Supporting Information

Aromaticity and π-bond covalency: Prominent
 intermolecular covalent bonding interaction of a Kekulé
 hydrocarbon with very large singlet biradical character

Akihiro Shimizu, Yasukazu Hirao, Kozo Matsumoto, Hiroyuki Kurata, Takashi Kubo*, Mikio Uruichi and Kyuya Yakushi

Email: kubo@chem.sci.osaka-u.ac.jp

Experimental Section.

Material and Methods. All experiments with moisture- or air-sensitive compounds were performed in anhydrous solvents under an argon atmosphere in well-dried glassware. Dried solvents were prepared by distillation under argon. Dichloromethane and toluene were dried and distilled over calcium hydride. Column chromatography was performed with silica gel [Wako gel C-200 (Wako)]. Infrared spectra were recorded on a JASCO FT/IR-660M spectrometer. Electronic spectra were measured by a Shimadzu UV3100PC spectrometer. ${ }^{1} \mathrm{H}$ spectra were obtained on JEOL EX-270 spectrometers. FAB mass spectra were taken by using JEOL JMS SX-102 mass spectrometers. Data collection for X-ray crystal analysis was performed on Rigaku/Varimax diffractometer ($\mathrm{Mo}-\mathrm{K} \alpha, \lambda=0.71069 \AA$). The structure was solved with direct methods and refined with full-matrix least squares. The temperature dependent polarized reflection spectra in infrared and visible region were observed using two spectrometers combined with a microscope: FT-IR spectrometer, Nicolet Magna 760 ($600-12000 \mathrm{~cm}^{-1}$) and multi-channel detection system, Atago Macs 320 (11000-30000 cm^{-1}). The absolute reflectivity was determined by comparing the reflected light from a gold mirror and silicon single crystal, respectively. The single crystal was fixed with silicon grease on a copper sample holder, and the crystal face was adjusted so as to be normal the incident light by use of goniometer head.

Computational methods. DFT calculation was performed with the Gaussian 03 program. ${ }^{[1]}$ Geometry optimization was carried out at the B3LYP level of density functional theory with the 6-31G** basis set. [1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Synthesis of 1,2-Dibenzylidene-6-tert-butyl-2,5,6,7-tetrahydrocyclopenta[cd]phenalene

 (4a).

Scheme S1. Synthesis of 4a. Reaction conditions: (i) BuLi, TMEDA, $65^{\circ} \mathrm{C}$, then ${ }^{\mathrm{t}} \mathrm{BuCO}_{2} \mathrm{Et},-20^{\circ} \mathrm{C}$ to rt, 47%. (ii) $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 73%. (iii) $(\mathrm{COCl})_{2}, \mathrm{AlCl}_{3}, \mathrm{rt}, 63 \%$. (iv) $\mathrm{PhCH}_{2} \mathrm{MgCl}, \mathrm{THF}, \mathrm{rt}$, 69%. (v) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, toluene, $90^{\circ} \mathrm{C}$, quant.

2-(tert-Butyl)-2,3-dihydro-2-hydroxyphenalen (S2). To a solution of 1,8-dimethylnaphtharene (S1) $(16.226 \mathrm{~g}, 103.9 \mathrm{mmol})$ in TMEDA ($34.3 \mathrm{~mL}, 228.5 \mathrm{mmol}$) was added butyllithium (1.6 M in hexane, $142.8 \mathrm{~mL}, 228.5 \mathrm{mmol}$), and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 3 h . After cooling to $-20^{\circ} \mathrm{C}$, ether (100 mL) and ethyl pivalate ($23.7 \mathrm{~mL}, 156 \mathrm{mmol}$) was added, and the reaction mixture was allowed to warm to room temperature over 12 h . After addition of water and 2 N hydrochloric acid, the organic layer was separated. The aqueous layer was extracted with ether. The combined organic layers were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After column chromatography on silica gel (dichloromethane), $\mathbf{S 2}$ ($11.719 \mathrm{~g}, 47 \%$) was obtained as colorless powder. $\mathrm{mp} 146-147{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.42$ (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=15.5$, $2 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H})$. EI-MS m/z $240\left(\mathrm{M}^{+}\right)$. IR (KBr) $3585 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 84.96$; H, 8.39. Found: C, 84.84; H, 8.38.

2-(tert-Butyl)-2,3-dihydrophenalene (S3). To a solution of $\mathbf{S 2}(11.719 \mathrm{~g}, 48.76 \mathrm{mmol})$ in dichloromethane $(200 \mathrm{~mL})$ and trifluoroacetic acid (20 mL), triethylsilane ($8.57 \mathrm{~mL}, 53.64 \mathrm{mmol}$) was added, and the reaction mixture was stirred at room temperature for 8 h . The reaction mixture was washed with water, saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After column chromatography on silica gel (hexane), $\mathbf{S 3}(8.018 \mathrm{~g}, 73 \%)$ was obtained as light greenish yellow powder. $\mathrm{mp} 84-85^{\circ} \mathrm{C}$. TLC $R_{f} 0.30$ (hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (dd, J $=8.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=15.6,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{dd}, J=15.6,12.7$, $2 \mathrm{H}), 1.80(\mathrm{tt}, J=12.7,3.4,2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$. EI-MS $m / z 224\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20}: \mathrm{C}, 91.01 ; \mathrm{H}$, 8.99. Found: C, 90.91; H, 9.00.

6-(tert-Butyl)-6,7-dihydro-1,2-dioxo-5H-cyclopenta[cd]phenalene (S4). To a solution of S3 (8.018 g, 35.74 mmol) in oxalyl dichloride ($4.60 \mathrm{~mL}, 53.6 \mathrm{mmol}$) and dichloromethane (80 mL) cooled to $-20^{\circ} \mathrm{C}$, aluminum chloride ($11.411 \mathrm{~g}, 85.58 \mathrm{mmol}$) was added and the reaction mixture was allowed to warm to room temperature over 6 h . After the reaction mixture was poured into ice-cold water, 2 N hydrochloric acid was added and the organic layer was separated. The aqueous layer was extracted with dichloromethane. The combined organic layers were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After column chromatography on silica gel (dichloromethane), $\mathbf{S 4}$ (4.764 g, 63\%) was obtained as a strong yellow powder. mp $288{ }^{\circ} \mathrm{C}$ (dec.). TLC $R_{f} 0.24$ (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.30 (dd, $J=16.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=16.3,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{tt}, J=12.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}$, 9H). EI-MS m/z $278\left(\mathrm{M}^{+}\right)$. IR (KBr) $1717 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 81.99; H, 6.52. Found: C, 81.73; H, 6.47.

1,2-Dibenzyl-6-tert-butyl-2,5,6,7-tetrahydro-1,2-dihydroxycyclopenta[cd]phenalene (S5). To a solution of benzyl magnesium chloride in tetrahydrofuran (100 mL), freshly prepared from magnesium ($972 \mathrm{mg}, 40.0 \mathrm{mmol}$) and benzyl chloride ($3.45 \mathrm{~mL}, 30.0 \mathrm{mmol}$), $\mathbf{S} 4(2.784 \mathrm{~g}, 10.00 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature for 14 h . After addition of water and 2 N hydrochloric acid, the reaction mixture was extracted with ether. The organic layers were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered and concentrated in vacuo. The resulting solid was washed with dichloromethane-hexane to give $\mathbf{S 5}(3.188 \mathrm{~g}, 69 \%)$ as a colorless powder. mp $212-215{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.12$ (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.21$ (m, $6 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.484(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.477(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.804(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.796(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{tt}, J=12.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$. EI-MS $m / z 462\left(\mathrm{M}^{+}\right) . \mathrm{IR}(\mathrm{KBr}) 3417 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 85.68; H, 7.41. Found: C, 85.33; H, 7.40.

1,2-Dibenzylidene-6-tert-butyl-2,5,6,7-tetrahydrocyclopenta[cd]phenalene (4a). To a solution of S5 ($3.188 \mathrm{~g}, 6.891 \mathrm{mmol}$) in toluene (700 mL) was added catalytic amount of p-toluenesulfonic acid, and the reaction mixture was heated to reflux for 12 h . After column chromatography on silica gel (toluene), $4 \mathbf{a}(3.188 \mathrm{~g}, 100 \%)$ was obtained as a yellow powder. TLC $R_{f} 0.30$ (dichloromethane:hexane=1:5(v/v)). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, 7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{t}, 7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.36$ (s, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=16.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{dd}, J=$ $16.2,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{tt}, J=12.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$. EI-MS m/z $426\left(\mathrm{M}^{+}\right)$.

Synthesis of 2,12-Di-tert-butyl-6,8,16,18-tetraphenyldicyclopenta[b,i]anthraceno[1,2,3$\left.c d: 7,8,9-c^{\prime} d^{\prime}\right]$ diphenalene (3a).

2,12-Di-tert-butyl-1,2,3,11,12,13-hexahydro-6,8,16,18-tetraphenyldicyclopenta[b,i]anthracene[1,2,

 3-cd:7,8,9-c'd']diphenalene (5). To a solution of $\mathbf{4 a}(3.188 \mathrm{~g}, 7.473 \mathrm{mmol}$) and 1,2,4,5tetrabromobenzene ($981 \mathrm{mg}, 2.491 \mathrm{mmol}$) in toluene $(200 \mathrm{~mL})$ was added dropwise n-Butyl lithium (1.6 M in hexane, $6.23 \mathrm{~mL}, 9.97 \mathrm{mmol}$) over 2 h , and the reaction mixture was stirred at room temperature for 12 h . The resulting solid was separated, and the solution was washed with water, 2 N hydrochloric acid, saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed in vacuo. The combined solids were added p-benzoquinone ($673 \mathrm{mg}, 6.23 \mathrm{mmol}$) and toluene (200 mL), and the reaction mixture was refluxed for 2 h . After column chromatography on silica gel (toluene), 5 ($924 \mathrm{~g}, 40 \%$) was obtained as a strong yellow powder. mp > $300{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.78$ (dichloromethane:hexane $=1: 1(\mathrm{v} / \mathrm{v})) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}, 2 \mathrm{H}) 7.48-7.39(\mathrm{~m}, 20 \mathrm{H})$, $7.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.06(\mathrm{dd}, J=15.9,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.77(\mathrm{dd}, J=15.9$, $12.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.80(\mathrm{tt}, J=12.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 18 \mathrm{H})$. MALDI-TOF MS m/z $923\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{2}$: C, $93.67 ; \mathrm{H}, 6.33$. Found: C, $93.51 ; \mathrm{H}, 6.18$.2,12-Di-tert-butyl-1,2,3,11,12,13-hexahydro-1,3,11-trihydroxy-6,8,16,18-tetraphenyldicyclopenta $[b$, $\boldsymbol{i}]$ anthraceno[1,2,3-cd:7,8,9-c'd']diphenalene (6). To a solution of 5 ($540 \mathrm{mg}, 0.585 \mathrm{mmol}$) in acetic acid (75 mL) and benzene $(150 \mathrm{~mL}), \mathrm{Pb}_{3} \mathrm{O}_{4}(377 \mathrm{mg}, 0.550 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature for 4 h . The reaction mixture was washed with water, saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed in vacuo. The resulting solids were added lithium aluminum hydride ($111 \mathrm{mg}, 2.92 \mathrm{mmol}$) and tetrahydrofuran (100 mL), and the reaction mixture was stirred at room temperature for 1 h . After addition of water and 2 N hydrochloric acid, the reaction mixture was extracted with dichloromethane. The organic layers were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After column chromatography on silica gel [dichloromethane/ethyl acetate ($10: 1, \mathrm{v} / \mathrm{v})$], $\mathbf{6}(281 \mathrm{mg}, 49 \%)$ was obtained as a strong yellowish orange powder. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}, 2 \mathrm{H}) 7.52-7.21(\mathrm{~m}, 24 \mathrm{H})$, 6.81-6.68 (m, 4H), 5.18-5.11 (m, 3H), 3.10-2.90 (m, 2H), 2.10-2.04 (m, 2H), $1.26(\mathrm{~s}, 18 \mathrm{H})$. MALDITOF MS m/z $971\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

2,12-Di-tert-butyl-6,8,16,18-tetraphenyldicyclopenta[b,i]anthraceno[1,2,3-cd:7,8,9-c'd']

diphenalene (3a). To a solution of $\mathbf{6}(208 \mathrm{mg}, 0.214 \mathrm{mmol})$ in toluene (20 mL) was added catalytic amount of p-toluenesulfonic acid, and the reaction mixture was heated to $90{ }^{\circ} \mathrm{C}$ for 30 min . After
column chromatography on silica gel (toluene), 3a($80 \mathrm{mg}, 41 \%$) was obtained as a dark grayish purple powder. TLC $R_{f} 0.73$ [dichloromethane:hexane (1:1, v/v)],. MALDI-TOF MS m/z 917 ([M+H] ${ }^{+}$).

Synthesis of 1,2-Dibenzylidene-2,5,6,7-tetrahydrocyclopenta[cd]phenalene (4b).

Scheme S2. Synthesis of $\mathbf{4 b}$. Reaction conditions: (i) $(\mathrm{COCl})_{2}, \mathrm{AlCl}_{3}, \mathrm{rt}, 79 \%$; (ii) $\mathrm{PhCH}_{2} \mathrm{MgCl}, \mathrm{THF}$, rt, 66%; (iii) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, toluene, $90^{\circ} \mathrm{C}, 97 \%$.

6,7-Dihydro-1,2-dioxo-5H-cyclopenta[cd]phenalene (S7). To a solution of 2,3-dihydro-1H-phenalene (S6) $(8.490 \mathrm{~g}, 50.47 \mathrm{mmol})$ in oxalyl dichloride $(15.2 \mathrm{~mL}, 177 \mathrm{mmol})$ and dichloromethane (85 mL) cooled to $-78{ }^{\circ} \mathrm{C}$, aluminum chloride $(20.19 \mathrm{~g}, 151.4 \mathrm{mmol})$ was added and the reaction mixture was allowed to warm to room temperature over 19 h . After the reaction mixture was poured into ice-cold water, 2 N hydrochloric acid was added and the organic layer was separated. The aqueous layer was extracted with dichloromethane. The combined organic layers were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After column chromatography on silica gel (dichloromethane), $\mathbf{S 7}$ ($8.88 \mathrm{~g}, 79 \%$) was obtained as a vivid yellow powder. $\mathrm{mp} 256{ }^{\circ} \mathrm{C}$ (dec.). TLC R_{f} 0.24 (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2 H), $3.23\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 2.23 (quintet, $J=6.0,2 \mathrm{H}$). EI-MS $m / z 222\left(\mathrm{M}^{+}\right)$. IR (KBr) $1719 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 81.07; H, 4.54. Found: C, 80.91; H, 4.56.

1,2-Dibenzyl-2,5,6,7-tetrahydro-1,2-dihydroxycyclopenta[cd]phenalene (S8). To a solution of benzyl magnesium chloride in tetrahydrofuran (80 mL), freshly prepared from magnesium (1.108 g , 45.59 mmol) and benzyl chloride ($3.93 \mathrm{~mL}, 34.19 \mathrm{mmol}$), $\mathbf{S} 7(2.533 \mathrm{~g}, 11.40 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature for 1.5 h . After addition of water and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was extracted with dichloromethane. The organic layers were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered and concentrated in vacuo. The resulting solid was washed with ether-hexane to give $\mathbf{S 8}(3.055 \mathrm{~g}, 66 \%)$ as a pale yellow powder. mp 199-204 ${ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.12$ (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.22(\mathrm{~m}$,
$6 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.11 (quintet, $J=6.0,2 \mathrm{H}$). EI-MS $m / z 406\left(\mathrm{M}^{+}\right) . \mathrm{IR}(\mathrm{KBr}) 3388 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 85.68; H, 6.45. Found: C, 85.37; H, 6.46.

1,2-Dibenzylidene-2,5,6,7-tetrahydrocyclopenta[cd]phenalene (4b). To a solution of $\mathbf{S 8}$ (1.500 g, $3.690 \mathrm{mmol})$ in toluene $(600 \mathrm{~mL})$ was added catalytic amount of p-toluenesulfonic acid, and the reaction mixture was heated to reflux for 10 h . After column chromatography on silica gel (toluene), $\mathbf{4 b}(1.328 \mathrm{~g}$, 97% was obtained as a vivid yellow powder. mp $139-141{ }^{\circ} \mathrm{C} . \quad$ TLC $\quad R_{f} 0.27$ (dichloromethane:hexane $=1: 5(\mathrm{v} / \mathrm{v})) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.01(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.06$ (quintet, $J=5.9,2 \mathrm{H})$. EI-MS $m / z 370\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{22}$: C, 94.01; H, 5.99. Found: C, 94.20; H, 6.05.

Synthesis of 6,8,16,18-Tetraphenyldicyclopenta[b,]anthraceno[1,2,3-cd:7,8,9-c'd ${ }^{\prime}$] diphenalene (3b).

1,2,3,11,12,13-Hexahydro-6,8,16,18-tetraphenyldicyclopenta[b,i]anthraceno[1,2,3-cd:7,8,9-c'd']

diphenalene (7). To a solution of $\mathbf{4 b}(1.328 \mathrm{~g}, 3.533 \mathrm{mmol})$ and 1,2,4,5-tetrabromobenzene (564.5 mg , 1.434 mmol) in toluene (130 mL) was added dropwise butyl lithium (1.6 M in hexane, $1.97 \mathrm{~mL}, 3.15$ mmol) over 2 h , and the reaction mixture was stirred at room temperature for 11 h . The resulting solid was separated, and the solution was washed with water, 2 N hydrochloric acid, saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered and concentrated in vacuo. The combined solids were added p-benzoquinone ($673 \mathrm{mg}, 6.23 \mathrm{mmol}$) and toluene $(200 \mathrm{~mL}$), and the reaction mixture was refluxed for 2 h . After column chromatography on silica gel (toluene), 7 ($924 \mathrm{mg}, 40 \%$) was obtained as a vivid yellowish orange powder. $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$. TLC $R_{f} 0.75$ (dichloromethane:hexane=1:1(v/v)). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 20 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}), 3.01(\mathrm{t}, J=5.7 \mathrm{~Hz}, 8 \mathrm{H}), 2.08$ (quintet, $J=5.7,4 \mathrm{H})$. MALDI-TOF MS $m / z 811\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

1,11-/1,13-Diacetoxy-1,2,3,11,12,13-hexahydro-6,8,16,18-tetraphenyldicyclopenta[b,i]anthracene

[1,2,3-cd:7,8,9-c'd']diphenalene (8). To a solution of 7 ($204 \mathrm{mg}, 0.250 \mathrm{mmol}$) in acetic acid (35 mL) and benzene $(100 \mathrm{~mL})$ heated to $60{ }^{\circ} \mathrm{C}, \mathrm{Pb}_{3} \mathrm{O}_{4}(377 \mathrm{mg}, 0.550 \mathrm{mmol})$ was added, and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was washed with water, saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After column chromatography on silica gel
(dichloromethane), $\mathbf{8}$ ($62 \mathrm{mg}, 27 \%$) was obtained as a strong yellowish orange powder. TLC $R_{f} 0.26$ (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 20 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.23-6.18(\mathrm{~m}, 2 \mathrm{H})$, 3.28-3.21 (m, 2H), 3.05-2.99 (m, 2H), 2.28-2.24 (m, 4H), $2.03(\mathrm{~s}, 6 \mathrm{H})$. MALDI-TOF MS m/z 927 $\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \mathrm{IR}(\mathrm{KBr}) 1737,1237 \mathrm{~cm}^{-1}$.

6,8,16,18-Tetraphenyldicyclopenta[b,i]anthraceno[1,2,3-cd:7,8,9-c'd']diphenalene (3b). To a

 solution of $9(62.0 \mathrm{mg}, 0.067 \mathrm{mmol})$ in toluene (30 mL) heated to $90^{\circ} \mathrm{C}$, catalytic amount of p toluenesulfonic acid monohydrate was added and the reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 10 min . The mixture was cooled on ice-bath. The crude product was purified by column chromatography on silica gel (toluene) to give 1,11-/1,13-Dihydro-6,8,16,18-tetraphenyldicyclopenta[b,i]anthraceno[1,2,3$\left.c d: 7,8,9-c^{\prime} d^{\prime}\right]$ diphenalene (9) (46.4 mg, 87%) as an air-sensitive dark yellowish brown powder. TLC R_{f} 0.59 (dichloromethane:hexane $=1: 1(\mathrm{v} / \mathrm{v})$). MALDI-TOF MS $\mathrm{m} / \mathrm{z} 807\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.To a solution of $9(25.7 \mathrm{mg}, 0.0318 \mathrm{mmol})$ in toluene (39 mL) heated at $90{ }^{\circ} \mathrm{C}$, a solution of p benzoquinone ($4.8 \mathrm{mg}, 0.044 \mathrm{mmol}$) in toluene (3 mL) was added. The reaction mixture was slowly cooled to room temperature and the resulting crystal was collected and washed with acetone to give 3b $(17.2 \mathrm{mg}, 55 \%)$ as a black plate. $\mathrm{mp}>300^{\circ} \mathrm{C}$ in a sealed tube. MALDI-TOF MS $m / z 804\left(\mathrm{M}^{+}\right)$.

Figure S1. Spin density map for the unsubstituted compound of $\mathbf{3}$ calculated with a broken-symmetry UB3LYP/6-31G** method. Blue and green surfaces of the spin density maps represent α and β spin densities drawn at 0.004 e/au ${ }^{3}$ level, respectively.

Figure S2. Cyclic voltammogram of 3a. Conditions; in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt, $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NClO}_{4}$, working electrode: glassy carbon, counter electrode: Pt, reference electrode: $\mathrm{Ag} / \mathrm{AgNO}_{3}$, scan rate $=0.1 \mathrm{~V} / \mathrm{s}$.

Figure S3. Optical conductivity of $\mathbf{3 b}$ with the light polarized along (solid line) and perpendicular (dashed line) to the c-axis.

Figure S4. NICS(1) values for unsubstituted compounds of $\mathbf{1}$ (top), 2 (middle) and $\mathbf{3}$ (bottom) calculated with the GIAO (gauge-including atomic orbital)-UB3LYP/6-31G** method.

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012

Gaussian Input data

1) RB3LYP/6-31G** calculation for the unsubstituted compound of $\mathbf{3}$

Singlet, closed-shell					
	$0 \quad 1$				
C	0.00000	-1.43651	0.00000		
C	0.00000	1.43651	0.00000		
C	-1.20238	-0.72688	0.00000		
C	1.20238	0.72688	0.00000		
C	-1.20238	0.72688	0.00000		
C	1.20238	-0.72688	0.00000		
C	-3.62725	-0.72688	0.00000		
C	3.62725	0.72688	0.00000		
C	-3.62725	0.72688	0.00000		
C	3.62725	-0.72688	0.00000		
C	-2.42487	-1.43651	0.00000		
C	2.42487	1.43651	0.00000		
C	-2.42487	1.43651	0.00000		
C	2.42487	-1.43651	0.00000		
C	-5.00177	-1.17356	0.00000		
C	5.00177	1.17356	0.00000		
C	-5.00177	1.17356	0.00000		
C	5.00177	-1.17356	0.00000		
C	-5.67753	-2.41754	0.00000		
C	5.67753	2.41754	0.00000		
C	-5.67753	2.41754	0.00000		
C	5.67753	-2.41754	0.00000		
C	-7.06337	-2.44474	0.00000		
C	7.06337	2.44474	0.00000		
C	-7.06337	2.44474	0.00000		
C	7.06337	-2.44474	0.00000		
C	-7.86567	-1.25300	0.00000		
C	7.86567	1.25300	0.00000		
C	-7.86567	1.25300	0.00000		
C	7.86567	-1.25300	0.00000		
C	-9.27434	-1.22218	0.00000		
C	9.27434	1.22218	0.00000		
C	-9.27434	1.22218	0.00000		
C	9.27434	-1.22218	0.00000		
C	-9.95470	0.00000	0.00000		
C	9.95470	0.00000	0.00000		
C	-5.79547	0.00000	0.00000		
C	5.79547	0.00000	0.00000		
C	-7.18819	0.00000	0.00000		
C	7.18819	0.00000	0.00000		
H	0.00000	-2.52418	0.00000		
H	0.00000	2.52418	0.00000		
H	-2.42487	-2.52418	0.00000		
H	2.42487	2.52418	0.00000		
H	-2.42487	2.52418	0.00000		
H	2.42487	-2.52418	0.00000		
H	-5.12426	-3.35264	0.00000		
H	5.12426	3.35264	0.00000		
H	-5.12426	3.35264	0.00000		
H	5.12426	-3.35264	0.00000		
H	-7.57473	-3.40369	0.00000		
H	7.57473	3.40369	0.00000		
H	-7.57473	3.40369	0.00000		
H	7.57473	-3.40369	0.00000		
H	-9.83583	-2.15241	0.00000		
H	9.83583	2.15241	0.00000		
H	-9.83583	2.15241	0.00000		
H	9.83583	-2.15241	0.00000		
H	-11.04048	0.00000	0.00000		
H	11.04048	0.00000	0.00000		

Electronic Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2012
2) $\operatorname{CASSCF}(2,2) / 6-31 \mathrm{G} / / \mathrm{RB} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{* *}$ calculation for the unsubstituted compound of $\mathbf{3}$

```
#P CASSCF(2,2,NRoot=1)/6-31G NOSYMM FormCheck=All Pop=(Reg)
SCF=Tight Guess=(Read)
```

$\operatorname{CASSCF}(2,2)$, Ground State
C
$0 \quad 1$
C $\quad-0.000000$
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1
-0.000000
-0.000000
0.000000
-0.000000
-0.000000
0.000000
0.000000
-0.000000
-0.000000
0.000000
0.000000
-0.000000
-0.000000
0.000000
0.000000
-0.000000
$\begin{array}{rrr}-0.00000 & -1.177622 & -5.035174 \\ -0.000000 & -1.177622 & 5.035174\end{array}$
0.000000
1.400431
0.000000
-0.000000
-0.000000
$-0.000000-1.400431$
$\begin{array}{rr}-1.400431 & 0.000000 \\ 0.727190 & 1.228418\end{array}$
0.727190
1. 228418
-0.727190
-1.228418
$-0.727190 \quad 1.228418$
$0.727190-1.228418$
$0.736245 \quad 3.657921$
$\begin{array}{rr}0.736245 & -3.657921\end{array}$
3.657921
-3.657921
-0.736245
3.657921
$0.736245-3.657921$
$\begin{array}{rr}0.736245 & -3.657921 \\ 1.426438 & 2.466011\end{array}$
$\begin{array}{rr}1.426438 & 2.466011 \\ -1.426438 & -2.466011\end{array}$
-1.426438
-2.466011
2.466011
$\begin{array}{rr}-1.426438 & 2.466011 \\ 1.426438 & -2.466011\end{array}$
$\begin{array}{rr}1.426438 & -2.466011 \\ 1.177622 & 5.035174\end{array}$
$\begin{array}{rr}1.177622 & 5.035174 \\ -1.177622 & -5.035174\end{array}$
$-1.177622 \quad 5.035174$
$\begin{array}{rr}1.177622 & -5.035174 \\ 2.419671 & 5.709537\end{array}$
-0.000000
2.419671
5.709537
-2.419671
-5.709537
-0.000000
0.000000
-2.419671
-2.419671
5.709537
0.000000
2.419671
-5.709537
$2.447332 \quad 7.095554$
0.000000
$\begin{array}{rrr}0.000000 & 2.447332 & 7.095554 \\ -0.000000 & -2.447332 & -7.095554\end{array}$
$-0.000000 \quad-2.447332 \quad 7.095554$
-0.000000
0.000000
$2.447332-7.095554$
$0.000000 \quad 1.253830 \quad 7.895842$
-0.000000
$\begin{array}{rr}1.253830 & -7.895842 \\ -1.253830 & -7.895842\end{array}$
-0.000000
$\begin{array}{rr}-1.253830 & -7.895842 \\ -1.253830 & 7.895842\end{array}$
$\begin{array}{rr}-1.253830 & 7.895842 \\ 1.253830 & -7.895842\end{array}$
0.000000
$\begin{array}{rr}1.222546 & 9.305277 \\ -1.222546 & -9.305277\end{array}$
0.000000
$\begin{array}{rrr}-0.000000 & -1.222546 & -9.305277 \\ -0.000000 & -1.222546 & 9.305277\end{array}$
$\begin{array}{rr}1.222546 & 9.305277 \\ -1.222546 & -9.305277\end{array}$
$\begin{array}{rrr}-0.000000 & -1.222546 & 9.305277 \\ 0.000000 & 1.222546 & -9.305277\end{array}$
$\begin{array}{rrr}0.000000 & 1.222546 & -9.305277 \\ 0.000000 & -0.000000 & 9.983265\end{array}$
$0.000000 \quad-0.000000 \quad 9.983265$
$0.000000-0.000000-9.983265$
$0.000000-0.000000 \quad 5.821954$
$\begin{array}{llr}0.000000 & -0.000000 & 5.821954 \\ 0.000000 & -0.000000 & -5.821954\end{array}$
$\begin{array}{rrr}0.00000 & -0.00000 & -5.821954 \\ 0.000000 & -0.000000 & 7.218447\end{array}$
$\begin{array}{rrr}0.000000 & -0.000000 & 7.218447 \\ 0.000000 & -0.000000 & -7.218447\end{array}$
$\begin{array}{rrr}0.000000 & -0.000000 & -7.218447 \\ -0.000000 & 2.488607 & 0.000000\end{array}$
$\begin{array}{lll}-0.000000 & 2.488607 & 0.000000\end{array}$
-0.000000
$\begin{array}{rr}2.488607 & 0.000000 \\ -2.488607 & 0.000000\end{array}$
$\begin{array}{rr}-2.488607 & 0.000000 \\ 2.513909 & 2.451508\end{array}$
0.000000
-0.000000
$\begin{array}{rr}2.513909 & 2.451508 \\ -2.513909 & -2.451508\end{array}$
$\begin{array}{rr}-2.513909 & -2.451508 \\ -2.513909 & 2.451508\end{array}$
$\begin{array}{rrr}-0.000000 & -2.513909 & -2.451508 \\ -0.000000 & -2.513909 & 2.451508 \\ 0.000000 & 2.513909 & -2.451508\end{array}$
0.000000
-2.451508
$\begin{array}{rrr}0.000000 & 3.355009 & 5.156417\end{array}$
$\begin{array}{rrr}0.000000 & 3.355009 & 5.156417 \\ -0.000000 & -3.355009 & -5.156417\end{array}$
-0.000000
-3.355009
-3.355009
5.156417
-5.156417
0.000000
3.355009
$\begin{array}{rr}3.355009 & -5.156417 \\ 3.405953 & 7.607516\end{array}$
$\begin{array}{rrr}0.000000 & 3.405953 & 7.607516 \\ -0.000000 & -3.405953 & -7.607516\end{array}$
-0.000000
$\begin{array}{rr}-3.405953 & -7.607516 \\ -3.405953 & 7.607516\end{array}$
$\begin{array}{rr}-3.405953 & 7.607516 \\ 3.405953 & -7.607516\end{array}$
-0.000000
$\begin{array}{rr}3.405953 & -7.607516 \\ 2.153159 & 9.866333\end{array}$
0.000000
$\begin{array}{rr}2.153159 & 9.866333 \\ -2.153159 & -9.866333 \\ -2.153159 & 9.866333\end{array}$
0.000000
-0.000000
-0.000000
$\begin{array}{rr}2.153159 & 9.866333 \\ 2.153159 & -9.866333\end{array}$
$\begin{array}{rrr}0.000000 & 2.153159 & -9.866333 \\ 0.000000 & -0.000000 & 11.069540\end{array}$
$0.000000-0.000000-11.069540$

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012

3) Broken-symmetry UB3LYP/6-31G** calculation for the unsubstituted compound of $\mathbf{3}$

\#P UB3LYP/6-31G(d,p) opt FormCheck=All Pop=(Reg) SCF=(MaxCycle=200) SCF=Tight Guess=(mix)

Singlet Biradical, Broken Symmetry

	$0 \quad 1$		
C	-0.000000	1.400431	0.000000
C	-0.000000	-1.400431	0.000000
C	0.000000	0.727190	1.228418
C	-0.000000	-0.727190	-1.228418
C	-0.000000	-0.727190	1.228418
C	0.000000	0.727190	-1.228418
C	0.000000	0.736245	3.657921
C	-0.000000	-0.736245	-3.657921
C	-0.000000	-0.736245	3.657921
C	0.000000	0.736245	-3.657921
C	0.000000	1.426438	2.466011
C	-0.000000	-1.426438	-2.466011
C	-0.000000	-1.426438	2.466011
C	0.000000	1.426438	-2.466011
C	0.000000	1.177622	5.035174
C	-0.000000	-1.177622	-5.035174
C	-0.000000	-1.177622	5.035174
C	0.000000	1.177622	-5.035174
C	0.000000	2.419671	5.709537
C	-0.000000	-2.419671	-5.709537
C	-0.000000	-2.419671	5.709537
C	0.000000	2.419671	-5.709537
C	0.000000	2.447332	7.095554
C	-0.000000	-2.447332	-7.095554
C	-0.000000	-2.447332	7.095554
C	0.000000	2.447332	-7.095554
C	0.000000	1.253830	7.895842
C	-0.000000	-1.253830	-7.895842
C	-0.000000	-1.253830	7.895842
C	0.000000	1.253830	-7.895842
C	0.000000	1.222546	9.305277
C	-0.000000	-1.222546	-9.305277
C	-0.000000	-1.222546	9.305277
C	0.000000	1.222546	-9.305277
C	0.000000	-0.000000	9.983265
C	0.000000	-0.000000	-9.983265
C	0.000000	-0.000000	5.821954
C	0.000000	-0.000000	-5.821954
C	0.000000	-0.000000	7.218447
C	0.000000	-0.000000	-7.218447
H	-0.000000	2.488607	0.000000
H	-0.000000	-2.488607	0.000000
H	0.000000	2.513909	2.451508
H	-0.000000	-2.513909	-2.451508
H	-0.000000	-2.513909	2.451508
H	0.000000	2.513909	-2.451508
H	0.000000	3.355009	5.156417
H	-0.000000	-3.355009	-5.156417
H	-0.000000	-3.355009	5.156417
H	0.000000	3.355009	-5.156417
H	0.000000	3.405953	7.607516
H	-0.000000	-3.405953	-7.607516
H	-0.000000	-3.405953	7.607516
H	0.000000	3.405953	-7.607516
H	0.000000	2.153159	9.866333
H	-0.000000	-2.153159	-9.866333
H	-0.000000	-2.153159	9.866333
H	0.000000	2.153159	-9.866333
H	0.000000	-0.000000	11.069540
H	0.000000	-0.000000	-11.069540

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012
4) Triplet UB3LYP/6-31G** calculation for the unsubstituted compound of $\mathbf{3}$

$\begin{aligned} & \text { \#P UB3LYP/6-31G(d, } \\ & \text { SCF=Tight } \\ & \text { Triplet Biradical } \end{aligned}$				SCF= (MaxCycle=200
	03			
C	-0.000000	1.400431	0.000000	
C	-0.000000	-1.400431	0.000000	
C	0.000000	0.727190	1.228418	
C	-0.000000	-0.727190	-1.228418	
C	-0.000000	-0.727190	1.228418	
C	0.000000	0.727190	-1.228418	
C	0.000000	0.736245	3.657921	
C	-0.000000	-0.736245	-3.657921	
C	-0.000000	-0.736245	3.657921	
C	0.000000	0.736245	-3.657921	
C	0.000000	1.426438	2.466011	
C	-0.000000	-1.426438	-2.466011	
C	-0.000000	-1.426438	2.466011	
C	0.000000	1.426438	-2.466011	
C	0.000000	1.177622	5.035174	
C	-0.000000	-1.177622	-5.035174	
C	-0.000000	-1.177622	5.035174	
C	0.000000	1.177622	-5.035174	
C	0.000000	2.419671	5.709537	
C	-0.000000	-2.419671	-5.709537	
C	-0.000000	-2.419671	5.709537	
C	0.000000	2.419671	-5.709537	
C	0.000000	2.447332	7.095554	
C	-0.000000	-2.447332	-7.095554	
C	-0.000000	-2.447332	7.095554	
C	0.000000	2.447332	-7.095554	
C	0.000000	1.253830	7.895842	
C	-0.000000	-1.253830	-7.895842	
C	-0.000000	-1.253830	7.895842	
C	0.000000	1.253830	-7.895842	
C	0.000000	1.222546	9.305277	
C	-0.000000	-1.222546	-9.305277	
C	-0.000000	-1.222546	9.305277	
C	0.000000	1.222546	-9.305277	
C	0.000000	-0.000000	9.983265	
C	0.000000	-0.000000	-9.983265	
C	0.000000	-0.000000	5.821954	
C	0.000000	-0.000000	-5.821954	
C	0.000000	-0.000000	7.218447	
C	0.000000	-0.000000	-7.218447	
H	-0.000000	2.488607	0.000000	
H	-0.000000	-2.488607	0.000000	
H	0.000000	2.513909	2.451508	
H	-0.000000	-2.513909	-2.451508	
H	-0.000000	-2.513909	2.451508	
H	0.000000	2.513909	-2.451508	
H	0.000000	3.355009	5.156417	
H	-0.000000	-3.355009	-5.156417	
H	-0.000000	-3.355009	5.156417	
H	0.000000	3.355009	-5.156417	
H	0.000000	3.405953	7.607516	
H	-0.000000	-3.405953	-7.607516	
H	-0.000000	-3.405953	7.607516	
H	0.000000	3.405953	-7.607516	
H	0.000000	2.153159	9.866333	
H	-0.000000	-2.153159	-9.866333	
H	-0.000000	-2.153159	9.866333	
H	0.000000	2.153159	-9.866333	
H	0.000000	-0.000000	11.069540	
H	0.000000	-0.000000	-11.069540	

