Convenient method for the functionalization of the 4- and 6positions of the androgen skeleton

Daniel Morton, ${ }^{\text {a }}$ Allison R. Dick, ${ }^{\text {b }}$ Debashis Ghosh ${ }^{\text {c }}$ and Huw M. L. Davies ${ }^{\text {a* }}$
${ }^{a}$ Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322;
${ }^{b}$ Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000; ${ }^{\text {c Pharmacology and Upstate Cancer Research Institute, SUNY }}$
Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210

Table of Contents

1. Experimental Section S-2
1.1 General considerations S-2
1.2 Experimental procedures and compound characterization S-2
2. Spectral Data. .

1. Experimental Section

1.1 General Considerations

All reactions were conducted in oven-dried glassware ($120^{\circ} \mathrm{C},>12 \mathrm{~h}$), under an atmosphere of argon. Commercially available reagents were used as received unless otherwise stated. Solvents were purified by passage through a bed of activated alumina (Grubbs-type solvent purifier). NMR spectra were recorded on Varian INOVA 400 and 600 MHz NMR spectrometers. ${ }^{1} \mathrm{H}$ data is presented as follows: chemical shift (in ppm on the δ scale relative to the residual solvent peaks), multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, m=$ multiplet, $b r=b r o a d, ~ a p p=$ apparent), coupling constant $(J / H z)$, integration, assignment. Coupling constants were taken directly from the spectra. ${ }^{13} \mathrm{C}$ spectra were recorded at 100 MHz and all chemical shift values are reported in ppm on the δ scale relative to the residual solvent peaks. Mass spectrometry was performed on a JEOL JMS-SX102/SX102A/E mass spectrometer using APCI as an ionization method. Infrared spectra were recorded on a Thermo Scientific Nicolet iS10 and reported in units of cm^{-1}. The optical rotation was determined using a Jasco P-2000 polarimeter. Flash chromatography was performed on silica gel 60 (230-400 mesh).

1.2 Experimental Procedures and Compound Characterisation

Scheme 1 - Int 1

(8R,9S,10R,13S,14S)-6-bromo-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3Hcyclopenta[α]phenanthrene-3,17(6H)-dione

An oven-dried 250 mL round-bottomed flask was charged with steroid ($1 \mathrm{eq}, 17.6 \mathrm{mmol}, 5.00 \mathrm{~g}$), N-bromo succinamide ($1.1 \mathrm{eq}, 19.4 \mathrm{mmol}, 3.45 \mathrm{~g}$), and benzoyl peroxide ($70 \% \mathrm{w} / \mathrm{w}$ with water, $5 \mathrm{~mol} \%, 0.88 \mathrm{mmol}, 213 \mathrm{mg}$). $\mathrm{CCl}_{4}(50 \mathrm{~mL}$) was added and the reaction stirred rapidly. The reaction was warmed to reflux ($80^{\circ} \mathrm{C}$), and the temperature maintained for 4 h . The reaction was allowed to cool to ambient temperature and a saturated solution of aqueous ammonium chloride (50 mL) was added. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction was separated and organic phase washed with a saturated solution of aqueous ammonium chloride ($3 \times 50 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic fraction was dried over magnesium sulfate, filtered and concentrated under reduced pressure to afford an orange solid. The bromide was isolated by flash chromatography (eluting with 70:30 hexane/EtOAc), as an off-white solid ($4.05 \mathrm{~g} ; 64 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $10.2 \mathrm{~Hz}, 1-\mathrm{CH}$), $6.26(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 6.23(\mathrm{app} . \mathrm{dt}, J=10.2$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.06(\mathrm{app} . \mathrm{t}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{CH}$), 2.51 (dd, $J=19.4$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.41 (app. br. d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH} \beta$), 2.32 (ddd, $J=21.9$, 10.9 and $2.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH} \alpha$), 2.11 (ddd, $J=18.2,10.9$ and $9.8 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \alpha$), 1.97-1.88 (m, 3H), 1.77-1.70 (m, 2H), 1.66 (ddd, $J=12.5,11.2$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH} \beta$), $1.59\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.18$ (ddd, $J=15.1,10.9$ and $\left.4.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 1.00\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1,164.7,127.1,127.0,53.4,52.2$,
$50.6,47.8,43.7,41.1,37.0,36.5,35.9,34.0,31.2,21.8,20.6,18.4,13.9$; IR (neat): 2944, 1736, 1660, 1404, 1225, 897; m/z (APCI) $363.1(40 \%, \mathrm{M}+\mathrm{H})$, $283.2(100 \%, \mathrm{M}+\mathrm{H}-\mathrm{HBr})$; HRMS-APCI m/z $363.095\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrO}_{2}\right.$ requires 363.0954); $[\alpha]^{20}{ }_{D}=+99.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Scheme 1 - Int 2

($8 R, 9 S, 10 R, 13 S, 14 S$)-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3H-cyclopenta[α]phenanthrene-3,17(4H)-dione

A 500 mL beaker was charged with bromide (1.0 eq., $13.8 \mathrm{mmol}, 5.00 \mathrm{~g}$). De-ionised water (50 mL) and ethanol (250 mL) were added and the resulting mixture stirred rapidly for 30 minutes. Zinc dust ($15 \mathrm{eq} ., 207 \mathrm{mmol}, 6.10 \mathrm{~g}$) was added portion-wise and the resulting slurry was covered and stirred for 72 h at ambient temperature. The reaction was filtered through celite, washing with EtOAc $(2 \times 50 \mathrm{~mL})$, and concentrated under reduced pressure, affording a white solid. The deconjugated androgen was isolated by flash chromatography (eluting with 80:20 hexane/EtOAc), as a white crystalline solid ($2.91 \mathrm{~g} ; 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 6.94(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 5.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}$), 5.46-5.44 (m, 1H, C=CH), 3.34 (ddd, $J=17.4,6.3$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{CH} 2$), $2.91(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (dd, $J=19.1$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.00 (m, 2H), 1.99-1.76 (m, 4H), 1.73-1.49 (m, 4H), 1.38-1.21 (m, 2H), 1.22 (s, 3H, $19-\mathrm{CH} 3), 0.91(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH} 3) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3,155.6,136.3,127.0,123.0,51.9,47.7,45.9,45.5$, $40.2,36.0,31.7,31.5,30.2,22.0,20.5,19.5,13.8$; IR (film) : 2943, 1720, 1685, 1257, 1087; m/z (APCI) 285.2 (100\%, $\mathrm{M}+\mathrm{H})$, $283.2(40 \%)$; HRMS-APCI m/z $285.1851\left(\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2}\right.$ requires 285.184); $[\alpha]_{\mathrm{D}}^{20}=+120.7\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

2

($8 R, 9 S, 10 R, 13 S, 14 S$)-4-diazo-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3Hcyclopenta[α]phenanthrene-3,17(4H)-dione

An oven-dried 250 mL round-bottomed flask was charged with deconjugated androgen ($1.0 \mathrm{eq} ., 3.52 \mathrm{mmol}, 1.00 \mathrm{~g}$) and diazo transfer reagent (1.2 eq., $4.19 \mathrm{mmol}, 951 \mathrm{mg}$). Anhydrous acetonitrile (100 mL) was added and the reaction was stirred rapidly under an atmosphere of Ar for 20 min at ambient temperature. Diazobicyclo-undecane (1.5 eq., 5.28 $\mathrm{mmol}, 800 \mu \mathrm{~L}$) was added drop-wise over 10 minutes. The reaction changed from clear pale yellow to orange and cloudy. The reaction was stirred at ambient temperature for 2 h . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and quenched with a saturated solution of aqueous ammonium chloride (50 mL). The mixture was separated, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phase washed with brine $(2 \times 50 \mathrm{~mL})$, dried over magnesium sulfate and concentrated under reduced pressure to afford an orange solid. The steroidal diazo was isolated using the Isolera purification system (SNAP 25 g cartridge, gradient of $90: 10$ hexane/EtOAc to 5:95 hexane/EtOAc over 10 column
volumes), as an orange solid ($720 \mathrm{mg} ; 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 6.81$ (d, $1 \mathrm{H}, J=10.4 \mathrm{~Hz}, 1-\mathrm{CH}$), 5.95 (d, J $=10.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.36(\mathrm{dd}, J=4.8$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 2.48(\mathrm{dd}, J=19.2$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \alpha)$, 2.41-2.31 (m, 1H), $2.11(\mathrm{dt}, J=19.2$ and $9.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.01-1.85 (m, 5H), 1.64-1.50 (m, 2H), 1.46-1.30 (m, 3H), 1.26 (s, $\left.3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,129.0,126.9,126.8,117.9,51.8,47.8,44.7$, 39.6, 35.9, 31.8, 31.4, 29.9, 23.7, 21.9, 20.7, 13.9; IR (film): 2944, 2078 (N_{2}), 1735 ($\mathrm{C}=\mathrm{O}$), 1659 ($\mathrm{C}=\mathrm{O}$), 1282, 729; m/z (APCI) 311.2 ($25 \%, \mathrm{M}+\mathrm{H}$), 299.2 (100\%), 284.2 (39\%); HRMS-APCI m/z $311.1757\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 311.1754).

Scheme 1 - Int 3

($8 R, 9 S, 10 R, 13 S, 14 S$)-6-bromo-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1 H cyclopenta[α]phenanthrene-3,17(2H,6H)-dione

An oven-dried 250 mL round-bottomed flask was charged with steroid ($1.0 \mathrm{eq} ., 17.5 \mathrm{mmol}, 5.00 \mathrm{~g}$), N -bromo succinamide (1.1 eq., $19.2 \mathrm{mmol}, 3.42 \mathrm{~g}$), and benzoyl peroxide ($70 \% \mathrm{w} / \mathrm{w}$ with water, $5 \mathrm{~mol} \%, 0.88 \mathrm{mmol}, 212 \mathrm{mg}$). $\mathrm{CCl}_{4}(50 \mathrm{~mL})$ was added and the reaction stirred rapidly. The reaction was warmed to reflux $\left(80^{\circ} \mathrm{C}\right)$, and the temperature maintained for 4 h . The reaction was allowed to cool to ambient temperature and a saturated solution of aqueous ammonium chloride (50 mL) was added. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction was separated and organic phase washed with a saturated solution of aqueous ammonium chloride ($3 \times 50 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic fraction was dried over magnesium sulfate, filtered and concentrated under reduced pressure to afford an orange solid. The bromide was isolated by flash chromatography (eluting with $70: 30$ hexane/EtOAc), as an off-white solid ($3.96 \mathrm{~g} ; 62 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $6.41(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}, 4-\mathrm{CH}), 4.88(\mathrm{ddd}, J=13.0,5.1$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 2.57(\mathrm{ddd}, J=12.4,5.1 \mathrm{and} 4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.50-2.36 (m, 3H), 2.13-1.93 (m, 2H), 1.88-1.73 (m, 2H), 1.72.164 (m, 2H), 1.64-1.51 (m, 2H), 1.46-1.22 (m, 2H), 1.22 $\left(\mathrm{s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.07(\mathrm{ddd}, \mathrm{J}=14.0,10.9$ and $4.1,1 \mathrm{H}, 9-\mathrm{CH}), 0.88\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.1, 164.7, 127.1, 127.0, 53.4, 52.2, 50.6, 47.8, 43.7, 41.1, 37.0, 36.5, 35.9, 34.0, 31.2, 21.8, 20.6, 18.4, 13.9; IR (neat): 2949, 1732, 1668, 1268, 1012; m/z (APCI) 367.1 (15\%, M+H), 285.2 (100\%); HRMS-APCI m/z 365.1112 $\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Br}_{1}\right.$ requires 365.111); $[\alpha]^{20}{ }_{\mathrm{D}}=+12.2\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

Scheme 1 - Int 4

($8 R, 9 S, 10 R, 13 S, 14 S$)-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1H-cyclopenta[α]phenanthrene-3,17(2H,4H)-dione

A 500 mL beaker was charged with bromide (1.0 eq., $13.7 \mathrm{mmol}, 5.00 \mathrm{~g}$). De-ionised water (50 mL) and ethanol (250 mL) were added and the resulting mixture stirred rapidly for 30 minutes. Zinc dust ($15 \mathrm{eq} ., 206 \mathrm{mmol}, 6.20 \mathrm{~g}$) was added portion-wise and the resulting slurry was covered and stirred for 72 h at ambient temperature. The reaction was
filtered through celite, washing with EtOAc $(2 \times 50 \mathrm{~mL})$, and concentrated under reduced pressure, affording a white solid. The deconjugated androgen was isolated by flash chromatography (eluting with 80:20 hexane/EtOAc), as a white crystalline solid (2.03 g; 52%). $\mathrm{R}_{\mathrm{f}}=0.76$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 5.37$ (dd, $1 \mathrm{H}, \mathrm{J}=5.1$ and $2.4 \mathrm{~Hz}, 6-\mathrm{CH}$), 3.27 (br. d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{A}}$), $2.84\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{B}}\right.$), 2.51-2.44 (m, 2H), 2.30 (br.d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{br} . \mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.53(\mathrm{~m}$, $2 \mathrm{H}), 1.48\left(\mathrm{ddd}, J=17.8,13.4\right.$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}$), 1.33-1.28 (m,2H), $1.20\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.10(\mathrm{ddd}, J=15.3,11.1$ and $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}$), $0.91\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,138.9,124.3,122.3,54.1,51.1$, $47.8,36.9,36.0,35.9,35.4,34.1,32.8,31.7,30.9,21.9,20.8,19.4,13.8$; IR (film): 2941, 1735, 1708, 1405, 1215, 1013; m/z (APCI) $287.2(100 \%, \mathrm{M}+\mathrm{H}) ; \mathrm{HRMS}-\mathrm{APCI} \mathrm{m} / \mathrm{z} 287.2005\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2}\right.$ requires 287.2006); $[\alpha]_{\mathrm{D}}^{20}=+78.9(c=$ $1.0, \mathrm{CHCl}_{3}$).

4

(8R,9S,10R,13S,14S)-4-diazo-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1Hcyclopenta[α]phenanthrene-3,17(2H,4H)-dione

An oven-dried 250 mL round-bottomed flask was charged with deconjugated androgen ($1.0 \mathrm{eq} ., 3.50 \mathrm{mmol}, 1.00 \mathrm{~g}$) and diazo transfer reagent ($1.2 \mathrm{eq} ., 4.2 \mathrm{mmol}, 953 \mathrm{mg}$). Anhydrous acetonitrile (100 mL) was added and the reaction was stirred rapidly under an atmosphere of Ar for 20 min at ambient temperature. Diazobicyclo-undecane (1.5 eq., 5.25 $\mathrm{mmol}, 800 \mu \mathrm{~L}$) was added drop-wise over 10 minutes. The reaction changed from clear pale yellow to orange and cloudy. The reaction was stirred at ambient temperature for 2 h . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and quenched with a saturated solution of aqueous ammonium chloride (50 mL). The mixture was separated, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phase washed with brine $(2 \times 50 \mathrm{~mL})$, dried over magnesium sulfate and concentrated under reduced pressure to afford an orange solid. The steroidal diazo was isolated using the Isolera purification system (SNAP 25 g cartridge, gradient of 90:10 hexane/EtOAc to 5:95 hexane/EtOAc over 10 column volumes), as an orange solid ($675 \mathrm{mg} ; 63 \%$). Compound was unstable and used directly.

General Procedures

General Procedure for the O-H insertion into alcohols and acids with steroid diazo compounds

An oven dried round-bottomed flask was charged with a solution of ROH (10 eq., 4.0 mmol), in degassed trifluorotoluene $(5 \mathrm{~mL})$, to which was added the catalyst $\left(\mathrm{Rh}_{2}(S-D O S P)\right)_{4}: 1 \mathrm{~mol} \%, 0.004 \mathrm{mmol} ; \mathrm{AgOTf}: 5 \mathrm{~mol} \%$, 0.02 mmol), and the reaction stirred at room temperature for 10 minutes. A solution of steroid diazo (2 or 6; 1 eq., 0.4 mmol), in degassed trifluorotoluene (3 mL), was added dropwise over 1 hr . The progress of the reaction was monitored by TLC, and upon consumption of the steroidal diazo starting material (between 2 and 16 hr), the reaction was
concentrated under reduced pressure. Isolation was achieved using flash chromatography (eluting with Hexanes/EtOAc 80:20).

5a

(10R,13S)-4-ethoxy-3-hydroxy-10,13-dimethyl-9,10,11,12,13,14,15,16-octahydro-7H-cyclopenta[α]phenanthren-17(8H)-one

Isolated as a pale yellow solid (53 mg, 61\%). $\mathrm{R}_{\mathrm{f}}=0.52(50: 50 \mathrm{Hexane} / \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.08$ (br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 6.23(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.64(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 4.04(\mathrm{dq}, J$ $=9.4$ and $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{A}}\right), 3.97\left(\mathrm{dq}, J=9.4\right.$ and $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{B}}\right), 2.47(\mathrm{dd}, J=19.0$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 16 \beta-\mathrm{H}), 2.29$ (dt, $J=14.5$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.32(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, 21-$ $\left.\mathrm{CH}_{3}\right), 1.30-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.{ }_{3}\right) \delta 182.2,156.0,148.8$, $147.5,127.0,68.7,63.9,51.6,50.8,47.9,44.1,38.4,35.9,31.5,29.7,22.2,22.1,21.2,15.7,14.1$; IR (film): 3316, 2941, 1735, 1660, 1628; m/z (APCI) 327.2 (100%, $\mathrm{M}-\mathrm{H}$); HRMS-APCI m/z $327.1956\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3}\right.$ requires 327.19547); $[\alpha]^{20}{ }_{D}=+7.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

5b
(8R,9S,10R,13S,14S)-4-methoxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3Hcyclopenta[α]phenanthrene-3,17(4H)-dione

Isolated as a white solid (44 mg, 49\%) $\mathrm{R}_{\mathrm{f}}=0.49$ ($50: 50$ Hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 6.99(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 6.29(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.57(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 4.87(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CH})$, $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 3 \mathrm{H})$, 1.73-1.52 (m, 2H), 1.33-1.23 (m, 2H), 1.26 (s, 3H, 18-CH3), 1.15-1.06 (m, 1H), 0.92 (s, 3H, 19-CH3); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 220.3,182.0,156.2,148.7,127.2,127.0,63.8,63.7,61.1,51.7,50.9,47.9,44.2,38.6,35.9,31.5,29.8$, 22.2, 21.2, 14.1; IR (film): 3322, 2941, 1730, 1661, 1629, 1454, 1207; m/z (APCI) 313.22 (10%, M-H), 181.2 (87%), $121.1(100 \%)$; HRMS-APCI m/z $313.1799\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}\right.$ requires 313.1798$) ;[\alpha]_{\mathrm{D}}^{20}=+12.1\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

5c
(8R,9S,10R,13S,14S)-4-(benzyloxy)-3-hydroxy-10,13-dimethyl-9,10,11,12,13,14,15,16-octahydro-7Hcyclopenta[α]phenanthren-17(8H)-one

Isolated as a white solid ($68 \mathrm{mg}, 52 \%$) $\mathrm{R}_{\mathrm{f}}=0.56\left(50: 50\right.$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.82$ (br. $\mathrm{s}, 1 \mathrm{H}$, O-H), 7.42-7.27 (m, 5H, Ar-H), $7.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 6.27(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.40(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{CH}$), $5.13\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{A}}\right), 4.92\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{B}}\right), 2.44(\mathrm{dd}, J=19.6$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.11-2.00 (m, 2H), 1.96-1.77 (m, 3H), 1.67 (ddd, $J=13.6,12.4$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 1.65-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}$, $\left.19-\mathrm{CH}_{3}\right), 1.28-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{ddd}, J=12.4,11.2$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.89\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 0.73$ (ddd, $J=13.0,127$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.8,156.3,148.8,145.9,137.2,129.6$, 128.7, 128.5, 127.2, $74.4,51.9,50.7,47.8,44.2,35.8,34.1,31.3,30.1,22.2,22.0,19.7,14$; IR (film): $3298(\mathrm{O}-\mathrm{H})$, 2941, 1734 (C=O), 1660 (C=O) , 1157, 1088; m/z (APCI) 389.2 (100\%, M-H), 311.2 (60\%); HRMS-APCI m/z 389.2109 $\left(\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{3}\right.$ requires 389.2111); $[\alpha]^{20}{ }_{\mathrm{D}}=+64.7\left(c=0.25, \mathrm{CHCl}_{3}\right)$.

5d

($8 R, 9 S, 10 R, 13 S, 14 S$)-3-hydroxy-10,13-dimethyl-17-oxo-8,9,10,11,12,13,14,15,16,17-decahydro-7Hcyclopenta[α]phenanthren-4-yl acetate

Isolated as a pale yellow solid ($54 \mathrm{mg} ; 68 \%$). $\mathrm{R}_{\mathrm{f}}=0.41$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz;} \mathrm{CDCl}{ }_{3}$) $\delta 6.90(\mathrm{~d}$, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}, 1-\mathrm{CH}$), 6.05 (app. dd, $J=5.9$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}$), $5.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.79-5.75(\mathrm{~m}$, $1 \mathrm{H}, 6-\mathrm{CH}$), 2.47 (dd, $J=19.7$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.30-2.21 (m, 1H, 7-CH β), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, 21-\mathrm{CH}_{3}\right)$, 2.18-2.03 (m, $1 \mathrm{H}, 16-\mathrm{CH} \alpha), 2.00-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.4,170.0,154.6,134.8,124.9,119.0,74.6,74.5,51.8,47.6,46.5,41.9,35.9,31.4,30.9$, 29.8, 22.0, 21.0, 20.4, 19.7, 13.8; IR (film): 2937, 1725, 1702, 1373, 1227, 1061, 919; m/z (APCI) 343.2 (81%, M+H), $301.18(73 \%)$, $283.17(100 \%)$; HRMS-APCI m/z $343.1908\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4}\right.$ requires 343.1904$)$; $[\alpha]^{20}{ }_{\mathrm{D}}=+39.7(c=0.5$, CHCl_{3}).

5e
(10R,13S)-10,13-dimethyl-3,17-dioxo-4,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3Hcyclopenta[α]phenanthren-4-yl propionate

Isolated as a gummy oil (49 mg; 55\%). $\mathrm{R}_{\mathrm{f}}=0.39$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 6.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $10.2 \mathrm{~Hz}, 1-\mathrm{CH}$), 6.08 (br. s, 1H, H-4), 5.92 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}$), 5.79-5.76 (m, 1H, H-6), 2.63-2.49 (m, 2H, 21CH_{2}), 2.48 (dd, $J=19.1$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.30-2.23 (m, 1H, $7-\mathrm{CH} \beta$), 2.10 (ddd, $J=19.1,18.0$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $16-\mathrm{CH} \beta$), 1.99-1.95 (m, 1H, 15-CH α), 1.94-1.84 (m, 2H), 1.84-1.78 (m, 1H), 1.74-1.66 (m, 1H), 1.68-1.59 (m, 1H), 1.58 (ddd, $J=14.1,11.5$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH} \beta$), $1.36\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.35-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=10.2 \mathrm{~Hz}, 3 \mathrm{H}, 22-$ $\left.\mathrm{CH}_{3}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.5,173.5,154.5,135.0,124.9,118.9,74.3,51.8,47.6$, $46.5,41.9,35.9,31.4,30.9,29.8,27.6,21.9,20.4,19.7,13.8,9.3,2.0 ; \operatorname{IR}$ (film): 2942, 1737, 1701, 1373, 1172, 1084, 727 ; m/z (APCI) $357.2(45 \%, \mathrm{M}+\mathrm{H})$, 283.2 (100\%); APCI-FTMS m/z $357.2066\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{4}\right.$ requires 357.206); $[\alpha]^{20}{ }_{\mathrm{D}}=+$ $43\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

5f

(10R,13S)-10,13-dimethyl-3,17-dioxo-4,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3Hcyclopenta[α]phenanthren-4-yl 2-phenylacetate

Isolated as a white solid (33 mg; 41\%). $\mathrm{R}_{\mathrm{f}}=0.39$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.36-7.24$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}$), 6.05 (br.s, $1 \mathrm{H}, 4-\mathrm{CH}$), $5.91(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}$), 5.57 (app. t, $J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 2.48(\mathrm{dd}, J=19.4$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H} \beta), 2.21-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 2 \mathrm{H})$, 1.79-1.69 (m, 1H), 1.69-1.44 (m, 4H), 1.31 (s, 3H, 19- $\left.\mathrm{CH}_{3}\right), 1.31-1.20(\mathrm{~m}, 3 \mathrm{H}), 0.89\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.1,170.6,154.6,134.7,133.9,129.7,128.8,127.4,124.8,119.0,74.7,51.7,47.6,46.4,41.9,41.4$, $35.9,31.4,30.9,29.8,21.9,20.4,19.7,13.8$; IR (film): 2945, 1736, 1702, 1454, 1147, 731; m/z (APCI) 419.2 (54\%, $\mathrm{M}+\mathrm{H}), 283.2(100 \%)$; HRMS-APCI m/z $419.2224\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{4}\right.$ requires 419.2217); $[\alpha]_{\mathrm{D}}^{20}=+87.1\left(c=0.25, \mathrm{CHCl}_{3}\right)$.

6
($8 R, 9 S, 10 R, 13 S, 14 S$)-10,13-dimethyl-9,10,11,12,13,14,15,16-octahydro-3H-cyclopenta[α]phenanthrene-3,17(8H)dione

Isolated as a clear colourless oil. $\mathrm{R}_{\mathrm{f}}=0.49(50: 50 \mathrm{Hexanes} / E t O A c) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1$ $\mathrm{Hz}, 1-\mathrm{CH}), 6.32(\mathrm{dd}, J=9.9$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 6.26(\mathrm{dd}, J=10.1$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.11(\mathrm{dd}, J=9.9$ and 2.0 $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 6.03(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.59-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.59(\mathrm{~m}$, $2 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.22\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 0.99\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $186.4,161.9,152.7,135.9,128.8,128.7,128.6,128.5,124.5,49.1,48.6,48.1,41.3,37.7,35.7,31.4,21.6,21.4,14.1$; IR (film): 2938, 1736 (C=O), 1650 (C=O), 1287, 891; m/z (APCI) 283.2 (100\%, M+H); HRMS-APCI m/z 283.1693 $\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}\right.$ requires 283.1693); $[\alpha]^{20}{ }_{\mathrm{D}}=+15.2\left(c=0.25, \mathrm{CHCl}_{3}\right)$.

7a
($8 R, 9 S, 10 R, 13 S, 14 S$)-4-ethoxy-3-hydroxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1 Hcyclopenta[α]phenanthren-17(2H)-one

Isolated as a white powder (46 mg, 53\%). $\mathrm{R}_{\mathrm{f}}=0.48$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 5.21$ (br. s, $1 \mathrm{H}, 6-\mathrm{CH}), 3.97\left(\mathrm{dt}, J=9.5\right.$ and $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{A}}\right), 3.73\left(\mathrm{dt}, J=9.5\right.$ and $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{B}}\right), 2.61-2.40(\mathrm{~m}, 3 \mathrm{H})$, 2.15$2.04(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{dt}, J=13.0$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{ddd}, J=13.4,12.5$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.33-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 21-\mathrm{CH}_{3}\right), 0.95(\mathrm{ddd}, J=14.5,9.1$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 0.92\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3,151.2,147.1,68.9,63.2,53.9,51.3,47.8$, $38.2,37.1,36.2,36.0,34.5,31.5,29.1,21.9,20.4,20.1,15.6,13.9$; IR (film) : 3461 (O-H), 2944, 1735 (C=O), 1681 (C=O), 1196, 1095; m/z (APCI) 330.21 (21\%), 329.2 (100\%, M-H); HRMS-APCI m/z $329.2116\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3}\right.$ requires 329.2111); $[\alpha]^{20}{ }_{D}=+44.8\left(c=0.1 . \mathrm{CHCl}_{3}\right)$.

7b
(8R,9S,10R,13S,14S)-3-hydroxy-4-methoxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1 H cyclopenta[α]phenanthren-17(2H)-one

Isolated as a clear colourless oil (39 mg, 44%). $\mathrm{R}_{\mathrm{f}}=0.40$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.97$ (br. s, $1 \mathrm{H}, \mathrm{O}-\mathrm{H}$), $5.42\left(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}\right.$), $3.66\left(\mathrm{~s}, 3 \mathrm{H}, 20-\mathrm{CH}_{3}\right), 2.66-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{dt}, J=14.6$ and 2.9 Hz , $1 \mathrm{H})$, 2.14-1.18 (m, 4H), 1.75-1.52 (m, 4H), 1.43 (ddd, $J=13.5,12.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.30-1.15(\mathrm{~m}$, 2 H), 0.95 (ddd, $J=15.2,11.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 0.88\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,124.3,54.0$, $51.0,47.7,38.8,35.9,35.8,35.3,34.1,32.8,31.8,31.5,30.9,22.8,21.9,20.5,17.6,14.3,13.9$; IR (film): 3357, 2944, 1721, 1685, 1208, 1096, 730; m/z (APCI) 315.2 (100\%, M-H); HRMS-APCI m/z $315.1959\left(\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{3}\right.$ requires $315.1966)$.

7c
($8 R, 9 S, 10 R, 13 S, 14 S$)-4-(benzyloxy)-3-hydroxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1 H -cyclopenta[a]phenanthren-17(2H)-one

Isolated as a white solid ($32 \mathrm{mg}, 45 \%$). $\mathrm{R}_{\mathrm{f}}=0.50$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.25$ (br. $\mathrm{s}, 1 \mathrm{H}$, O-H), 7.38-7.27 (m, 5H, Ar-H), $5.24(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 4.94\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{A}}\right), 4.83(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$, $20-\mathrm{H}_{\mathrm{B}}$), 2.61 (ddd, $J=17.1,15.2$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H} \beta$), 2.50-2.39 (m, 3H), 2.12-1.76 (m, 6H), 1.70-1.33 (m, 6H), 1.30 ($\mathrm{s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}$), 1.12 (ddd, $J=11.3,10.9$ and $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}\right), 0.85\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $195.5,148.4,147.3,137.1,130.3,129.3,128.6,128.4,76.7,74.4,54.1,51.1,47.7,38.5,36.4,35.9,34.7,33.1,31.4$, 29.5, 21.8, 20.2, 18.5, 13.9; IR (film): 3454 (O-H), 2926, 2360, 1734, 1682, 1094; m/z (APCI) $391.2(100 \%, M+H)$, 287.2 (16\%); HRMS-APCI m/z $391.2263\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{3}\right.$ requires 391.2267); $[\alpha]^{20}{ }_{\mathrm{D}}=-96.6\left(c=0.2, \mathrm{CHCl}_{3}\right)$.

8a

(6R,8R,9S,10R,13S,14S)-6-ethoxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3Hcyclopenta[α]phenanthrene-3,17(6H)-dione

Isolated as a white solid (49 mg, 41\%). $\mathrm{R}_{\mathrm{f}}=0.54$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.2 \mathrm{~Hz}, 1-\mathrm{CH}$), $6.18(\mathrm{dd}, J=10.2$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.13(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.99(\mathrm{app} . \mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H} \alpha), 3.39\left(\mathrm{dq}, J=9.2\right.$ and $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}_{\mathrm{A}}\right), 3.31\left(\mathrm{dq}, J=9.2\right.$ and $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CH}_{\mathrm{B}}\right), 2.43(\mathrm{dd}, J=19.3$ and 9.0 $\mathrm{Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.19-2.11 (m, 2H,7-CH β and 11-CH β), 2.05 (ddd, $J=19.3,9.6$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \alpha$), 1.95-1.90 ($\mathrm{m}, 1 \mathrm{H}, 15-\mathrm{CH} \beta$), 1.86-1.79 (m, 2H, 11-CH α and $12-\mathrm{CH} \beta$), $1.70(\mathrm{dd}, J=13.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH} \beta$), 1.62 (ddd, $J=$ $12.4,9.2$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH} \alpha)$, $1.36\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.30-1.19(\mathrm{~m}, 3 \mathrm{H}, 14-\mathrm{CH} \alpha, 12-\mathrm{CH} \alpha$ and $7-\mathrm{CH} \alpha), 1.14(\mathrm{t}, \mathrm{J}=7$ $\mathrm{Hz}, 3 \mathrm{H}, 21-\mathrm{CH}_{3}$), 1.06 (ddd, $J=12.0,10.9$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH} \alpha$), $0.93\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $186.2,163.7,156.9,128.0,127.9,127.2,80.5,64.3,52.4,51.0,47.9,43.8,38.3,35.9,31.4,30.6,22.1,22.0,19.1$, 15.2, 14.2; IR (neat): 2941, 1738, 1664, 1403, 1186, 1092, 1010; m/z (APCI) 329.2 ($100 \%, \mathrm{M}+\mathrm{H}$), 283.2 (20\%); HRMSAPCI m/z $329.2107\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3}\right.$ requires 329.2111) .

8b

(6R,8R,9S,10R,13S,14S)-6-methoxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3Hcyclopenta[α]phenanthrene-3,17(6H)-dione

Isolated as an off-white solid (48 mg, 46\%). $\mathrm{R}_{\mathrm{f}}=0.55$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.03$ (d, $1 \mathrm{H}, J=10.1 \mathrm{~Hz}, 1-\mathrm{CH}), 6.2(\mathrm{dd}, J=10.1$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.18(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.89(\mathrm{app} . \mathrm{t}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.45(\mathrm{dd}, \mathrm{J}=19.4$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.22-2.16 (m, 1H, 7-CH β), 2.15-2.09 $(\mathrm{m}, 1 \mathrm{H}, 7-\mathrm{CH} \alpha), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{CH} \alpha), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}, 15-\mathrm{CH} \alpha), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH} \alpha$ and 12-CH$\beta), 1.74$ (ddd, $J=22.0,13.1$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH} \beta$), 1.66-1.59 (m, $1 \mathrm{H}, 15-\mathrm{CH} \beta$), $1.38\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right)$, 1.34-1.20 (m, $3 \mathrm{H}, 11-$ $\mathrm{CH} \beta, 12-\mathrm{CH} \alpha$ and $140-\mathrm{CH} \alpha), 1.10(\mathrm{dt}, J=12.2$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH} \alpha), 0.95\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 186.1,162.9,156.9,128.3,127.2,82.6,56.7,52.1,50.8,47.9,43.9,38.1,35.8,31.4,30.6,22.1,21.9,19.1$, 14.1; IR (film): 902, 1216, 1374, 1661, 1742, 2848, 2916; m/z (ES) 315.2 ($45 \%, \mathrm{M}+\mathrm{H}$), 283.2 (100%), 265.2 (15\%); HRMS-ES m/z $315.1955\left(\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{3}\right.$ requires 315.1955).

8c
($6 R, 8 R, 9 S, 10 R, 13 S, 14 S$)-6-(benzyloxy)-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3Hcyclopenta[α]phenanthrene-3,17(6H)-dione

Isolated as a white solid (26mg, 39\%). $\mathrm{R}_{\mathrm{f}}=0.56$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(600} \mathrm{MHz;} \mathrm{CDCl}{ }_{3}$) ס 7.37-7.34 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 6.25(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.19(\mathrm{~s}, 1 \mathrm{H}, 4-$ $\mathrm{CH}), 4.54\left(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CH}_{\mathrm{A}}\right), 4.29\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CH}_{\mathrm{B}}\right), 4.12(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, 6-\mathrm{CH} \alpha), 2.48(\mathrm{dd}, \mathrm{J}=19.3$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), 2.25-2.18 (m, $2 \mathrm{H}, 11-\mathrm{CH} \beta$ and $7-\mathrm{CH} \beta$), 2.08 (ddd, $J=19.3,18.6$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \alpha$), 1.97-1.90 (m, 1H, 15-CH β), 1.92-1.82 ($\mathrm{m}, 2 \mathrm{H}, 12-\mathrm{CH} \beta$ and $11-\mathrm{CH} \alpha$), $1.75(\mathrm{ddd}, J=13.0,12.6$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH} \beta$), 1.68-1.59 (m, 1H, 15-CH α), $1.46\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.34-1.22(\mathrm{~m}, 3 \mathrm{H}, 14-\mathrm{CH} \alpha, 12-\mathrm{CH} \alpha$ and $7-\mathrm{CH} \alpha), 1.12(\mathrm{ddd}, \mathrm{J}=13.0$, 10.8 and $3.9 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH} \alpha$), $0.95\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right)$; IR (neat): 2942, 1737, 1663, 1453, 1090; m/z (APCI) 391.2 (100\%, $\mathrm{M}+\mathrm{H})$, 373.2 (6\%); HRMS-APCI m/z $391.2267\left(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3}\right.$ requires 391.2268); $[\alpha]_{\mathrm{D}}^{20}=-8.2\left(c=0.3, \mathrm{CHCl}_{3}\right)$;

8d

(6R,8R,9S,10R,13S,14S)-6-tert-butoxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3Hcyclopenta[α]phenanthrene-3,17(6H)-dione

Isolated as a colourless crystalline solid ($74 \mathrm{mg}, 70 \%$). $\mathrm{R}_{\mathrm{f}}=0.51$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ $7.00(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}, 1-\mathrm{CH}), 6.18(\mathrm{dd}, J=10.1$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 6.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 4.29$ (app. t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH} \alpha), 2.45(\mathrm{dd}, J=19.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), $2.17(\mathrm{ddd}, J=22.0,11.4$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH} \beta)$, 2.10-2.02 ($\mathrm{m}, 1 \mathrm{H}, 16-\mathrm{CH} \alpha$), 1.96-1.89 (m, 2H, 12-CH β and $15-\mathrm{CH} \alpha$), $1.85(\mathrm{dt}, J=13.1$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{CH} \alpha), 1.72$ (ddd, $J=22.0,12.9$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH} \beta$), 1.65-1.56 (m, 1H, $15-\mathrm{CH} \beta$), 1.41 ($\mathrm{s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}$), 1.30-1.16 (m, 4H, 7$\mathrm{CH} \alpha, 11-\mathrm{CH} \beta, 12-\mathrm{CH} \alpha$ and $14-\mathrm{CH} \alpha$), 1.16 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{butyl}$), 1.01 (dt, $J=11.8$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH} \alpha$), 0.96 ($\mathrm{s}, 3 \mathrm{H}, 18-$ CH_{3}) ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 186.9,167.1,157.4,126.9,125.5,125.4,75.3,73.1,73.0,52.9,50.8,48.0,44.3$, $40.4,35.9,31.5,30.4,28.6,22.2,22.1,20.2,14.2$; IR (film): 961, 1015, 1643, 1783, 2904; m/z (APCI) 357.2 (33%, $\mathrm{M}+\mathrm{H}$), 301.2 (65%), 283.2 (100%); HRMS-APCI m/z $357.2423\left(\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{3}\right.$ requires 357.2424); $[\alpha]_{\mathrm{D}}^{20}=+30.8(c=1.0$, CHCl_{3}).

8e

(6R,8R,9S,10R,13S,14S)-10,13-dimethyl-3,17-dioxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3Hcyclopenta[α]phenanthren-6-yl acetate

Isolated as a white solid ($68 \mathrm{mg} ; 66 \%$). $\mathrm{R}_{\mathrm{f}}=0.47$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $10.2 \mathrm{~Hz}, 1-\mathrm{CH}), 6.30(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.21$ (dd, $J=10.2$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.52(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ $\mathrm{CH} \alpha$), 2.48 (dd, $J=19.4$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), $2.16(\mathrm{dt}, J=14.5$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH} \beta$), 2.13-2.06 (m, 1H, 16$\mathrm{CH} \alpha), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, 21-\mathrm{CH}_{3}\right), 1.97-1.92(\mathrm{~m}, 1 \mathrm{H}, 15-\mathrm{CH} \alpha), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{CH} \beta$ and $11-\mathrm{CH} \beta$), 1.71 (dd, $J=13.9$ and $4.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH} \beta$), 1.64-1.57 (m, 1H, 15-CH $)$, 1.39-1.34 (m, $1 \mathrm{H}, 7-\mathrm{CH} \alpha$), $1.34\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.33-1.20(\mathrm{~m}, 3 \mathrm{H}$, $14-\mathrm{CH} \alpha, 12-\mathrm{CH} \alpha$ and $11-\mathrm{CH} \alpha$), 1.14 (ddd, $J=13.9,12.8$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH} \alpha$), $0.97\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.1,169.9,159.9,156.0,128.8,128.7,127.4,74.6,51.9,50.6,47.9,43.3,36.7,35.8,31.3,30.7$, 22.1, 22.0, 21.5, 19.7, 14.1; IR (neat): 2943, 1735, 1663, 1372, 1236, 1218, 1021; m/z (APCI) 343.2 ($100 \%, \mathrm{M}+\mathrm{H}$), 283.2 (18\%); HRMS-APCI m/z $343.1904\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4}\right.$ requires 343.1904); $[\alpha]^{20}{ }_{\mathrm{D}}=+93.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

$8 f$

($6 R, 8 R, 9 S, 10 R, 13 S, 14 S$)-10,13-dimethyl-3,17-dioxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3Hcyclopenta[α]phenanthren-6-yl propionate

Isolated as an off-white solid ($81 \mathrm{mg} ; 71 \%$). $\mathrm{R}_{\mathrm{f}}=0.47$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR (600 MHz ; CDCl3) $\delta 7.00$ (d, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}, 1-\mathrm{CH}$), $6.30(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 6.21(\mathrm{dd}, J=10.2$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 5.54(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{CH} \alpha), 2.48\left(\mathrm{dd}, J=19.5\right.$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta$), $2.42-2.25\left(\mathrm{~m}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 2.15(\mathrm{dt}, J=14.5$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-$ $\mathrm{CH} \beta$), 2.11-2.02 (m, 1H, 16-CH α), 1.98-1.79 (m, 3H), 1.76-1.65 (m, 1H, 8-CH β), 1.63-1.52 (m, 1H, 15-CH 3), 1.40-1.31 $(\mathrm{m}, 1 \mathrm{H}), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.30-1.16(\mathrm{~m}, 4 \mathrm{H}), 1.13\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 22-\mathrm{CH}_{3}\right), 0.85\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.1,173.3,160.1,156.0,128.7,127.5,74.5,51.9,50.6,47.9,43.3,36.7,35.8,31.8,31.3,30.8,28.0$, 22.9, 22.0, 19.8, 14.1, 9.2; IR (film): 2942, 1735, 1680, 1454, 1170, 1011; m/z (APCI) 357.2 (100\%, M+H), 283.2 (45%); HRMS-APCI m/z $357.2056\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{4}\right.$ requires 357.2060); $[\alpha]^{20} \mathrm{D}=+86.2\left(c=0.8, \mathrm{CHCl}_{3}\right)$.

8g
(6R,8R,9S,10R,13S,14S)-10,13-dimethyl-3,17-dioxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3Hcyclopenta[α]phenanthren-6-yl 2-phenylacetate

Isolated as a white solid ($21 \mathrm{mg} ; 38 \%$). $\mathrm{R}_{\mathrm{f}}=0.51$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.33-7.12(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 6.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 6.18$ (dd, $J=10.2$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}$), $5.52(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH} \alpha), 3.63\left(\mathrm{~s}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 2.45(\mathrm{dd}, J=19.6$ and $9.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta)$, 2.15-2.00(m,2H), 1.93-1.75 (m, 3H), 1.71-1.53 (m, 2H), 1.42 (ddd, $J=18.3,12.5$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH} \beta), 1.32-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.11-1.01$ $(\mathrm{m}, 1 \mathrm{H}), 1.07\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 0.85\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.1,170.3,159.7,156.1,134.0$, $129.5,128.9,128.7,127.5,127.3,75.2,51.6,50.3,47.8,43.4,42.2,36.6,35.8,31.2,31.1,30.5,22.0,21.8,19.6,14.1$; IR (neat): 2362, 1735, 1665, 1247, 1011; m/z (APCI) 419.2 (100\%, M+H), 283.2 (12\%); HRMS-APCI m/z 419.2212 $\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{4}\right.$ requires 419.2217); $[\alpha]^{20}{ }_{\mathrm{D}}=-2.0\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

9a

($6 R, 8 R, 9 S, 10 R, 13 S, 14 S$)-6-ethoxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1 Hcyclopenta[α]phenanthrene-3,17(2H,6H)-dione

Isolated as a clear colourless oil ($25 \mathrm{mg}, 42 \%$). $\mathrm{R}_{\mathrm{f}}=0.42$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 5.76$ $(\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.80(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.38\left(\mathrm{dt}, J=9.3\right.$ and $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CH}_{\mathrm{A}}\right), 3.23(\mathrm{dt}, J=9.3$ and 7.1 Hz , $\left.1 \mathrm{H}, 20-\mathrm{CH}_{\mathrm{B}}\right), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=19.3$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH} \beta), 2.39-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 3 \mathrm{H})$, 2.02 (ddd, $J=13.3,4.9$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{ddd}, J=16.7$, 13.2 and $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.15\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 21-\mathrm{CH}_{3}\right), 0.96-0.91(\mathrm{~m}, 1 \mathrm{H}, 9-$ $\mathrm{CH}), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.9,164.5,128.0,79.6,63.7,54.2,51.3,47.8,38.4,37.3$, 37.2, 36.0, 34.4, 31.5, 30.2, 21.9, 20.4, 18.1, 15.2, 14.0; IR (film): 2943, 2859, 1736, 1678, 1227, 1079; m/z (APCI) $331.2(100 \%, \mathrm{M}+\mathrm{H})$; HRMS-APCI m/z $331.2268\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{3}\right.$ requires 331.2268$)$.

9b

($6 R, 8 R, 9 S, 10 R, 13 S, 14 S$)-6-methoxy-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1Hcyclopenta[α]phenanthrene-3,17(2H,6H)-dione

Isolated as a clear colourless oil ($21 \mathrm{mg}, 39 \%$). $\mathrm{R}_{\mathrm{f}}=0.42\left(50: 50\right.$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 5.79$ ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{CH}$), $3.69(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH} \alpha), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.57-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.18-1.91(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{dt}, J=$
13.0 and $3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH} \beta)$, $1.76-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{dd}, J=13.0$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH} \beta)$, 1.33-1.19(m,2H), $1.28(\mathrm{~s}$, $\left.3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 0.95(\mathrm{dd}, \mathrm{J}=10.8$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH} \alpha), 0.91\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta 199.8$, 163.6, 128.4, 81.8, 56.3, 54.1, 51.2, 47.8, 38.5, 37.3, 37.0, 36.0, 34.4, 31.5, 30.3, 21.9, 20.4, 18.2, 18.1, 14.0; IR (film): 2942, 1736, 1680, 1227, 1085, 729; m/z (APCI) $317.2(100 \% \mathrm{M}+\mathrm{H}) ; \mathrm{HRMS}-\mathrm{APCI} \mathrm{m} / \mathrm{z} 317.2116\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3}\right.$ requires 317.2111).

9c

($6 R, 8 R, 9 S, 10 R, 13 S, 14 S$)-6-(benzyloxy)-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1H-cyclopenta[a]phenanthrene-3,17(2H,6H)-dione

Isolated as a white solid ($82 \mathrm{mg}, 61 \%$). $\mathrm{R}_{\mathrm{f}}=0.56$ ($50: 50$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 MHz; CDCl ${ }_{3}$) $\delta 7.38-7.24(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{CH}), 4.50\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CH}_{\mathrm{A}}\right), 4.22\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CH}_{\mathrm{B}}\right), 3.90(\mathrm{t}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{CH}), 2.60-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.00-0.94$ (m, 1H, 9-H), $0.91\left(2,3 \mathrm{H}, 18-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,138.1,130.4,128.8,128.5,127.9,79.0,70.2$, $54.1,51.2,47.9,38.6,37.4,37.0,36.1,34.7,31.6,30.5,21.9,20.4,18.4,14.2$; IR (film): 2944, 2359, 1717, 1679, 1454, 1053; m/z (APCI) 393.2 (100\%, M+H), 375.23 (81%), 285.2 (25\%); HRMS-APCI m/z $393.2426\left(\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{3}\right.$ requires 393.2424); $[\alpha]^{20}{ }_{\mathrm{D}}=-12.7\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

9d
($6 R, 8 R, 9 S, 10 R, 13 S, 14 S$)-6-(tert-butoxy)-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-1 H cyclopenta[α]phenanthrene-3,17(2H,6H)-dione

Isolated as a clear colourless oil ($31 \mathrm{mg} ; 46 \%$). $\mathrm{R}_{\mathrm{f}}=0.53\left(50: 50\right.$ Hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 5.76$ ($\mathrm{s}, 1 \mathrm{H}, 4-\mathrm{CH}$), $4.14(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH} \alpha), 2.53-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{dt}, J=16.7$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H})$, 2.02-1.91 (m, 2H), 1.90-1.87 (m, 2H), 1.72-1.59 (m, 2H), 1.54-1.43 (m, 2H), 1.34 (s, 3H, 19-CH Cl_{3}), 1.29-1.18 (m, 3H), $1.15\left(\mathrm{~s}, 9 \mathrm{H}, t\right.$-butyl), $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 0.92-0.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.8,168.7,125.8,75.3$, $72.3,54.5,51.2,47.9,39.0,38.9,37.6,36.0,34.3,31.6,30.1,28.7,21.9,20.5,19.3,14.1$; IR (neat): 2942, 1738, 1677, 1365, 1188, 1042; m/z (APCI) 359 (25%, M+H), 303.2 (100\%); HRMS-APCI m/z $359.2577\left(\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{3}\right.$ requires 359.2581).

