Supplementary Information

Cobalt-catalyzed asymmetric addition of silylacetylenes to oxa- and azabenzonorbornadienes

Takahiro Sawano, Keiyu Ou, Takahiro Nishimura* and Tamio Hayashi*
Department of Chemistry, Graduate School of Science
Kyoto University, Sakyo, Kyoto 606-8502, Japan
E-mail: tnishi@kuchem.kyoto-u.ac.jp; thayashi@kuchem.kyoto-u.ac.jp

Contents of Supplementary Information:

1. General S-2
2. Materials S-2
3. A typical procedure for Table 2 S-2~S-3
4. Characterization of the products S-3~S-8
5. Deuterium labeling experiments S-8~S-9
6. Transformation of 3em into $\mathbf{6}$ and the data for
X-ray crystal structure of compound $\mathbf{6}$
7. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, and chiral HPLC charts S-12~S-54

1. General

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen. NMR spectra were recorded on a JEOL JNM LA-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts are reported in $\delta(\mathrm{ppm})$ referenced to the residual peaks of $\mathrm{CDCl}_{3}(\delta 7.26)$ or $\operatorname{DMSO}-d_{6}(\delta 2.49)$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(\delta$ 77.00) or DMSO- $d_{6}(\delta 39.52)$ for ${ }^{13} \mathrm{C}$ NMR. The following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. Optical rotations were measured on a JASCO P-2200 polarimeter. High-resolution mass spectra were obtained with a Bruker micrOTOF spectrometer.

2. Materials

DMSO was distilled over CaH_{2} under $\mathrm{N}_{2} . \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(99.0 \%$, Kanto Chemicals) and zinc powder (99.9%, $75 \sim 150 \mu \mathrm{~m}$, Wako Chemicals) were used as received. $\mathrm{Co}(\mathrm{OAc})_{2}$ (KISHIDA chemicals) was dried under reduced pressure before use. Alumina (activated 200) for column chromatography was purchased from Nacalai Tesque. Oxabenzonorbornadiene 1a [573-57-9], 1b [19061-36-0], 1c [173276-99-8], 1d [106750-88-3], 1e [115695-65-3], 1f [26002-73-3], $\mathbf{1 g}$ [648921-68-0], and $\mathbf{1 h}$ [885691-68-9] were prepared according to the reported procedures. ${ }^{1}$ All other chemicals were purchased from commercial suppliers and used as received.

3. A typical procedure for cobalt-catalyzed asymmetric addition of terminal alkynes to oxabenzonorbornadienes (Table 2)

A mixture of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{mg}, 0.010 \mathrm{mmol}),(R, R)$-QuinoxP* $(3.3 \mathrm{mg}, 0.010 \mathrm{mmol})$, and Zn powder ($1.3 \mathrm{mg}, 0.020 \mathrm{mmol}$) in DMSO $(0.3 \mathrm{~mL})$ was stirred at room temperature for 15 min . The mixture was cooled to $10^{\circ} \mathrm{C}$, and oxabenzonorbornadiene 1a ($28.8 \mathrm{mg}, 0.200 \mathrm{mmol}$) and (triisopropylsilyl)acetylene $\mathbf{2 m}(90 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ were added. The mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 20 h , and then it was passed through a short column of alumina with diethyl ether as eluent.

[^0]After removal of the solvent on a rotary evaporator, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate $=10 / 1$) to give compound 3am ($59.5 \mathrm{mg}, 0.182 \mathrm{mmol}, 91 \%$).

The absolute configuration of 3 em produced by (R, R)-QuinoxP* was determined to be $(1 S, 2 R, 4 R)$ by X-ray analysis of 4 , which was derived from 3em (vide infra). For others, they were assigned by analogy with $(1 S, 2 R, 4 R)$-3em.

4. Characterization of the products

Compound 3am (91% yield, 99% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=500 / 1,254 \mathrm{~nm}, t_{1}=13.3 \mathrm{~min}$ (minor), $t_{2}=$ 22.0 min (major)); $[\alpha]_{\mathrm{D}}^{20}+72\left(c 0.63, \mathrm{CHCl}_{3}\right)$ for 99% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03-1.13(\mathrm{~m}$, $21 \mathrm{H}), 1.88(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=11.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.36(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.3,18.7,32.7,37.1,79.1,81.1,84.7,111.0,119.0,119.1,126.7,127.0,144.6$, 145.3. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 349.1958$, found 349.1953.

Compound 3bm (82% yield, 99% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2-\mathrm{propanol}=500 / 1,254 \mathrm{~nm}, t_{1}=18.3 \mathrm{~min}$ (major), $t_{2}=$ 26.1 min (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+78\left(c 0.62, \mathrm{CHCl}_{3}\right)$ for 99% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.04-1.12(\mathrm{~m}$, $21 \mathrm{H}), 1.84(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dt}, J=11.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{dd}, J=8.4$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $11.3,18.7,19.89,19.90,33.0,37.5,79.0,80.8,84.6,111.4,120.4,120.5,134.7,135.0,142.5,143.2$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 377.2271$, found 377.2265.

Compound 3cm (86\% yield, 90% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column $\times 2$, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=100 / 1,254 \mathrm{~nm}, t_{1}=17.7 \mathrm{~min}$ (major), $t_{2}=$
19.6 min (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+62\left(c 0.77, \mathrm{CHCl}_{3}\right)$ for 90% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.02-1.12(\mathrm{~m}$, $21 \mathrm{H}), 1.85(\mathrm{dd}, J=11.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dt}, J=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.32(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05\left(\mathrm{dd}, J_{\mathrm{F}-\mathrm{H}}=8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.10\left(\mathrm{dd}, J_{\mathrm{F}-\mathrm{H}}=9.0,6.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.2,18.6,32.6,36.9,78.9\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=2 \mathrm{~Hz}\right), 81.8,84.4\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=2 \mathrm{~Hz}\right)$, $109.1\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=15 \mathrm{~Hz}\right), 109.3\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=14 \mathrm{~Hz}\right), 110.0,140.5\left(\mathrm{dd}, J_{\mathrm{F}-\mathrm{C}}=6,4 \mathrm{~Hz}\right), 141.2\left(\mathrm{dd}, J_{\mathrm{F}-\mathrm{C}}=6\right.$, $3 \mathrm{~Hz}), 149.2\left(\mathrm{dd}, J_{\mathrm{F}-\mathrm{C}}=247,13 \mathrm{~Hz}\right), 149.4\left(\mathrm{dd}, J_{\mathrm{F}-\mathrm{C}}=246,12 \mathrm{~Hz}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$385.1770, found 385.1763.

Compound 3dm (81% yield, 94% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column $\times 2$, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=100 / 1,254 \mathrm{~nm}, t_{1}=19.2 \mathrm{~min}$ (major), $t_{2}=$ 25.8 min (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+69\left(c 0.72, \mathrm{CHCl}_{3}\right)$ for 94% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.02-1.11(\mathrm{~m}$, $21 \mathrm{H}), 1.87(\mathrm{dd}, J=11.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=8.4,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.2,18.6$, $32.5,36.7,78.6,82.0,84.1,109.8,122.7,123.0,124.6,124.7,145.6,146.3$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 505.0168$, found 505.0165.

Compound 3em (70% yield, 95% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column $\times 2$, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=100 / 1,254 \mathrm{~nm}, t_{1}=15.2 \mathrm{~min}$ (major), $t_{2}=$ $17.6 \mathrm{~min}($ minor $)$) $[\alpha]^{20}{ }_{\mathrm{D}}+76\left(c 0.72, \mathrm{CHCl}_{3}\right)$ for 95% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.05-1.12(\mathrm{~m}$, $21 \mathrm{H}), 1.84(\mathrm{dd}, J=11.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=11.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.50(\mathrm{dd}, J=8.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.3$, $18.63,18.64,20.9,21.1,32.0,36.4,78.8,81.8,84.4,110.3,126.3,126.7,129.1,129.3,143.0,143.7$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 533.0481$, found 533.0483.

Compound 3fm (91% yield, 97% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=100 / 1,254 \mathrm{~nm}, t_{1}=11.7 \mathrm{~min}$ (major), $t_{2}=$ 19.4 min (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+69\left(c \quad 0.65, \mathrm{CHCl}_{3}\right)$ for 97% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03-1.12(\mathrm{~m}$, $21 \mathrm{H}), 1.89(\mathrm{dd}, J=11.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dt}, J=11.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.3,18.7,32.2,36.6,56.01,56.03,77.0,80.9,82.6,111.1$, 111.5, 133.7, 134.6, 146.5, 146.6. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 409.2169$, found 409.2167.

Compound 3en (60% yield, 90% ee $(1 S, 2 R, 4 R)$). The ee of 3en was determined by HPLC analysis of compound $\mathbf{6}$, which was obtained by removal of a silyl group with tetrabutylammonium fluoride. Compound 3en: $[\alpha]^{20}{ }_{\mathrm{D}}+67\left(c 1.02, \mathrm{CHCl}_{3}\right)$ for 90% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.11$ (s, $9 \mathrm{H}), 1.93(\mathrm{dd}, J=14.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dt}, J=14.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $2.64(\mathrm{dd}, J=10.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.78-7.84$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.6,20.9,21.2,27.1,32.2,36.3,78.8,81.2,84.2,112.6,126.4,126.8$, 127.7, 129.1, 129.37, 129.44, 133.47, 133.49, 135.6, 142.8, 143.7. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$615.0325, found 615.0325. Compound 6 (83% yield from 3en): The ee was measured by HPLC (Chiralcel OD-H column, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=100 / 1$, $254 \mathrm{~nm}, t_{1}=17.1 \mathrm{~min}$ (major), $t_{2}=22.3 \mathrm{~min}$ (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+67\left(c 0.91, \mathrm{CHCl}_{3}\right)$ for 90% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.85(\mathrm{dd}, J=11.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=11.8,5.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{ddd}, J=8.5,4.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.9,21.1,30.8,35.9,69.6,78.8,84.0,86.1,126.5,126.9,129.2$, 129.4, 142.5, 143.7. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 376.9147$, found 376.9151.

Compound 3fn (90% yield, 96% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=100 / 1,254 \mathrm{~nm}, t_{1}=18.0 \mathrm{~min}$ (major), $t_{2}=$ 29.0 min (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+62\left(c 0.62, \mathrm{CHCl}_{3}\right)$ for 96% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.97$ (dd, $J=11.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dt}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.78-7.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.6,27.1,32.5,36.6,56.0$, 56.1, 77.1, 80.3, 82.4, 111.2, 111.6, 113.5, 127.6, 129.3, 133.55, 133.69, 133.71, 134.5, 135.6, 146.6, 146.7. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 491.2013$, found 491.2017.

Compound 3ao (7% yield, 80% ee $(1 S, 2 R, 4 R$)). The ee was measured by HPLC (Chiralpak AD-H column $\times 2$, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=200 / 1,254 \mathrm{~nm}, t_{1}=24.7 \mathrm{~min}$ (major), $t_{2}=$ 27.3 min (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+58\left(c 0.21, \mathrm{CHCl}_{3}\right)$ for 80% ee. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.61(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $6 \mathrm{H}), 1.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.87(\mathrm{dd}, J=11.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dt}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (dd, $J=8.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.19$ (m, 2H), 7.20-7.24 (m, $1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.5,7.5,32.7,37.0,79.1,82.4,84.6,110.2,119.1$, 119.2, 126.8, 127.1, 144.5, 145.2. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 307.1489$, found 307.1486 .

3gm

3gm'

Compound 3gm (73% yield, 96% ee $(1 S, 2 R, 4 R)$). The ee of $\mathbf{3 g m}$ was determined by HPLC analysis of compound $\mathbf{3 g m}$ ', which was obtained by removal of a silyl group with tetrabutylammonium fluoride. Compound 3gm: $[\alpha]^{20}{ }_{\mathrm{D}}+96\left(c \quad 0.42, \mathrm{CHCl}_{3}\right)$ for 96% ee. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 60^{\circ} \mathrm{C}\right) \delta 0.99-1.10(\mathrm{~m}, 21 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{dd}, J=11.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ $(\mathrm{dt}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09-7.17 (m, 2H), 7.25-7.31 (m, 1H), 7.34-7.40 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 10.5$, $18.05,18.06,27.5,32.1,36.7,59.8,66.3,78.8,80.6,111.2,119.4,119.7,126.0,126.4,143.7,144.8$,
153.3. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NNaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 448.2642$, found 448.2632. Compound 3gm' (62% yield from 3gm): The ee was measured by HPLC (Chiralpak AD-H column, flow 0.5 $\mathrm{mL} / \mathrm{min}$, hexane $/ 2$-propanol $=98 / 2,230 \mathrm{~nm}, t_{1}=18.4 \mathrm{~min}$ (minor), $t_{2}=20.0 \mathrm{~min}$ (major)); $[\alpha]^{20}{ }_{\mathrm{D}}$ $+70\left(c 0.91, \mathrm{CHCl}_{3}\right)$ for 96% ee. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.74(\mathrm{dd}, J=11.7$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dt}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=8.4,4.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}$, 1 H) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 27.5,31.1,35.8,60.1,65.7,71.6,79.0,85.9,119.2,119.5$, 126.0, 126.4, 143.6, 144.3, 153.6. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 292.1308$, found 292.1306.

Compound 3hm (70% yield, 95% ee $(1 S, 2 R, 4 R)$). The ee of $\mathbf{3 h m}$ was determined by HPLC analysis of compound $\mathbf{3 h m}$ ', which was obtained by removal of a silyl group with tetrabutylammonium fluoride. Compound 3hm: $[\alpha]^{20}{ }_{\mathrm{D}}+96\left(c 0.61, \mathrm{CHCl}_{3}\right)$ for 95% ee. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 0.99-1.08(\mathrm{~m}, 21 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.70(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ (dt, $J=11.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{dd}, J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 60^{\circ} \mathrm{C}$) $\delta 10.5,18.065,18.074,18.9,27.5$, $32.5,37.1,59.6,66.1,78.6,80.4,111.4,120.6,120.9,133.6,134.0,141.4,142.5,153.2$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NNaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 476.2955$, found 476.2954. Compound 3hm' (76\% yield from 3hm): The ee was measured by HPLC (Chiralpak AD-H column $\times 2$, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane/2-propanol $=98 / 2,230 \mathrm{~nm}, t_{1}=38.9 \mathrm{~min}$ (major), $t_{2}=46.3 \mathrm{~min}$ (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+81(c 0.56$, CHCl_{3}) for 95% ee. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 60^{\circ} \mathrm{C}$) $\delta 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{dd}, J=11.6,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.01 (dt, $J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{ddd}, J=8.4,4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H})$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 18.91,18.94,27.6,31.5,36.3,59.9,65.7,71.4,78.9,86.1,120.5,120.7,133.6,134.1,141.4$, 142.0, 153.6. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 320.1621$, found 320.1615 .

Compound 5 (60% yield, 95% ee $(1 S, 2 R, 4 R)$). The ee was measured by HPLC (Chiralcel OD-H column, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2-\mathrm{propanol}=500 / 1,254 \mathrm{~nm}, t_{1}=49.5 \mathrm{~min}$ (major), $t_{2}=$
58.1 min (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+16\left(c 0.98, \mathrm{CHCl}_{3}\right)$ for 95% ee. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-1.10(\mathrm{~m}$, $21 \mathrm{H}), 1.97(\mathrm{dd}, J=11.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dt}, J=11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.19(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=4.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.2,18.6,30.6,34.5,52.32,52.36,80.6,81.9,86.1,109.1,143.0,144.1,162.56,162.58$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NaO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 415.1911$, found 415.1906.

5. Deuterium labeling experiments

5.1. A procedure for preparation of deuterated alkyne $2 \mathrm{~m}-\boldsymbol{d}$ [CAS: 112440-16-1]

To a solution of (triisopropylsilyl)acetylene $\mathbf{2 m}(4.49 \mathrm{~mL}, 20.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was slowly added $n-\mathrm{BuLi}\left(14.7 \mathrm{~mL}, 24.0 \mathrm{mmol}, 1.63 \mathrm{M}\right.$ solution in hexane) at $-78^{\circ} \mathrm{C}$, and it was stirred at the same temperature for 30 min and at room temperature for $1 \mathrm{~h} . \quad \mathrm{D}_{2} \mathrm{O}(1.1 \mathrm{~mL}, 60 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was passed through a short column of silica gel. Evaporation of the solvent followed by bulb-to-bulb distillation gave deuterated acetylene $\mathbf{2 m} \mathbf{- d}(3.02 \mathrm{~g}, 16.5 \mathrm{mmol}$, 82% yield, 98% D determined by ${ }^{1} \mathrm{H}$ NMR).

5.2 A procedure for cobalt-catalyzed addition of deuterated alkyne $2 \mathrm{~m}-\boldsymbol{d}$ to

 oxabenzonorbornadiene if

A mixture of $\mathrm{Co}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.010 \mathrm{mmol}),(R, R)$-QuinoxP* $(3.3 \mathrm{mg}, 0.010 \mathrm{mmol})$, and Zn powder ($1.3 \mathrm{mg}, 0.020 \mathrm{mmol}$) in DMSO $(0.3 \mathrm{~mL})$ was stirred at room temperature for 15 min . The mixture was cooled to $10^{\circ} \mathrm{C}$, and oxabenzonorbornadiene $1 \mathrm{f}(28.8 \mathrm{mg}, 0.200 \mathrm{mmol}$) and deuterated alkyne $\mathbf{2 m} \mathbf{- d}(73.4 \mathrm{mg}, 0.400 \mathrm{mmol})$ were added. The mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 20 h , and then it was passed through a short column of alumina with diethyl ether as eluent. After removal of the solvent on a rotary evaporator, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate $=10 / 1$) to give compound $\mathbf{3 f m} \mathbf{d}(69.2 \mathrm{mg}, 0.18 \mathrm{mmol}, 89 \%, 97 \% \mathrm{D}$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). Compound $\mathbf{3 f m} \mathbf{d}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.02-1.11(\mathrm{~m}, 21 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$.

5.3 A procedure for deuterium labeling experiment of alkyne $2 \mathrm{~m}-\boldsymbol{d}$ and 2 n with oxabenzonorbornadiene 1 f in the presence of $\operatorname{Co}(\mathrm{OAc})_{2} /(R, R)$-Quinox P^{*}

A mixture of $\mathrm{Co}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.010 \mathrm{mmol}),(R, R)$-QuinoxP* $(3.3 \mathrm{mg}, 0.010 \mathrm{mmol})$, and Zn powder ($1.3 \mathrm{mg}, 0.020 \mathrm{mmol}$) in DMSO $(0.3 \mathrm{~mL})$ was stirred at room temperature for 15 min . The mixture was cooled to $10^{\circ} \mathrm{C}$, and oxabenzonorbornadiene $\mathbf{1 f}(40.8 \mathrm{mg}, 0.20 \mathrm{mmol})$, deuterated alkyne $\mathbf{2 m}$ - \boldsymbol{d} ($36.7 \mathrm{mg}, 0.200 \mathrm{mmol}$), and (tert-butyldiphenylsilyl)acetylene $\mathbf{2 n}(52.9 \mathrm{mg}, 0.200$ mmol) were added. The mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 20 h , and then it was passed through a short column of alumina with diethyl ether as eluent. After removal of the solvent on a rotary evaporator, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate $=10 / 1$) to give $\mathbf{3 f m}$ ($30.0 \mathrm{mg}, 0.0775 \mathrm{mmol}, 39 \%, \mathrm{H} / \mathrm{D}=1.3$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$) and 3fn (50.2 mg , $0.107 \mathrm{mmol}, 54 \%, \mathrm{H} / \mathrm{D}=1.4$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). Compound $\mathbf{3 f n} \boldsymbol{d}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.12(\mathrm{~s}, 9 \mathrm{H}), 1.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.66$ (s, $1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.81-7.88$ (m, 4H).

6. Transformation of 3 em into $\mathbf{6}$ and the data for X-ray crystal structure of compound 6

To a mixture of $\mathbf{3 e m}(60.2 \mathrm{mg}, 0.117 \mathrm{mmol})$, $\mathrm{MeOH}(9.5 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$, and THF (0.6 mL) was added tetrabutylammonium fluoride $(0.23 \mathrm{~mL}, 0.23 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) at room temperature, and it was stirred for 2 h . The resulting mixture was passed through a short column of alumina with diethyl ether as eluent. After evaporation of the solvent, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate $=20 / 1$) and GPC purification to give compound
$6(34.8 \mathrm{mg}, 0.0977 \mathrm{mmol}, 84 \%)$. The ee was measured by HPLC (Chiralcel OD-H column, flow $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ 2$-propanol $=100 / 1,254 \mathrm{~nm}, t_{1}=16.4 \mathrm{~min}$ (major), $t_{2}=21.1 \mathrm{~min}$ (minor)); $[\alpha]^{20}{ }_{\mathrm{D}}+74\left(c 0.70, \mathrm{CHCl}_{3}\right)$ for 95% ee. Colorless crystals of $\mathbf{6}$ suitable for X-ray crystallographic analysis were obtained by recrystallization from hexane. The ORTEP drawing of $\mathbf{6}$ is shown in Figure S1. The crystal structure has been deposited at the Cambridge Crystallographic Centre (deposition number: CCDC 865189). The data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1. ORTEP illustration of $\mathbf{6}$ with thermal ellipsoids drawn at the 50% probability level.

X-Ray data were collected on a Rigaku RAXIS-RAPID imaging plate diffractometer using a graphite monochromater with $\mathrm{Cu}-K_{c}$ radiation $(\lambda=1.54187 \AA)$ at 93 K . The structure was solved by direct method (SHELXS-97) and refined with full-matrix least-square technique (SHELXL-97). ${ }^{2}$ The absolute structure was deduced based on Flack parameter ${ }^{3}$ 0.03(4), refining using 977 Friedel pairs. The data for $\mathbf{6}$ was shown in Table S1.

[^1]3 Flack, H. D. Acta Cryst. 1983, A39, 876.

Table S1. Crystal data and structure refinement for $\mathbf{6}$

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}$
Formula weight	356.06
Temperature	$93(2) \mathrm{K}$
Crystal system	Orthorhombic
Space group	$\mathrm{P}_{1} 2_{1} 2_{1}(\# 19)$
Unit cell dimensions	$\mathrm{a}=6.96810(10) \AA$
	$\mathrm{b}=9.1696(2) \AA$
	$\mathrm{c}=20.5119(4) \AA$
Volume	$1310.60(4) \AA^{3}$
Z	4
Density (calculated) $\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.804
μ (mm ${ }^{-1}$)	2.340
$\mathrm{~F}(000)$	696.00
No. of reflections	12088
Independent reflections	$2391[\mathrm{R}(\mathrm{int})=0.089]$
No. of parameters	156
Completeness to $\theta(\%)$	99.9
GOF	0.838
$R_{1}[I>2 \sigma(I)]$	0.0392
$w R_{2}$ (all data)	0.0465
Flack Parameter	$0.03(4)($ Friedel pairs: 977$)$
Largest diff. peak and hole $\left[\mathrm{e}^{-} / \AA^{-3}\right]$	0.73 and -0.81

7. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, and chiral HPLC charts

UV Results

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent	Height
1	13.276	7934878	49.752	173329
2	23.573	8013965	50.248	79596

Totals		15948843	100.000	252925

UV Results

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent	Height
1	13.284	7933	0.738	364
2	22.019	1067131	99.262	18618

Totals		1075064	100.000	18982

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 18.196 | 911345 | 50.495 | 17320 |
| 2 | 25.342 | 893466 | 49.505 | 11259 |
| Totals | | 1804811 | | |

UV Results

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent	Height
1	18.265	702955	99.567	14337
2	26.050	3059	0.433	83

Totals		706014	100.000	14420

s710^w

UV Results

| Pk \# | Retention Time | Area | Area Percent | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.691 | 12023233 | 49.832 | 336145 | |
| 2 | 19.709 | 12104489 | 50.168 | 336866 | |
| Totals | | | | | |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.687 | 456227 | 95.021 | 17903 |
| 2 | 19.589 | 23906 | 4.979 | 799 |
| Totals | | 480133 | 100.000 | 18702 |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 19.034 | 3971353 | 50.053 | 85892 |
| 2 | 25.975 | 3962952 | 49.947 | 98815 |
| Totals | | 7934305 | | |

UV Results

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent	Height
1	19.234	922014	96.788	31003
2	25.828	30594	3.212	825

Totals				

UV Results

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent	Height
1	15.162	2764976	50.127	128010
2	17.562	2750974	49.873	107651

Totals		5515950	100.000	235661

UV Results

| $\mathrm{Pk} \#$ | Retention Time | Area | Area Percent | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.196 | 205241 | 97.271 | 10124 | |
| 2 | 17.642 | 5758 | 2.729 | 223 | |
| Totals | | | | | |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.676 | 1367321 | 49.867 | 48890 |
| 2 | 19.082 | 1374616 | 50.133 | 27611 |
| Totals | | | | |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.691 | 3270963 | 98.660 | 114636 |
| 2 | 19.375 | 44419 | 1.340 | 1059 |
| Totals | | 3315382 | | |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.021 | 1433486 | 49.883 | 33469 | |
| 2 | 21.994 | 1440231 | 50.117 | 27586 | |
| Totals | | 2873717 | | | |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.112 | 1165100 | 95.085 | 27662 |
| 2 | 22.267 | 60226 | 4.915 | 1194 |
| Totals | | 1225326 | 100.000 | 28856 |

UV Results

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.956 | 3759936 | 97.942 | 74914 |
| 2 | 29.033 | 79018 | 2.058 | 1228 |
| Totals | | 3838954 | 100.000 | 76142 |

UV Results

| Pk \# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 23.713 | 441989 | 49.796 | 17927 |
| 2 | 26.385 | 445606 | 50.204 | 15555 |
| Totals | | 887595 | 100.000 | 33482 |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 24.685 | 1387479 | 90.024 | 53802 |
| 2 | 27.327 | 153745 | 9.976 | 6485 |
| Totals | | 1541224 | 100.000 | 60287 |

mVolts

UV Results

| $\mathrm{Pk} \#$ | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 18.360 | 6901503 | 49.748 | 284622 |
| 2 | 20.455 | 6971408 | 50.252 | 243389 |
| Totals | | 13872911 | 100.000 | 528011 |

UV Results

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent	Height
1	18.432	458939	2.058	21557
2	20.009	21841478	97.942	563329

Totals		22300417	100.000	584886

s710 ${ }^{10}$

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 39.547 | 15758023 | 49.803 | 405459 |
| 2 | 47.337 | 15882642 | 50.197 | 338417 |
| Totals | | 31640665 | 100.000 | 743876 |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 38.944 | 16916376 | 97.297 | 432575 |
| 2 | 46.324 | 469938 | 2.703 | 10644 |
| Totals | | 17386314 | 100.000 | 443219 |

UV Results

| Pk \# | Retention Time | Area | Area Percent | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 49.132 | 1264739 | 49.875 | 9429 | |
| 2 | 55.321 | 1271068 | 50.125 | 6832 | |
| Totals | | | | | |

UV Results

Pk \#	Retention Time	Area	Area Percent	Height
1	49.477	2493568	97.399	16651
2	58.096	66584	2.601	398

Totals				
		2560152	100.000	17049

Chiral HPLC charts for eqn 2

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.021 | 1433486 | 49.883 | 33469 | |
| 2 | 21.994 | 1440231 | 50.117 | 27586 | |
| Totals | | 2873717 | | | |

UV Results

| Pk\# | Retention Time | Area | Area Percent | Height | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.392 | 1625589 | 97.731 | 39526 | |
| 2 | 21.082 | 37735 | 2.269 | 781 | |
| Totals | | | | | |

[^0]: 1 a) M. Davoust, J. A. Kitching, M. J. Fleming and M. Lautens, Chem. Eur. J., 2010, 16, 50. b) M. Lautens, K. Fagnou and D. Yang, J. Am. Chem. Soc., 2003, 125, 14884. c) Y.-H. Cho, V. Zunic, H. Senboku, M. Olsen and M. Lautens, J. Am. Chem. Soc., 2006, 128, 6837.

[^1]: 2 Sheldrick, G. M. Program for the solution and refinement of crystal structures, University of Göttingen, Göttingen, Germany, 1997.

