (d, J = 11.6 Hz, 1 H), 4.91 (d, J = 11.6 Hz, 1 H), 3.27-3.21 (m, 1 H), 3.19-2.97 (m, 2 H), 2.89-2.81 (m, 1 H), 2.21-2.04 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.6, 144.3, 142.7, 140.4, 139.0, 137.3, 137.0, 134.4, 132.8, 131.9, 131.7, 130.2, 130.1, 129.8, 128.6, 128.2, 127.5, 127.4, 127.0, 126.7, 126.0, 122.4, 122.1, 122.1, 7, 114.7, 71.7, 33.1, 32.9, 25.9; HRMS calcd for C₃₀H₂₁ClO 432.1281, found 432.1283.

2,3-Dimethyl-14-phenyl-8-tolyl-8,9-dihydrobenzo[e]phenanthro[1,10-bc]azepine

(4k).

Yellow solid; m.p. 173-175 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.64 (d, J = 8.0 Hz, 1 H), 8.44 (s, 1 H), 8.28 (d, J = 8.0 Hz, 1 H), 7.57 (t, J = 8.0 Hz, 1 H), 7.43 (t, J = 8.0 Hz, 1 H), 7.38-7.32 (m, 3 H), 7.14 (t, J = 7.6 Hz, 1 H), 7.01-6.96 (m, 2 H), 6.63 (d, J = 8.4 Hz, 1 H), 6.58-6.53 (m, 4 H), 6.32 (d, J = 7.6 Hz, 1 H), 5.17 (d, J = 14.8 Hz, 1 H), 4.95 (d, J = 14.8 Hz, 1 H), 2.49 (s, 3 H), 2.28 (s, 3 H), 2.07 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 141.0, 140.1 (2C), 139.5, 139.2, 139.1, 137.8, 136.3, 136.2, 135.9, 133.4, 131.7, 131.5, 131.2, 130.0, 128.8, 128.4, 128.2, 127.9, 127.3, 126.9, 126.6, 126.3, 126.2(2CH), 125.6, 54.2, 21.1, 20.4, 20.1; HRMS calcd for C₃₆H₂₉NO₂S 539.1919, found 539.1921.

References.

1) D. D. Perrin and W. L. F. Armarego, *In Purification of Laboratory Chemicals*, 3rd ed.; Pergamon Press: New York, 1988.

2) (a) D. Pena, S. Escudero, D. Perez, E. Guitian and L. Castedo, Angew. Chem. Int.

Ed. 1998, **37**, 2659; (*b*) D. Peña, D. Pérez, E. Guitián and L. Castedo, *J. Am. Chem. Soc.* 1999, **121**, 5827.

3) H. Yu, R. N. Richey, M. W. Cason and M. J. Coghlan, Org. Lett. 2006, 8, 1685.

¹H and ¹³C NMR spectra of compound **3e**.

¹H and ¹³C NMR spectra of compound **4a**.

¹H and ¹³C NMR spectra of compound **4b**.

¹H and ¹³C NMR spectra of compound **4c**.

¹H and ¹³C NMR spectra of compound **4d**.

S24

¹H and ¹³C NMR spectra of compound **4g**.

ORTEP diagram of compound 3f.

ORTEP diagram of compound 4c.

ORTEP diagram of compound 4j.

Table 1. Crystal data and structure refine	ment for 3f .		
Identification code	111103lt		
Empirical formula	C25 H20 O2		
Formula weight	352.41		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P n a 21		
Unit cell dimensions	a = 18.289(4) Å	α= 90°.	
	b = 17.374(4) Å	$\beta = 90^{\circ}$.	
	c = 5.6562(12) Å	$\gamma = 90^{\circ}$.	
Volume	1797.3(7) Å ³		
Z	4		
Density (calculated)	1.302 Mg/m ³		
Absorption coefficient	0.081 mm ⁻¹		
F(000)	744		
Crystal size $0.25 \ge 0.07 \ge 0.06 \text{ mm}^3$			
Theta range for data collection	1.62 to 26.54°.		
Index ranges	-22<=h<=22, -21<=k<=2	1, -6<=l<=7	
Reflections collected	14636		
Independent reflections	3186 [R(int) = 0.0308]		
Completeness to theta = 26.54°	99.4 %		
Absorption correction	Semi-empirical from equ	ivalents	
Max. and min. transmission	0.9486 and 0.8891		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	3186 / 1 / 247		
Goodness-of-fit on F ²	1.041		
Final R indices [I>2sigma(I)]	R1 = 0.0319, wR2 = 0.07	55	
R indices (all data)	R1 = 0.0366, $wR2 = 0.0781$		
Absolute structure parameter	2.0(12)		
Largest diff. peak and hole	0.229 and -0.167 e.Å ⁻³		

	х	У	Z	U(eq)
O(1)	2206(1)	6898(1)	12855(2)	27(1)
O(2)	2960(1)	6279(1)	10538(2)	31(1)
C(1)	5035(1)	5849(1)	7228(4)	36(1)
C(2)	4500(1)	6033(1)	5597(4)	34(1)
C(3)	4015(1)	6627(1)	6056(3)	28(1)
C(4)	4055(1)	7040(1)	8151(3)	20(1)
C(5)	3546(1)	7700(1)	8630(3)	19(1)
C(6)	2985(1)	7652(1)	10248(3)	19(1)
C(7)	2557(1)	8326(1)	10835(3)	19(1)
C(8)	2644(1)	9018(1)	9552(3)	20(1)
C(9)	2233(1)	9668(1)	10236(3)	24(1)
C(10)	1777(1)	9639(1)	12165(3)	26(1)
C(11)	1310(1)	7426(1)	15380(5)	49(1)
C(12)	2036(1)	7579(1)	14235(3)	28(1)
C(13)	2071(1)	8302(1)	12780(3)	22(1)
C(14)	1696(1)	8953(1)	13438(3)	25(1)
C(15)	3179(1)	9041(1)	7650(3)	20(1)
C(16)	3652(1)	8403(1)	7299(3)	20(1)
C(17)	4202(1)	8465(1)	5552(3)	22(1)
C(18)	4269(1)	9098(1)	4113(3)	23(1)
C(19)	4851(1)	9133(1)	2236(3)	30(1)
C(20)	3771(1)	9720(1)	4396(3)	23(1)
C(21)	3250(1)	9683(1)	6160(3)	23(1)
C(22)	3808(1)	10415(1)	2812(4)	30(1)
C(23)	5086(1)	6260(1)	9311(4)	35(1)
C(24)	4600(1)	6859(1)	9773(3)	27(1)
C(25)	2748(1)	6896(1)	11216(3)	21(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for 111103LT. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(25)	1.3561(19)
O(1)-C(12)	1.451(2)
O(2)-C(25)	1.2027(19)
C(1)-C(23)	1.382(3)
C(1)-C(2)	1.383(3)
C(1)-H(1)	0.9500
C(2)-C(3)	1.385(2)
C(2)-H(2)	0.9500
C(3)-C(4)	1.387(2)
C(3)-H(3)	0.9500
C(4)-C(24)	1.390(2)
C(4)-C(5)	1.502(2)
C(5)-C(6)	1.377(2)
C(5)-C(16)	1.448(2)
C(6)-C(7)	1.447(2)
C(6)-C(25)	1.489(2)
C(7)-C(8)	1.413(2)
C(7)-C(13)	1.415(2)
C(8)-C(9)	1.412(2)
C(8)-C(15)	1.455(2)
C(9)-C(10)	1.375(2)
C(9)-H(9)	0.9500
C(10)-C(14)	1.400(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.499(2)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-C(13)	1.504(2)
C(12)-H(12)	1.0000
C(13)-C(14)	1.374(2)
C(14)-H(14)	0.9500
C(15)-C(21)	1.404(2)
C(15)-C(16)	1.419(2)
C(16)-C(17)	1.415(2)
C(17)-C(18)	1.374(2)

Table 3. Bond lengths [Å] and angles [°] for 111103LT.

C(17)-H(17)	0.9500
C(18)-C(20)	1.421(2)
C(18)-C(19)	1.504(2)
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-C(21)	1.381(2)
C(20)-C(22)	1.505(2)
C(21)-H(21)	0.9500
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-C(24)	1.393(2)
C(23)-H(23)	0.9500
C(24)-H(24)	0.9500
C(25)-O(1)-C(12)	121.88(12)
C(23)-C(1)-C(2)	119.84(16)
C(23)-C(1)-H(1)	120.1
C(2)-C(1)-H(1)	120.1
C(1)-C(2)-C(3)	120.0(2)
C(1)-C(2)-H(2)	120.0
C(3)-C(2)-H(2)	120.0
C(2)-C(3)-C(4)	120.76(17)
C(2)-C(3)-H(3)	119.6
C(4)-C(3)-H(3)	119.6
C(3)-C(4)-C(24)	119.00(15)
C(3)-C(4)-C(5)	121.06(14)
C(24)-C(4)-C(5)	119.88(15)
C(6)-C(5)-C(16)	119.71(13)
C(6)-C(5)-C(4)	122.44(13)
C(16)-C(5)-C(4)	117.85(13)
C(5)-C(6)-C(7)	120.47(14)
C(5)-C(6)-C(25)	120.98(13)
C(7)-C(6)-C(25)	118.15(13)
C(8)-C(7)-C(13)	119.66(14)
C(8)-C(7)-C(6)	120.59(14)
C(13)-C(7)-C(6)	119.68(14)

C(9)-C(8)-C(7)	118.71(14)
C(9)-C(8)-C(15)	122.54(14)
C(7)-C(8)-C(15)	118.69(13)
C(10)-C(9)-C(8)	120.75(15)
C(10)-C(9)-H(9)	119.6
C(8)-C(9)-H(9)	119.6
C(9)-C(10)-C(14)	120.24(15)
C(9)-C(10)-H(10)	119.9
C(14)-C(10)-H(10)	119.9
C(12)-C(11)-H(11A)	109.5
C(12)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(12)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(1)-C(12)-C(11)	106.19(14)
O(1)-C(12)-C(13)	112.19(14)
C(11)-C(12)-C(13)	114.95(14)
O(1)-C(12)-H(12)	107.7
C(11)-C(12)-H(12)	107.7
C(13)-C(12)-H(12)	107.7
C(14)-C(13)-C(7)	120.03(15)
C(14)-C(13)-C(12)	121.23(15)
C(7)-C(13)-C(12)	118.45(13)
C(13)-C(14)-C(10)	120.57(16)
C(13)-C(14)-H(14)	119.7
C(10)-C(14)-H(14)	119.7
C(21)-C(15)-C(16)	118.67(14)
C(21)-C(15)-C(8)	121.94(14)
C(16)-C(15)-C(8)	119.39(14)
C(17)-C(16)-C(15)	118.14(14)
C(17)-C(16)-C(5)	121.48(14)
C(15)-C(16)-C(5)	120.32(14)
C(18)-C(17)-C(16)	122.54(14)
C(18)-C(17)-H(17)	118.7
C(16)-C(17)-H(17)	118.7
C(17)-C(18)-C(20)	119.01(15)
C(17)-C(18)-C(19)	120.87(15)

C(20)-C(18)-C(19)	120.12(15)
C(18)-C(19)-H(19A)	109.5
C(18)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(18)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(21)-C(20)-C(18)	119.20(15)
C(21)-C(20)-C(22)	119.83(14)
C(18)-C(20)-C(22)	120.96(15)
C(20)-C(21)-C(15)	122.31(14)
C(20)-C(21)-H(21)	118.8
C(15)-C(21)-H(21)	118.8
C(20)-C(22)-H(22A)	109.5
C(20)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(20)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(1)-C(23)-C(24)	120.20(18)
C(1)-C(23)-H(23)	119.9
C(24)-C(23)-H(23)	119.9
C(4)-C(24)-C(23)	120.16(18)
C(4)-C(24)-H(24)	119.9
C(23)-C(24)-H(24)	119.9
O(2)-C(25)-O(1)	117.20(14)
O(2)-C(25)-C(6)	125.11(15)
O(1)-C(25)-C(6)	117.47(13)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U33	U ²³	U13	U ¹²	
O(1)	31(1)	19(1)	30(1)	3(1)	6(1)	-3(1)	
O(2)	40(1)	18(1)	36(1)	1(1)	9(1)	-1(1)	
C(1)	36(1)	22(1)	50(1)	12(1)	21(1)	9(1)	
C(2)	49(1)	20(1)	33(1)	3(1)	15(1)	1(1)	
C(3)	36(1)	24(1)	24(1)	2(1)	0(1)	1(1)	
C(4)	22(1)	18(1)	22(1)	4(1)	2(1)	-1(1)	
C(5)	20(1)	17(1)	18(1)	0(1)	-5(1)	-1(1)	
C(6)	21(1)	17(1)	20(1)	1(1)	-5(1)	0(1)	
C(7)	18(1)	19(1)	21(1)	0(1)	-6(1)	-1(1)	
C(8)	19(1)	19(1)	23(1)	1(1)	-6(1)	-2(1)	
C(9)	23(1)	17(1)	30(1)	2(1)	-4(1)	0(1)	
C(10)	23(1)	21(1)	35(1)	-2(1)	-3(1)	4(1)	
C(11)	53(1)	28(1)	65(2)	13(1)	31(1)	5(1)	
C(12)	31(1)	26(1)	27(1)	2(1)	3(1)	4(1)	
C(13)	20(1)	22(1)	24(1)	2(1)	-4(1)	-2(1)	
C(14)	20(1)	29(1)	25(1)	-1(1)	0(1)	0(1)	
C(15)	20(1)	18(1)	22(1)	1(1)	-6(1)	-3(1)	
C(16)	21(1)	19(1)	18(1)	1(1)	-6(1)	-3(1)	
C(17)	23(1)	20(1)	24(1)	0(1)	-3(1)	0(1)	
C(18)	24(1)	24(1)	21(1)	1(1)	-4(1)	-7(1)	
C(19)	32(1)	29(1)	28(1)	4(1)	2(1)	-5(1)	
C(20)	25(1)	21(1)	22(1)	3(1)	-7(1)	-7(1)	
C(21)	23(1)	18(1)	27(1)	1(1)	-7(1)	-2(1)	
C(22)	32(1)	24(1)	32(1)	9(1)	-4(1)	-6(1)	
C(23)	27(1)	35(1)	44(1)	14(1)	2(1)	8(1)	
C(24)	27(1)	29(1)	25(1)	4(1)	-2(1)	2(1)	
C(25)	21(1)	21(1)	22(1)	2(1)	-2(1)	-2(1)	

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for 111103LT. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(1)	5366	5440	6917	43
H(2)	4465	5752	4160	40
H(3)	3650	6753	4924	34
H(9)	2273	10132	9353	28
H(10)	1515	10086	12636	31
H(11A)	925	7439	14177	73
H(11B)	1214	7822	16574	73
H(11C)	1319	6919	16135	73
H(12)	2409	7622	15519	33
H(14)	1379	8938	14767	30
H(17)	4538	8053	5366	26
H(19A)	5143	8661	2284	44
H(19B)	5167	9578	2522	44
H(19C)	4620	9182	679	44
H(21)	2929	10107	6372	27
H(22A)	3420	10777	3250	44
H(22B)	3742	10255	1165	44
H(22C)	4285	10665	2991	44
H(23)	5454	6135	10432	42
H(24)	4641	7145	11199	32

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 111103LT.

Table 1. Crystal data and structure refinement for 4c.

Identification code	07dc31m		
Empirical formula	C28 H20 O2		
Formula weight	388.44		
Temperature	295(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 9.8053(15) Å	$\Box = 82.137(2)^{\circ}.$	
	b = 10.1884(16) Å	$\Box = 65.417(2)^{\circ}.$	
	c = 11.1732(17) Å	□ =	
77.710(2)°.			
Volume	990.3(3) Å ³		
Z	2		
Density (calculated)	1.303 Mg/m ³		
Absorption coefficient	0.081 mm ⁻¹		
F(000)	408		
Crystal size	0.25 x 0.20 x 0.20 mm	3	
Theta range for data collection	2.01 to 28.31°.		
Index ranges	-13≦h≦13, -13≦k≦13, -14≦1≦14		
Reflections collected	11736		
Independent reflections	4907 [R(int) = 0.0605]	l	
Completeness to theta = 28.31°	99.6 %		
Absorption correction	Empirical		
Max. and min. transmission	0.95104 and 0.76198		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4907 / 0 / 272		
Goodness-of-fit on F ²	0.909		
Final R indices [I>2sigma(I)]	R1 = 0.0437, wR2 = 0.1073		
R indices (all data)	R1 = 0.0675, wR2 = 0.1180		
Largest diff. peak and hole	0.199 and -0.187 e.Å ⁻³		

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for 07dc31m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	2474(1)	464(1)	4854(1)	43(1)
C(2)	2801(1)	154(1)	3524(1)	46(1)
C(3)	3371(2)	-1170(1)	3092(1)	59(1)
C(4)	3626(2)	-1461(2)	1846(1)	69(1)
C(5)	3314(2)	-450(2)	992(1)	70(1)
C(6)	2792(2)	848(2)	1368(1)	64(1)
C(7)	2543(1)	1194(1)	2632(1)	49(1)
C(8)	2152(1)	2590(1)	2992(1)	49(1)
C(9)	1838(2)	3654(2)	2150(1)	62(1)
C(10)	1597(2)	4967(2)	2453(2)	69(1)
C(11)	1784(2)	5262(2)	3537(1)	66(1)
C(12)	2109(2)	4243(1)	4374(1)	55(1)
C(13)	3259(2)	3739(1)	5954(1)	61(1)
C(14)	2203(2)	2946(1)	7004(1)	52(1)
C(15)	1725(2)	3159(2)	8335(1)	62(1)
C(16)	621(2)	2510(2)	9276(1)	65(1)
C(17)	-41(2)	1664(1)	8903(1)	58(1)
C(18)	426(1)	1444(1)	7585(1)	50(1)
C(19)	1578(1)	2065(1)	6619(1)	47(1)
C(20)	2121(1)	1776(1)	5197(1)	44(1)
C(21)	2143(1)	2880(1)	4210(1)	47(1)
C(22)	2592(1)	-675(1)	5822(1)	43(1)
C(23)	3583(1)	-749(1)	6435(1)	45(1)
C(24)	3744(1)	-1805(1)	7317(1)	47(1)
C(25)	2896(1)	-2817(1)	7598(1)	47(1)
C(26)	1883(1)	-2754(1)	7011(1)	51(1)
C(27)	1738(1)	-1704(1)	6140(1)	49(1)
C(28)	4071(2)	-4093(2)	8983(2)	76(1)
O(1)	2420(1)	4686(1)	5328(1)	72(1)
O(2)	2976(1)	-3924(1)	8435(1)	64(1)

C(1)-C(20)	1.3735(17)
C(1)-C(2)	1.4495(15)
C(1)-C(22)	1.4946(16)
C(2)-C(7)	1.4088(17)
C(2)-C(3)	1.4138(18)
C(3)-C(4)	1.3711(18)
C(3)-H(3)	0.9300
C(4)-C(5)	1.380(2)
C(4)-H(4)	0.9300
C(5)-C(6)	1.368(2)
C(5)-H(5)	0.9300
C(6)-C(7)	1.4111(17)
C(6)-H(6)	0.9300
C(7)-C(8)	1.4588(19)
C(8)-C(9)	1.4057(17)
C(8)-C(21)	1.4274(17)
C(9)-C(10)	1.371(2)
C(9)-H(9)	0.9300
C(10)-C(11)	1.378(2)
C(10)-H(10)	0.9300
C(11)-C(12)	1.3770(18)
C(11)-H(11)	0.9300
C(12)-O(1)	1.3753(16)
C(12)-C(21)	1.4177(18)
C(13)-O(1)	1.4336(17)
C(13)-C(14)	1.4784(18)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(14)-C(19)	1.3880(18)
C(14)-C(15)	1.3943(18)
C(15)-C(16)	1.371(2)
C(15)-H(15)	0.9300
C(16)-C(17)	1.378(2)
C(16)-H(16)	0.9300
C(17)-C(18)	1.3835(17)
C(17)-H(17)	0.9300

Table 3.	Bond lengths [Å] and angles [°] for 07dc31m.

C(18)-C(19)	1.3944(16)
C(18)-H(18)	0.9300
C(19)-C(20)	1.5004(16)
C(20)-C(21)	1.4604(16)
C(22)-C(23)	1.3869(16)
C(22)-C(27)	1.3973(17)
C(23)-C(24)	1.3861(16)
C(23)-H(23)	0.9300
C(24)-C(25)	1.3828(17)
C(24)-H(24)	0.9300
C(25)-O(2)	1.3735(13)
C(25)-C(26)	1.3877(17)
C(26)-C(27)	1.3702(16)
C(26)-H(26)	0.9300
C(27)-H(27)	0.9300
C(28)-O(2)	1.4135(17)
C(28)-H(28A)	0.9600
C(28)-H(28B)	0.9600
C(28)-H(28C)	0.9600
C(20)-C(1)-C(2)	120.54(10)
C(20)-C(1)-C(22)	121.02(10)
C(2)-C(1)-C(22)	118.40(10)
C(7)-C(2)-C(3)	118.76(11)
C(7)-C(2)-C(1)	119.51(11)
C(3)-C(2)-C(1)	121.73(11)
C(4)-C(3)-C(2)	121.28(13)
C(4)-C(3)-H(3)	119.4
C(2)-C(3)-H(3)	119.4
C(3)-C(4)-C(5)	119.83(14)
C(3)-C(4)-H(4)	120.1
C(5)-C(4)-H(4)	120.1
C(6)-C(5)-C(4)	120.40(13)
C(6)-C(5)-H(5)	119.8
C(4)-C(5)-H(5)	119.8
C(5)-C(6)-C(7)	121.54(13)
C(5)-C(6)-H(6)	119.2
C(7)-C(6)-H(6)	119.2

C(2)-C(7)-C(6)	118.11(12)
C(2)-C(7)-C(8)	119.77(11)
C(6)-C(7)-C(8)	121.93(12)
C(9)-C(8)-C(21)	119.39(13)
C(9)-C(8)-C(7)	121.64(12)
C(21)-C(8)-C(7)	118.93(10)
C(10)-C(9)-C(8)	120.91(13)
C(10)-C(9)-H(9)	119.5
C(8)-C(9)-H(9)	119.5
C(9)-C(10)-C(11)	120.10(13)
C(9)-C(10)-H(10)	120.0
C(11)-C(10)-H(10)	120.0
C(12)-C(11)-C(10)	120.34(14)
C(12)-C(11)-H(11)	119.8
C(10)-C(11)-H(11)	119.8
O(1)-C(12)-C(11)	113.51(12)
O(1)-C(12)-C(21)	125.14(11)
C(11)-C(12)-C(21)	121.33(13)
O(1)-C(13)-C(14)	108.96(12)
O(1)-C(13)-H(13A)	109.9
C(14)-C(13)-H(13A)	109.9
O(1)-C(13)-H(13B)	109.9
C(14)-C(13)-H(13B)	109.9
H(13A)-C(13)-H(13B)	108.3
C(19)-C(14)-C(15)	120.32(12)
C(19)-C(14)-C(13)	117.50(11)
C(15)-C(14)-C(13)	121.89(13)
C(16)-C(15)-C(14)	120.30(14)
C(16)-C(15)-H(15)	119.8
C(14)-C(15)-H(15)	119.8
C(15)-C(16)-C(17)	119.90(12)
C(15)-C(16)-H(16)	120.0
C(17)-C(16)-H(16)	120.0
C(16)-C(17)-C(18)	120.29(13)
C(16)-C(17)-H(17)	119.9
C(18)-C(17)-H(17)	119.9
C(17)-C(18)-C(19)	120.54(13)
C(17)-C(18)-H(18)	119.7

C(19)-C(18)-H(18)	119.7
C(14)-C(19)-C(18)	118.58(11)
C(14)-C(19)-C(20)	121.26(11)
C(18)-C(19)-C(20)	120.16(11)
C(1)-C(20)-C(21)	120.42(10)
C(1)-C(20)-C(19)	119.20(10)
C(21)-C(20)-C(19)	120.16(10)
C(12)-C(21)-C(8)	116.51(11)
C(12)-C(21)-C(20)	125.17(11)
C(8)-C(21)-C(20)	118.29(11)
C(23)-C(22)-C(27)	117.38(11)
C(23)-C(22)-C(1)	120.42(11)
C(27)-C(22)-C(1)	122.20(11)
C(24)-C(23)-C(22)	121.93(11)
C(24)-C(23)-H(23)	119.0
C(22)-C(23)-H(23)	119.0
C(25)-C(24)-C(23)	119.29(11)
C(25)-C(24)-H(24)	120.4
C(23)-C(24)-H(24)	120.4
O(2)-C(25)-C(24)	124.68(11)
O(2)-C(25)-C(26)	115.54(11)
C(24)-C(25)-C(26)	119.78(11)
C(27)-C(26)-C(25)	120.18(11)
C(27)-C(26)-H(26)	119.9
C(25)-C(26)-H(26)	119.9
C(26)-C(27)-C(22)	121.43(11)
C(26)-C(27)-H(27)	119.3
C(22)-C(27)-H(27)	119.3
O(2)-C(28)-H(28A)	109.5
O(2)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
O(2)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(12)-O(1)-C(13)	118.22(10)
C(25)-O(2)-C(28)	117.96(10)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U13	U12	
C(1)	39(1)	47(1)	44(1)	-2(1)	-18(1)	-8(1)	
C(2)	41(1)	55(1)	45(1)	-4(1)	-18(1)	-10(1)	
C(3)	62(1)	60(1)	55(1)	-10(1)	-22(1)	-11(1)	
C(4)	73(1)	75(1)	59(1)	-22(1)	-19(1)	-15(1)	
C(5)	72(1)	97(1)	49(1)	-15(1)	-22(1)	-27(1)	
C(6)	62(1)	86(1)	49(1)	1(1)	-27(1)	-20(1)	
C(7)	40(1)	66(1)	44(1)	-1(1)	-19(1)	-13(1)	
C(8)	39(1)	60(1)	48(1)	7(1)	-18(1)	-10(1)	
C(9)	54(1)	77(1)	57(1)	14(1)	-29(1)	-13(1)	
C(10)	59(1)	67(1)	71(1)	23(1)	-26(1)	-6(1)	
C(11)	65(1)	51(1)	67(1)	7(1)	-17(1)	-5(1)	
C(12)	54(1)	51(1)	50(1)	0(1)	-13(1)	-6(1)	
C(13)	68(1)	60(1)	60(1)	-9(1)	-26(1)	-17(1)	
C(14)	55(1)	49(1)	51(1)	-6(1)	-22(1)	-4(1)	
C(15)	69(1)	67(1)	58(1)	-13(1)	-33(1)	-5(1)	
C(16)	69(1)	81(1)	45(1)	-7(1)	-26(1)	-2(1)	
C(17)	53(1)	67(1)	47(1)	4(1)	-17(1)	-4(1)	
C(18)	51(1)	49(1)	48(1)	-1(1)	-20(1)	-3(1)	
C(19)	48(1)	44(1)	44(1)	-2(1)	-19(1)	-1(1)	
C(20)	41(1)	47(1)	42(1)	-1(1)	-17(1)	-7(1)	
C(21)	41(1)	48(1)	46(1)	2(1)	-14(1)	-5(1)	
C(22)	42(1)	43(1)	43(1)	-5(1)	-18(1)	-5(1)	
C(23)	41(1)	47(1)	47(1)	-4(1)	-17(1)	-10(1)	
C(24)	43(1)	52(1)	48(1)	-4(1)	-22(1)	-6(1)	
C(25)	48(1)	45(1)	44(1)	-1(1)	-17(1)	-5(1)	
C(26)	52(1)	47(1)	58(1)	-1(1)	-22(1)	-15(1)	
C(27)	49(1)	52(1)	55(1)	-5(1)	-26(1)	-10(1)	
C(28)	80(1)	80(1)	76(1)	21(1)	-46(1)	-14(1)	
O(1)	100(1)	51(1)	65(1)	-3(1)	-33(1)	-13(1)	
O(2)	70(1)	55(1)	71(1)	15(1)	-36(1)	-15(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³)for 07dc31m. The anisotropic displacement factor exponent takes the form: $-2 \cdot {}^{2}$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

_	Х	У	Z	U(eq)
H(3)	3577	-1858	3664	70
H(4)	4007	-2337	1577	83
H(5)	3461	-652	155	85
H(6)	2597	1517	777	76
H(9)	1793	3466	1377	74
H(10)	1307	5658	1926	83
H(11)	1690	6153	3704	79
H(13A)	3736	4211	6330	73
H(13B)	4052	3145	5311	73
H(15)	2157	3743	8587	75
H(16)	319	2642	10164	78
H(17)	-805	1240	9540	70
H(18)	-32	877	7341	60
H(23)	4156	-71	6248	54
H(24)	4416	-1833	7715	56
H(26)	1301	-3427	7208	61
H(27)	1056	-1675	5752	59
H(28A)	5060	-4073	8288	114
H(28B)	4074	-4942	9476	114
H(28C)	3824	-3379	9556	114

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for 07dc31m.

Table 1. Crystal data and structure refinement for 4j.

Identification code	090839m		
Empirical formula	C30 H21 Cl O		
Formula weight	432.92		
Temperature	295(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 8.1591(4) Å		
87.4450(10)°.			
	b = 10.8269(6) Å		
80.6820(10)°.			
	c = 12.5067(7) Å	□ =	
81.2890(10)°.			
Volume	1077.43(10) Å ³		
Ζ	2		
Density (calculated)	1.334 Mg/m ³		
Absorption coefficient	0.198 mm ⁻¹		
F(000)	452		
Crystal size	0.25 x 0.20 x 0.15 mm ³		
Theta range for data collection	1.65 to 28.35°.		
Index ranges	-10≤h≤10, -14≤k≤14, -16≤l≤15		
Reflections collected	12771		
Independent reflections	5353 [R(int) = 0.0197]		
Completeness to theta = 28.35°	99.3 %		
Absorption correction	Empirical		
Max. and min. transmission	0.7457 and 0.6604		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	ers 5353 / 0 / 289		
Goodness-of-fit on F ²	1.051		
Final R indices [I>2sigma(I)]	R1 = 0.0462, wR2 = 0.1263		
R indices (all data) $R1 = 0.0580, wR2 = 0.1375$			
Largest diff. peak and hole	iff. peak and hole $0.283 \text{ and } -0.216 \text{ e.}\text{Å}^{-3}$		

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for 090839m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	7859(2)	4939(1)	9482(1)	43(1)
C(2)	8692(2)	3803(2)	9766(1)	49(1)
C(3)	9512(2)	2978(2)	8980(1)	47(1)
C(4)	9369(2)	3236(1)	7906(1)	41(1)
C(5)	8492(2)	4380(1)	7564(1)	35(1)
C(6)	8111(2)	4672(1)	6468(1)	35(1)
C(7)	8115(2)	3738(1)	5709(1)	42(1)
C(8)	7653(2)	4048(1)	4711(1)	42(1)
C(9)	7531(2)	3189(2)	3814(1)	55(1)
C(10)	7348(3)	4077(2)	2848(1)	62(1)
C(11)	6657(2)	5374(2)	3302(1)	50(1)
C(12)	7141(2)	5289(1)	4421(1)	40(1)
C(13)	7068(2)	6213(1)	5146(1)	40(1)
C(14)	7536(2)	5931(1)	6180(1)	36(1)
C(15)	7373(2)	6907(1)	6958(1)	36(1)
C(16)	7548(2)	6619(1)	8018(1)	37(1)
C(17)	7540(2)	7656(1)	8773(1)	40(1)
C(18)	8548(2)	8583(1)	8472(1)	48(1)
C(19)	8467(3)	9592(2)	9138(2)	60(1)
C(20)	7386(3)	9683(2)	10113(2)	66(1)
C(21)	6434(2)	8748(2)	10440(2)	59(1)
C(22)	6517(2)	7728(2)	9786(1)	47(1)
C(23)	5698(2)	6619(2)	10156(1)	56(1)
C(24)	7920(2)	5320(1)	8373(1)	36(1)
C(25)	6900(2)	8235(1)	6598(1)	40(1)
C(26)	7960(2)	8815(2)	5811(1)	50(1)
C(27)	7530(3)	10053(2)	5506(2)	64(1)
C(28)	6034(3)	10723(2)	5963(2)	69(1)
C(29)	4952(3)	10153(2)	6720(2)	63(1)
C(30)	5380(2)	8912(2)	7037(1)	49(1)
Cl(1)	10498(1)	2088(1)	7020(1)	57(1)
O(1)	6982(2)	5608(1)	10347(1)	56(1)

C(1)-O(1)	1.3669(18)
C(1)-C(2)	1.373(2)
C(1)-C(24)	1.4248(19)
C(2)-C(3)	1.376(2)
C(2)-H(2)	0.9300
C(3)-C(4)	1.379(2)
C(3)-H(3)	0.9300
C(4)-C(5)	1.4191(19)
C(4)-Cl(1)	1.7512(15)
C(5)-C(24)	1.4388(19)
C(5)-C(6)	1.4657(18)
C(6)-C(7)	1.4164(19)
C(6)-C(14)	1.4223(18)
C(7)-C(8)	1.375(2)
C(7)-H(7)	0.9300
C(8)-C(12)	1.395(2)
C(8)-C(9)	1.513(2)
C(9)-C(10)	1.522(3)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.530(2)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-C(12)	1.509(2)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.368(2)
C(13)-C(14)	1.4150(19)
C(13)-H(13)	0.9300
C(14)-C(15)	1.4452(18)
C(15)-C(16)	1.3722(19)
C(15)-C(25)	1.5003(19)
C(16)-C(24)	1.4583(19)
C(16)-C(17)	1.4976(18)
C(17)-C(18)	1.393(2)
C(17)-C(22)	1.399(2)

Та	able 3. 1	Bond lengths [Å	A] and angle	s [°] for	090839m.

_

C(18)-C(19)	1.390(2)
C(18)-H(18)	0.9300
C(19)-C(20)	1.382(3)
C(19)-H(19)	0.9300
C(20)-C(21)	1.376(3)
C(20)-H(20)	0.9300
C(21)-C(22)	1.390(2)
C(21)-H(21)	0.9300
C(22)-C(23)	1.482(3)
C(23)-O(1)	1.436(2)
C(23)-H(23A)	0.9700
C(23)-H(23B)	0.9700
C(25)-C(30)	1.385(2)
C(25)-C(26)	1.395(2)
C(26)-C(27)	1.385(2)
C(26)-H(26)	0.9300
C(27)-C(28)	1.373(3)
C(27)-H(27)	0.9300
C(28)-C(29)	1.377(3)
C(28)-H(28)	0.9300
C(29)-C(30)	1.393(2)
C(29)-H(29)	0.9300
C(30)-H(30)	0.9300
O(1)-C(1)-C(2)	113.75(13)
O(1)-C(1)-C(24)	125.51(13)
C(2)-C(1)-C(24)	120.73(14)
C(1)-C(2)-C(3)	120.44(14)
C(1)-C(2)-H(2)	119.8
C(3)-C(2)-H(2)	119.8
C(2)-C(3)-C(4)	120.07(14)
C(2)-C(3)-H(3)	120.0
C(4)-C(3)-H(3)	120.0
C(3)-C(4)-C(5)	121.94(14)
C(3)-C(4)-Cl(1)	113.85(11)
C(5)-C(4)-Cl(1)	124.03(11)
C(4)-C(5)-C(24)	116.66(12)
C(4)-C(5)-C(6)	125.49(12)

117.85(12)
117.67(12)
122.78(12)
119.21(12)
120.95(13)
119.5
119.5
121.03(13)
128.59(14)
110.33(13)
103.32(14)
111.1
111.1
111.1
111.1
109.1
106.96(14)
110.3
110.3
110.3
110.3
108.6
103.23(13)
111.1
111.1
111.1
111.1
109.1
119.71(13)
129.57(14)
110.65(13)
120.87(13)
119.6
119.6
119.69(12)
120.33(12)
119.94(12)
120.70(12)

C(16)-C(15)-C(25)	120.76(12)
C(14)-C(15)-C(25)	118.42(11)
C(15)-C(16)-C(24)	120.37(12)
C(15)-C(16)-C(17)	119.08(12)
C(24)-C(16)-C(17)	120.21(12)
C(18)-C(17)-C(22)	118.37(14)
C(18)-C(17)-C(16)	120.38(13)
C(22)-C(17)-C(16)	121.24(14)
C(19)-C(18)-C(17)	120.69(17)
C(19)-C(18)-H(18)	119.7
C(17)-C(18)-H(18)	119.7
C(20)-C(19)-C(18)	120.20(18)
C(20)-C(19)-H(19)	119.9
C(18)-C(19)-H(19)	119.9
C(21)-C(20)-C(19)	119.69(16)
C(21)-C(20)-H(20)	120.2
C(19)-C(20)-H(20)	120.2
C(20)-C(21)-C(22)	120.61(17)
C(20)-C(21)-H(21)	119.7
C(22)-C(21)-H(21)	119.7
C(21)-C(22)-C(17)	120.27(17)
C(21)-C(22)-C(23)	122.81(16)
C(17)-C(22)-C(23)	116.61(14)
O(1)-C(23)-C(22)	108.13(14)
O(1)-C(23)-H(23A)	110.1
C(22)-C(23)-H(23A)	110.1
O(1)-C(23)-H(23B)	110.1
C(22)-C(23)-H(23B)	110.1
H(23A)-C(23)-H(23B)	108.4
C(1)-C(24)-C(5)	117.87(12)
C(1)-C(24)-C(16)	123.38(12)
C(5)-C(24)-C(16)	118.60(12)
C(30)-C(25)-C(26)	118.38(14)
C(30)-C(25)-C(15)	120.30(14)
C(26)-C(25)-C(15)	121.31(13)
C(27)-C(26)-C(25)	120.76(17)
C(27)-C(26)-H(26)	119.6
C(25)-C(26)-H(26)	119.6

C(28)-C(27)-C(26)	120.32(19)
C(28)-C(27)-H(27)	119.8
C(26)-C(27)-H(27)	119.8
C(27)-C(28)-C(29)	119.61(17)
C(27)-C(28)-H(28)	120.2
C(29)-C(28)-H(28)	120.2
C(28)-C(29)-C(30)	120.47(17)
C(28)-C(29)-H(29)	119.8
C(30)-C(29)-H(29)	119.8
C(25)-C(30)-C(29)	120.41(17)
C(25)-C(30)-H(30)	119.8
C(29)-C(30)-H(30)	119.8
C(1)-O(1)-C(23)	118.66(12)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U ³³	U ²³	U13	U12	
C(1)	51(1)	46(1)	33(1)	0(1)	-9(1)	-12(1)	
C(2)	63(1)	53(1)	35(1)	7(1)	-15(1)	-11(1)	
C(3)	55(1)	42(1)	47(1)	7(1)	-19(1)	-6(1)	
C(4)	45(1)	37(1)	42(1)	0(1)	-11(1)	-4(1)	
C(5)	38(1)	35(1)	34(1)	1(1)	-9(1)	-8(1)	
C(6)	36(1)	37(1)	32(1)	-2(1)	-6(1)	-5(1)	
C(7)	49(1)	38(1)	40(1)	-6(1)	-11(1)	0(1)	
C(8)	43(1)	48(1)	36(1)	-9(1)	-7(1)	-4(1)	
C(9)	67(1)	56(1)	43(1)	-14(1)	-15(1)	-1(1)	
C(10)	79(1)	73(1)	37(1)	-11(1)	-11(1)	-17(1)	
C(11)	56(1)	62(1)	35(1)	0(1)	-14(1)	-13(1)	
C(12)	41(1)	50(1)	31(1)	-1(1)	-7(1)	-8(1)	
C(13)	47(1)	40(1)	34(1)	2(1)	-10(1)	-4(1)	
C(14)	38(1)	36(1)	32(1)	-1(1)	-7(1)	-5(1)	
C(15)	39(1)	35(1)	35(1)	-2(1)	-6(1)	-4(1)	
C(16)	39(1)	37(1)	35(1)	-2(1)	-6(1)	-6(1)	
C(17)	44(1)	39(1)	38(1)	-5(1)	-14(1)	0(1)	
C(18)	56(1)	42(1)	50(1)	-3(1)	-19(1)	-6(1)	
C(19)	76(1)	41(1)	72(1)	-6(1)	-34(1)	-8(1)	
C(20)	85(1)	49(1)	68(1)	-24(1)	-34(1)	8(1)	
C(21)	65(1)	62(1)	48(1)	-20(1)	-17(1)	12(1)	
C(22)	48(1)	52(1)	39(1)	-10(1)	-12(1)	3(1)	
C(23)	55(1)	67(1)	42(1)	-9(1)	2(1)	-5(1)	
C(24)	41(1)	38(1)	32(1)	0(1)	-8(1)	-7(1)	
C(25)	49(1)	35(1)	38(1)	-3(1)	-14(1)	-2(1)	
C(26)	56(1)	44(1)	50(1)	6(1)	-12(1)	-5(1)	
C(27)	82(1)	48(1)	68(1)	16(1)	-24(1)	-15(1)	
C(28)	94(2)	41(1)	74(1)	3(1)	-37(1)	4(1)	
C(29)	73(1)	53(1)	61(1)	-16(1)	-28(1)	19(1)	
C(30)	54(1)	50(1)	43(1)	-8(1)	-14(1)	3(1)	
Cl(1)	67(1)	47(1)	53(1)	-4(1)	-14(1)	13(1)	
O(1)	76(1)	56(1)	31(1)	-1(1)	-3(1)	-4(1)	

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for 090839m. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 090839m.

	X	У	Z	U(eq)
H(2)	8702	3589	10493	59
H(3)	10162	2247	9173	57
H(7)	8435	2904	5889	51
H(9A)	6563	2756	3998	66
H(9B)	8536	2578	3667	66
H(10A)	6582	3812	2416	74
H(10B)	8428	4090	2393	74
H(11A)	7167	6019	2864	60
H(11B)	5448	5549	3339	60
H(13)	6705	7038	4956	49
H(18)	9284	8526	7820	58
H(19)	9141	10207	8927	73
H(20)	7303	10373	10546	80
H(21)	5728	8799	11105	71
H(23A)	4910	6802	10818	67
H(23B)	5087	6394	9608	67
H(26)	8967	8366	5487	60
H(27)	8257	10432	4989	77
H(28)	5752	11556	5763	82
H(29)	3930	10601	7021	76
H(30)	4639	8535	7547	59