Supplementary Information

Cobalt-catalyzed asymmetric addition of silylacetylenes to oxa- and azabenzonorbornadienes

Takahiro Sawano, Keiyu Ou, Takahiro Nishimura* and Tamio Hayashi*
Department of Chemistry, Graduate School of Science
Kyoto University, Sakyo, Kyoto 606-8502, Japan
E-mail: tnishi@kuchem.kyoto-u.ac.jp; thayashi@kuchem.kyoto-u.ac.jp

Contents of Supplementary Information:

1.	General	S-2
2.	Materials	S-2
3.	A typical procedure for Table 2	S-2~S-3
4.	Characterization of the products	S-3~S-8
5.	Deuterium labeling experiments	S-8~S-9
6.	Transformation of 3em into 6 and the data for	
	X-ray crystal structure of compound 6	S-9~S-11
7.	¹ H, ¹³ C NMR spectra, and chiral HPLC charts	S-12~S-54

1. General

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen. NMR spectra were recorded on a JEOL JNM LA-500 spectrometer (500 MHz for ¹H, 125 MHz for ¹³C). Chemical shifts are reported in δ (ppm) referenced to the residual peaks of CDCl₃ (δ 7.26) or DMSO-*d*₆ (δ 2.49) for ¹H NMR and CDCl₃ (δ 77.00) or DMSO-*d*₆ (δ 39.52) for ¹³C NMR. The following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. Optical rotations were measured on a JASCO P-2200 polarimeter. High-resolution mass spectra were obtained with a Bruker micrOTOF spectrometer.

2. Materials

DMSO was distilled over CaH₂ under N₂. Co(OAc)₂·4H₂O (99.0%, Kanto Chemicals) and zinc powder (99.9%, 75~150 μ m, Wako Chemicals) were used as received. Co(OAc)₂ (KISHIDA chemicals) was dried under reduced pressure before use. Alumina (activated 200) for column chromatography was purchased from Nacalai Tesque. Oxabenzonorbornadiene **1a** [573-57-9], **1b** [19061-36-0], **1c** [173276-99-8], **1d** [106750-88-3], **1e** [115695-65-3], **1f** [26002-73-3], **1g** [648921-68-0], and **1h** [885691-68-9] were prepared according to the reported procedures.¹ All other chemicals were purchased from commercial suppliers and used as received.

3. A typical procedure for cobalt-catalyzed asymmetric addition of terminal alkynes to oxabenzonorbornadienes (Table 2)

A mixture of $Co(OAc)_2$ ·4H₂O (2.5 mg, 0.010 mmol), (*R*,*R*)-QuinoxP* (3.3 mg, 0.010 mmol), and Zn powder (1.3 mg, 0.020 mmol) in DMSO (0.3 mL) was stirred at room temperature for 15 min. The mixture was cooled to 10 °C, and oxabenzonorbornadiene **1a** (28.8 mg, 0.200 mmol) and (triisopropylsilyl)acetylene **2m** (90 µL, 0.40 mmol) were added. The mixture was stirred at 10 °C for 20 h, and then it was passed through a short column of alumina with diethyl ether as eluent.

a) M. Davoust, J. A. Kitching, M. J. Fleming and M. Lautens, *Chem. Eur. J.*, 2010, 16, 50. b) M. Lautens, K. Fagnou and D. Yang, *J. Am. Chem. Soc.*, 2003, 125, 14884. c) Y.-H. Cho, V. Zunic, H. Senboku, M. Olsen and M. Lautens, *J. Am. Chem. Soc.*, 2006, 128, 6837.

After removal of the solvent on a rotary evaporator, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate = 10/1) to give compound **3am** (59.5 mg, 0.182 mmol, 91%).

The absolute configuration of **3em** produced by (R,R)-QuinoxP* was determined to be (1S,2R,4R) by X-ray analysis of **4**, which was derived from **3em** (vide infra). For others, they were assigned by analogy with (1S,2R,4R)-**3em**.

4. Characterization of the products

Compound 3am (91% yield, 99% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column, flow 0.5 mL/min, hexane/2-propanol = 500/1, 254 nm, $t_1 = 13.3$ min (minor), $t_2 = 22.0$ min (major)); $[\alpha]_{D}^{20} +72$ (*c* 0.63, CHCl₃) for 99% ee. ¹H NMR (CDCl₃) δ 1.03–1.13 (m, 21H), 1.88 (dd, J = 11.4, 8.4 Hz, 1H), 2.15 (dt, J = 11.4, 4.6 Hz, 1H), 2.55 (dd, J = 8.4, 4.6 Hz, 1H), 5.36 (s, 1H), 5.47 (d, J = 4.6 Hz, 1H), 7.13–7.19 (m, 2H), 7.20–7.24 (m, 1H), 7.25–7.30 (m, 1H); ¹³C NMR (CDCl₃) δ 11.3, 18.7, 32.7, 37.1, 79.1, 81.1, 84.7, 111.0, 119.0, 119.1, 126.7, 127.0, 144.6, 145.3. HRMS (ESI) calcd for C₂₁H₃₀NaOSi (M+Na)⁺ 349.1958, found 349.1953.

Compound 3bm (82% yield, 99% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column, flow 0.5 mL/min, hexane/2-propanol = 500/1, 254 nm, t_1 = 18.3 min (major), t_2 = 26.1 min (minor)); $[\alpha]_{D}^{20}$ +78 (*c* 0.62, CHCl₃) for 99% ee. ¹H NMR (CDCl₃) δ 1.04–1.12 (m, 21H), 1.84 (dd, *J* = 11.4, 8.4 Hz, 1H), 2.12 (dt, *J* = 11.4, 4.5 Hz, 1H), 2.24 (s, 6H), 2.55 (dd, *J* = 8.4, 4.5 Hz, 1H), 5.30 (s, 1H), 5.41 (d, *J* = 4.5 Hz, 1H), 7.01 (s, 1H), 7.05 (s, 1H); ¹³C NMR (CDCl₃) δ 11.3, 18.7, 19.89, 19.90, 33.0, 37.5, 79.0, 80.8, 84.6, 111.4, 120.4, 120.5, 134.7, 135.0, 142.5, 143.2. HRMS (ESI) calcd for C₂₃H₃₄NaOSi (M+Na)⁺ 377.2271, found 377.2265.

Compound 3cm (86% yield, 90% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column×2, flow 0.5 mL/min, hexane/2-propanol = 100/1, 254 nm, $t_1 = 17.7$ min (major), $t_2 =$

19.6 min (minor)); $[\alpha]_{D}^{20}$ +62 (*c* 0.77, CHCl₃) for 90% ee. ¹H NMR (CDCl₃) δ 1.02–1.12 (m, 21H), 1.85 (dd, *J* = 11.6, 8.5 Hz, 1H), 2.14 (dt, *J* = 11.6, 4.5 Hz, 1H), 2.52 (dd, *J* = 8.5, 4.5 Hz, 1H), 5.32 (s, 1H), 5.44 (d, *J* = 4.5 Hz, 1H), 7.05 (dd, *J*_{F-H} = 8.9, 6.7 Hz, 1H), 7.10 (dd, *J*_{F-H} = 9.0, 6.9 Hz, 1H); ¹³C NMR (CDCl₃) δ 11.2, 18.6, 32.6, 36.9, 78.9 (d, *J*_{F-C} = 2 Hz), 81.8, 84.4 (d, *J*_{F-C} = 2 Hz), 109.1 (d, *J*_{F-C} = 15 Hz), 109.3 (d, *J*_{F-C} = 14 Hz), 110.0, 140.5 (dd, *J*_{F-C} = 6, 4 Hz), 141.2 (dd, *J*_{F-C} = 6, 3 Hz), 149.2 (dd, *J*_{F-C} = 247, 13 Hz), 149.4 (dd, *J*_{F-C} = 246, 12 Hz). HRMS (ESI) calcd for C₂₁H₂₈F₂NaOSi (M+Na)⁺ 385.1770, found 385.1763.

Compound 3dm (81% yield, 94% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column×2, flow 0.5 mL/min, hexane/2-propanol = 100/1, 254 nm, t_1 = 19.2 min (major), t_2 = 25.8 min (minor)); $[\alpha]_{D}^{20}$ +69 (*c* 0.72, CHCl₃) for 94% ee. ¹H NMR (CDCl₃) δ 1.02–1.11 (m, 21H), 1.87 (dd, *J* = 11.8, 8.4 Hz, 1H), 2.15 (dt, *J* = 11.8, 4.7 Hz, 1H), 2.55 (dd, *J* = 8.4, 4.7 Hz, 1H), 5.31 (s, 1H), 5.42 (d, *J* = 4.7 Hz, 1H), 7.49 (s, 1H), 7.54 (s, 1H); ¹³C NMR (CDCl₃) δ 11.2, 18.6, 32.5, 36.7, 78.6, 82.0, 84.1, 109.8, 122.7, 123.0, 124.6, 124.7, 145.6, 146.3. HRMS (ESI) calcd for C₂₁H₂₈Br₂NaOSi (M+Na)⁺ 505.0168, found 505.0165.

Compound 3em (70% yield, 95% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column×2, flow 0.5 mL/min, hexane/2-propanol = 100/1, 254 nm, $t_1 = 15.2$ min (major), $t_2 = 17.6$ min (minor)); $[\alpha]_{D}^{20} + 76$ (*c* 0.72, CHCl₃) for 95% ee. ¹H NMR (CDCl₃) δ 1.05–1.12 (m, 21H), 1.84 (dd, J = 11.6, 8.5 Hz, 1H), 2.15 (dt, J = 11.6, 4.6 Hz, 1H), 2.40 (s, 3H), 2.45 (s, 3H), 2.50 (dd, J = 8.5, 4.6 Hz, 1H), 5.38 (s, 1H), 5.51 (d, J = 4.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 11.3, 18.63, 18.64, 20.9, 21.1, 32.0, 36.4, 78.8, 81.8, 84.4, 110.3, 126.3, 126.7, 129.1, 129.3, 143.0, 143.7. HRMS (ESI) calcd for C₂₃H₃₂Br₂NaOSi (M+Na)⁺ 533.0481, found 533.0483.

Compound 3fm (91% yield, 97% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column, flow 0.5 mL/min, hexane/2-propanol = 100/1, 254 nm, $t_1 = 11.7$ min (major), $t_2 = 19.4$ min (minor)); $[\alpha]_{D}^{20} + 69$ (*c* 0.65, CHCl₃) for 97% ee. ¹H NMR (CDCl₃) δ 1.03–1.12 (m, 21H), 1.89 (dd, J = 11.4, 8.5 Hz, 1H), 2.12 (dt, J = 11.4, 4.5 Hz, 1H), 2.55 (dd, J = 8.5, 4.5 Hz, 1H), 3.79 (s, 3H), 3.80 (s, 3H), 5.50 (s, 1H), 5.62 (d, J = 4.5 Hz, 1H), 6.64 (d, J = 8.8 Hz, 1H), 6.65 (d, J = 8.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 11.3, 18.7, 32.2, 36.6, 56.01, 56.03, 77.0, 80.9, 82.6, 111.1, 111.5, 133.7, 134.6, 146.5, 146.6. HRMS (ESI) calcd for C₂₃H₃₄NaO₃Si (M+Na)⁺ 409.2169, found 409.2167.

Compound 3en (60% yield, 90% ee (1*S*,2*R*,4*R*)). The ee of **3en** was determined by HPLC analysis of compound **6**, which was obtained by removal of a silyl group with tetrabutylammonium fluoride. **Compound 3en**: $[\alpha]^{20}{}_{D}$ +67 (*c* 1.02, CHCl₃) for 90% ee. ¹H NMR (CDCl₃) δ 1.11 (s, 9H), 1.93 (dd, *J* = 14.0, 10.1 Hz, 1H), 2.29 (dt, *J* = 14.0, 5.4 Hz, 1H), 2.43 (s, 3H), 2.48 (s, 3H), 2.64 (dd, *J* = 10.1, 5.4 Hz, 1H), 5.52 (s, 1H), 5.58 (d, *J* = 5.4 Hz, 1H), 7.34–7.44 (m, 6H), 7.78–7.84 (m, 4H); ¹³C NMR (CDCl₃) δ 18.6, 20.9, 21.2, 27.1, 32.2, 36.3, 78.8, 81.2, 84.2, 112.6, 126.4, 126.8, 127.7, 129.1, 129.37, 129.44, 133.47, 133.49, 135.6, 142.8, 143.7. HRMS (ESI) calcd for C₃₀H₃₀Br₂NaOSi (M+Na)⁺ 615.0325, found 615.0325. **Compound 6** (83% yield from **3en**): The ee was measured by HPLC (Chiralcel OD-H column, flow 0.5 mL/min, hexane/2-propanol = 100/1, 254 nm, *t*₁ = 17.1 min (major), *t*₂ = 22.3 min (minor)); $[\alpha]^{20}{}_{D}$ +67 (*c* 0.91, CHCl₃) for 90% ee. ¹H NMR (CDCl₃) δ 1.85 (dd, *J* = 11.8, 8.5 Hz, 1H), 2.19 (ddd, *J* = 11.8, 5.0, 4.1 Hz, 1H), 2.22 (d, *J* = 2.5 Hz, 1H), 2.40 (s, 3H), 2.45 (s, 3H), 2.49 (ddd, *J* = 8.5, 4.1, 2.5 Hz, 1H), 5.44 (s, 1H), 5.54 (d, *J* = 5.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 20.9, 21.1, 30.8, 35.9, 69.6, 78.8, 84.0, 86.1, 126.5, 126.9, 129.2, 129.4, 142.5, 143.7. HRMS (ESI) calcd for C₁₄H₁₂Br₂NaO (M+Na)⁺ 376.9147, found 376.9151.

Compound 3fn (90% yield, 96% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column, flow 0.5 mL/min, hexane/2-propanol = 100/1, 254 nm, $t_1 = 18.0$ min (major), $t_2 = 29.0$ min (minor)); $[\alpha]_{D}^{20} + 62$ (*c* 0.62, CHCl₃) for 96% ee. ¹H NMR (CDCl₃) δ 1.11 (s, 9H), 1.97 (dd, J = 11.5, 8.5 Hz, 1H), 2.26 (dt, J = 11.5, 4.5 Hz, 1H), 2.69 (dd, J = 8.5, 4.5 Hz, 1H), 3.81 (s, 3H), 3.82 (s, 3H), 5.65 (s, 1H), 5.69 (d, J = 4.5 Hz, 1H), 6.66 (d, J = 8.8 Hz, 1H), 6.67 (d, J = 8.8 Hz, 1H), 7.32–7.42 (m, 6H), 7.78–7.84 (m, 4H); ¹³C NMR (CDCl₃) δ 18.6, 27.1, 32.5, 36.6, 56.0, 56.1, 77.1, 80.3, 82.4, 111.2, 111.6, 113.5, 127.6, 129.3, 133.55, 133.69, 133.71, 134.5, 135.6, 146.6, 146.7. HRMS (ESI) calcd for C₃₀H₃₂NaO₃Si (M+Na)⁺ 491.2013, found 491.2017.

Compound 3ao (7% yield, 80% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralpak AD-H column×2, flow 0.5 mL/min, hexane/2-propanol = 200/1, 254 nm, $t_1 = 24.7$ min (major), $t_2 = 27.3$ min (minor)); $[\alpha]_{D}^{20} +58$ (*c* 0.21, CHCl₃) for 80% ee. ¹H NMR (CDCl₃) δ 0.61 (q, *J* = 8.0 Hz, 6H), 1.01 (t, *J* = 8.0 Hz, 9H), 1.87 (dd, *J* = 11.5, 8.5 Hz, 1H), 2.16 (dt, *J* = 11.5, 4.6 Hz, 1H), 2.55 (dd, *J* = 8.5, 4.6 Hz, 1H), 5.37 (s, 1H), 5.48 (d, *J* = 4.6 Hz, 1H), 7.13–7.19 (m, 2H), 7.20–7.24 (m, 1H), 7.24–7.29 (m, 1H); ¹³C NMR (CDCl₃) δ 4.5, 7.5, 32.7, 37.0, 79.1, 82.4, 84.6, 110.2, 119.1, 119.2, 126.8, 127.1, 144.5, 145.2. HRMS (ESI) calcd for C₁₈H₂₄NaOSi (M+Na)⁺ 307.1489, found 307.1486.

Compound 3gm (73% yield, 96% ee (1*S*,2*R*,4*R*)). The ee of **3gm** was determined by HPLC analysis of compound **3gm**', which was obtained by removal of a silyl group with tetrabutylammonium fluoride. **Compound 3gm**: $[\alpha]_{D}^{20}$ +96 (*c* 0.42, CHCl₃) for 96% ee. ¹H NMR (DMSO-*d*₆, 60 °C) δ 0.99–1.10 (m, 21H), 1.30 (s, 9H), 1.75 (dd, *J* = 11.6, 8.5 Hz, 1H), 2.04 (dt, *J* = 11.6, 4.3 Hz, 1H), 2.44 (dd, *J* = 8.5, 4.3 Hz, 1H), 5.06 (s, 1H), 5.14 (d, *J* = 4.3 Hz, 1H), 7.09–7.17 (m, 2H), 7.25–7.31 (m, 1H), 7.34–7.40 (m, 1H); ¹³C NMR (DMSO-*d*₆, 60 °C) δ 10.5, 18.05, 18.06, 27.5, 32.1, 36.7, 59.8, 66.3, 78.8, 80.6, 111.2, 119.4, 119.7, 126.0, 126.4, 143.7, 144.8,

153.3. HRMS (ESI) calcd for C₂₆H₃₉NNaO₂Si (M+Na)⁺ 448.2642, found 448.2632. **Compound 3gm'** (62% yield from **3gm**): The ee was measured by HPLC (Chiralpak AD-H column, flow 0.5 mL/min, hexane/2-propanol = 98/2, 230 nm, t_1 = 18.4 min (minor), t_2 = 20.0 min (major)); [α]²⁰_D +70 (*c* 0.91, CHCl₃) for 96% ee. ¹H NMR (DMSO-*d*₆, 60 °C) δ 1.34 (s, 9H), 1.74 (dd, *J* = 11.7, 8.4 Hz, 1H), 2.05 (dt, *J* = 11.6, 4.4 Hz, 1H), 2.41 (ddd, *J* = 8.4, 4.4, 2.3 Hz, 1H), 2.86 (d, *J* = 2.3 Hz, 1H), 5.09 (s, 1H), 5.14 (d, *J* = 4.4 Hz, 1H), 7.10–7.17 (m, 2H), 7.25–7.31 (m, 1H), 7.32–7.37 (m, 1H); ¹³C NMR (DMSO-*d*₆, 60 °C) δ 27.5, 31.1, 35.8, 60.1, 65.7, 71.6, 79.0, 85.9, 119.2, 119.5, 126.0, 126.4, 143.6, 144.3, 153.6. HRMS (ESI) calcd for C₁₇H₁₉NNaO₂ (M+Na)⁺ 292.1308, found 292.1306.

Compound 3hm (70% yield, 95% ee (1*S*,2*R*,4*R*)). The ee of **3hm** was determined by HPLC analysis of compound **3hm**', which was obtained by removal of a silyl group with tetrabutylammonium fluoride. **Compound 3hm**: $[\alpha]^{20}_{D}$ +96 (*c* 0.61, CHCl₃) for 95% ee. ¹H NMR (DMSO-*d*₆, 60 °C) δ 0.99–1.08 (m, 21H), 1.30 (s, 9H), 1.70 (dd, *J* = 11.4, 8.4 Hz, 1H), 2.00 (dt, *J* = 11.4, 4.3 Hz, 1H), 2.18 (s, 6H), 2.39 (dd, *J* = 8.4, 4.3 Hz, 1H), 4.97 (s, 1H), 5.06 (d, *J* = 4.3 Hz, 1H), 7.05 (s, 1H), 7.13 (s, 1H); ¹³C NMR (DMSO-*d*₆, 60 °C) δ 10.5, 18.065, 18.074, 18.9, 27.5, 32.5, 37.1, 59.6, 66.1, 78.6, 80.4, 111.4, 120.6, 120.9, 133.6, 134.0, 141.4, 142.5, 153.2. HRMS (ESI) calcd for C₂₈H₄₃NNaO₂Si (M+Na)⁺ 476.2955, found 476.2954. **Compound 3hm**' (76% yield from **3hm**): The ee was measured by HPLC (Chiralpak AD-H column×2, flow 0.5 mL/min, hexane/2-propanol = 98/2, 230 nm, *t*₁ = 38.9 min (major), *t*₂ = 46.3 min (minor)); $[\alpha]^{20}_{D}$ +81 (*c* 0.56, CHCl₃) for 95% ee. ⁻¹H NMR (DMSO-*d*₆, 60 °C) δ 1.33 (s, 9H), 1.68 (dd, *J* = 11.6, 8.4 Hz, 1H), 2.01 (dt, *J* = 11.6, 4.4 Hz, 1H), 2.17 (s, 6H), 2.34 (ddd, *J* = 8.4, 4.4, 2.6 Hz, 1H), 2.81 (d, *J* = 2.6 Hz, 1H), 5.01 (s, 1H), 5.05 (d, *J* = 4.4 Hz, 1H), 7.03 (s, 1H), 7.09 (s, 1H)); ¹³C NMR (DMSO-*d*₆, 60 °C) δ 18.91, 18.94, 27.6, 31.5, 36.3, 59.9, 65.7, 71.4, 78.9, 86.1, 120.5, 120.7, 133.6, 134.1, 141.4, 142.0, 153.6. HRMS (ESI) calcd for C₁₉H₂₃NNaO₂ (M+Na)⁺ 320.1621, found 320.1615.

Compound 5 (60% yield, 95% ee (1*S*,2*R*,4*R*)). The ee was measured by HPLC (Chiralcel OD-H column, flow 0.5 mL/min, hexane/2-propanol = 500/1, 254 nm, t_1 = 49.5 min (major), t_2 =

58.1 min (minor)); $[\alpha]_{D}^{20} + 16$ (*c* 0.98, CHCl₃) for 95% ee. ¹H NMR (CDCl₃) δ 1.00–1.10 (m, 21H), 1.97 (dd, J = 11.7, 8.3 Hz, 1H), 2.05 (dt, J = 11.7, 4.4 Hz, 1H), 2.66 (dd, J = 8.3, 4.4 Hz, 1H), 3.81 (s, 3H), 3.83 (s, 3H), 5.19 (d, J = 1.0 Hz, 1H), 5.30 (dd, J = 4.4, 0.9 Hz, 1H); ¹³C NMR (CDCl₃) δ 11.2, 18.6, 30.6, 34.5, 52.32, 52.36, 80.6, 81.9, 86.1, 109.1, 143.0, 144.1, 162.56, 162.58. HRMS (ESI) calcd for C₂₁H₃₂NaO₅Si (M+Na)⁺ 415.1911, found 415.1906.

5. Deuterium labeling experiments

5.1. A procedure for preparation of deuterated alkyne 2m-d [CAS: 112440-16-1]

$$H \xrightarrow{\qquad} Si(i-Pr)_3 \xrightarrow{1) n-BuLi, Et_2O} D \xrightarrow{\qquad} Si(i-Pr)_3$$

$$2m \xrightarrow{2} D_2O \xrightarrow{2m-d}$$

To a solution of (triisopropylsilyl)acetylene **2m** (4.49 mL, 20.0 mmol) in Et₂O (20 mL) was slowly added *n*-BuLi (14.7 mL, 24.0 mmol, 1.63 M solution in hexane) at -78 °C, and it was stirred at the same temperature for 30 min and at room temperature for 1 h. D₂O (1.1 mL, 60 mmol) was added at 0 °C and the mixture was passed through a short column of silica gel. Evaporation of the solvent followed by bulb-to-bulb distillation gave deuterated acetylene **2m-d** (3.02 g, 16.5 mmol, 82% yield, 98% D determined by ¹H NMR).

5.2 A procedure for cobalt-catalyzed addition of deuterated alkyne 2m-*d* to oxabenzonorbornadiene 1f

A mixture of $Co(OAc)_2$ (1.8 mg, 0.010 mmol), (*R*,*R*)-QuinoxP* (3.3 mg, 0.010 mmol), and Zn powder (1.3 mg, 0.020 mmol) in DMSO (0.3 mL) was stirred at room temperature for 15 min. The mixture was cooled to 10 °C, and oxabenzonorbornadiene **1f** (28.8 mg, 0.200 mmol) and deuterated alkyne **2m-d** (73.4 mg, 0.400 mmol) were added. The mixture was stirred at 10 °C for 20 h, and then it was passed through a short column of alumina with diethyl ether as eluent. After removal of the solvent on a rotary evaporator, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate = 10/1) to give compound **3fm-d** (69.2 mg, 0.18 mmol, 89%, 97% D determined by ¹H-NMR). Compound **3fm-d**. ¹H NMR (CDCl₃) δ 1.02–1.11 (m, 21H), 1.87 (d, *J* = 8.4 Hz, 1H), 2.54 (d, *J* = 8.4 Hz, 1H), 3.79 (s, 3H), 3.80 (s, 3H), 5.50 (s, 1H), 5.62 (s, 1H), 6.64 (d, *J* = 8.8 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 1H).

5.3 A procedure for deuterium labeling experiment of alkyne 2m-d and 2n with oxabenzonorbornadiene 1f in the presence of $Co(OAc)_2/(R,R)$ -QuinoxP*

A mixture of Co(OAc)₂ (1.8 mg, 0.010 mmol), (*R*,*R*)-QuinoxP* (3.3 mg, 0.010 mmol), and Zn powder (1.3 mg, 0.020 mmol) in DMSO (0.3 mL) was stirred at room temperature for 15 min. The mixture was cooled to 10 °C, and oxabenzonorbornadiene **1f** (40.8 mg, 0.20 mmol), deuterated alkyne **2m-d** (36.7 mg, 0.200 mmol), and (*tert*-butyldiphenylsilyl)acetylene **2n** (52.9 mg, 0.200 mmol) were added. The mixture was stirred at 10 °C for 20 h, and then it was passed through a short column of alumina with diethyl ether as eluent. After removal of the solvent on a rotary evaporator, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate = 10/1) to give **3fm** (30.0 mg, 0.0775 mmol, 39%, H/D = 1.3 determined by ¹H-NMR) and **3fn** (50.2 mg, 0.107 mmol, 54%, H/D = 1.4 determined by ¹H-NMR). Compound **3fn-d**. ¹H NMR (CDCl₃) δ 1.12 (s, 9H), 1.97 (d, *J* = 8.4 Hz, 1H), 2.71 (d, *J* = 8.4 Hz, 1H), 3.81 (s, 3H), 3.83 (s, 3H), 5.66 (s, 1H), 5.71 (s, 1H), 6.67 (d, *J* = 8.9 Hz, 1H), 6.68 (d, *J* = 8.9 Hz, 1H), 7.35–7.44 (m, 6H), 7.81–7.88 (m, 4H).

6. Transformation of 3em into 6 and the data for X-ray crystal structure of compound 6

To a mixture of **3em** (60.2 mg, 0.117 mmol), MeOH (9.5 μ L, 0.23 mmol), and THF (0.6 mL) was added tetrabutylammonium fluoride (0.23 mL, 0.23 mmol, 1.0 M solution in THF) at room temperature, and it was stirred for 2 h. The resulting mixture was passed through a short column of alumina with diethyl ether as eluent. After evaporation of the solvent, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate = 20/1) and GPC purification to give compound

6 (34.8 mg, 0.0977 mmol, 84%). The ee was measured by HPLC (Chiralcel OD-H column, flow 0.5 mL/min, hexane/2-propanol = 100/1, 254 nm, $t_1 = 16.4$ min (major), $t_2 = 21.1$ min (minor)); $[\alpha]_{D}^{20} + 74$ (*c* 0.70, CHCl₃) for 95% ee. Colorless crystals of **6** suitable for X-ray crystallographic analysis were obtained by recrystallization from hexane. The ORTEP drawing of **6** is shown in Figure S1. The crystal structure has been deposited at the Cambridge Crystallographic Centre (deposition number: CCDC 865189). The data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1. ORTEP illustration of 6 with thermal ellipsoids drawn at the 50% probability level.

X-Ray data were collected on a Rigaku RAXIS-RAPID imaging plate diffractometer using a graphite monochromater with Cu- K_a radiation ($\lambda = 1.54187$ Å) at 93 K. The structure was solved by direct method (SHELXS-97) and refined with full-matrix least-square technique (SHELXL-97).² The absolute structure was deduced based on Flack parameter³ 0.03(4), refining using 977 Friedel pairs. The data for **6** was shown in Table S1.

² Sheldrick, G. M. Program for the solution and refinement of crystal structures, University of Göttingen, Göttingen, Germany, 1997.

³ Flack, H. D. Acta Cryst. 1983, A39, 876.

Empirical formula	$C_{14}H_{12}Br_2O$
Formula weight	356.06
Temperature	93(2) K
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁ (#19)
Unit cell dimensions	a = 6.96810(10) Å
	b = 9.1696(2) Å
	c = 20.5119(4) Å
Volume	1310.60(4) Å ³
Ζ	4
Density (calculated) [Mg/m ³]	1.804
$\mu \ (\mathrm{mm}^{-1})$	2.340
F(000)	696.00
No. of reflections	12088
Independent reflections	2391 [R(int) = 0.089]
No. of parameters	156
Completeness to θ (%)	99.9
GOF	0.838
$R_1\left[I > 2\sigma\left(I\right)\right]$	0.0392
wR_2 (all data)	0.0465
Flack Parameter	0.03(4) (Friedel pairs: 977)
Largest diff. peak and hole $[e^{-}/Å^{-3}]$	0.73 and -0.81

Table S1. Crystal data and structure refinement for 6

7. ¹H, ¹³C NMR spectra, and chiral HPLC charts

UV RESULLS				
Pk #	Retention Time	Area	Area Percent	Height
1	13.276	7934878	49.752	173329
2	23.573	8013965	50.248	79596
Totals				
		15948843	100.000	252925

UV Results Pk # **Retention Time** Area Percent Area Height 7933 13.284 0.738 1 364 2 22.019 1067131 99.262 18618 Totals 1075064 100.000 18982

UV RESULTS				
Pk #	Retention Time	Area	Area Percent	Height
1	18.196	911345	50.495	17320
2	25.342	893466	49.505	11259
T	· · · · · · · · · · · · · · · · · · ·			
I otais				
		1804811	100.000	28579

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	18.265	702955	99.567	14337
2	26.050	3059	0.433	83
Totals				
		706014	100.000	14420

Pk #	Retention Time	Area	Area Percent	Height
1	17.691	12023233	49.832	336145
2	19.709	12104489	50.168	336866
Totals				
		24127722	100.000	673011

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	17.687	456227	95.021	17903
2	19.589	23906	4.979	799
Totals				
		480133	100.000	18702

Pk #	Retention Time	Area	Area Percent	Height
1	19.034	3971353	50.053	85892
2	25.975	3962952	49.947	98815
Totals				
·		7934305	100.000	184707

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	19.234	922014	96.788	31003
2	25.828	30594	3.212	825
Totals				
		952608	100.000	31828

200

100

- 15

- 10

- 5

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	15.162	2764976	50.127	128010
2	17.562	2750974	49.873	107651
	······································		······	
Totals				
	and shareness have a start of the	5515950	100.000	235661

UV Res	ults		,		
	Pk #	Retention Time	Area	Area Percent	Height
	1	15.196	205241	97.271	10124
	2	17.642	5758	2.729	223
	Totals			· · · · · · · · · · · · · · · · · · ·	······
·		·	210999	100.000	10347

Pk #	Retention Time	Area	Area Percent	Height
1	11.676	1367321	49.867	48890
2	19.082	1374616	50.133	27611
Totals				
		2741937	100.000	76501

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	11.691	3270963	98.660	114636
2	19.375	44419	1.340	1059
Totals			<u> </u>	
	<u> </u>	3315382	100.000	115695

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	17.021	1433486	49.883	33469
2	21.994	1440231	50.117	27586
Totals				
		2873717	100.000	61055

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	17.112	1165100	95.085	27662
2	22.267	60226	4.915	1194
Totals				
		1225326	100.000	28856

Pk #	Retention Time	Area	Area Percent	Height
1	18.652	773406	49.769	16242
2	29.493	780594	50.231	10298
Totals				
		1554000	100.000	26540

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	17.956	3759936	97.942	74914
2	29.033	79018	2.058	1228
Totals				
		3838954	100.000	76142

Pk #	Retention Time	Area	Area Percent	Height
1	23.713	441989	49.796	17927
2	26.385	445606	50.204	15555
Totals				
		887595	100.000	33482

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	24.685	1387479	90.024	53802
2	27.327	153745	9.976	6485
Totals				
		1541224	100.000	60287

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	18.432	458939	2.058	21557
2	20.009	21841478	97.942	563329
Totals	3	· · · · · · · · · · · · · · · · · · ·		
		22300417	100.000	584886

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	39.547	15758023	49.803	405459
2	47.337	15882642	50.197	338417
Totals				
		31640665	100.000	743876

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	38.944	16916376	97.297	432575
2	46.324	469938	2.703	10644
Totals				
		17386314	100.000	443219

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	49.132	1264739	49.875	9429
2	55.321	1271068	50.125	6832
Totals				
		2535807	100.000	16261

UV Results				
Pk #	Retention Time	Area	Area Percent	Height
1	49.477	2493568	97.399	16651
2	58.096	66584	2.601	398
Totals				
		2560152	100.000	17049

Chiral HPLC charts for eqn 2

Totals			
	1663324	100.000	40307