Formation of SnS nanoflowers for lithium ion batteries

Dimitri D. Vaughn II, Olivia D. Hentz, Shuru Chen, Donghai Wang, and Raymond E. Schaak*

Department of Chemistry, Department of Mechanical and Nuclear Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802

Experimental Details

Materials:

Tin (II) Iodide (SnI₂, >99%), Tin (IV) Bromide (SnBr₄, 99%), Tin (IV) Iodide (SnI₄, 95%), and sulfur powder (99.5%) were purchased from Alfa Aesar. Oleylamine (>40%) was purchased from TCI America. Hexamethyldisilazane (HMDS, >99%) was purchased from Aldrich. All chemicals were used as received. Synthesis was carried out under Ar using standard Schlenk techniques. All work-up procedures were performed in air.

Characterization:

Powder X-ray diffraction (XRD) data were collected using a Bruker D8 Advance X-ray diffractometer equipped with CuK α radiation. Transmission electron microscopy (TEM) images and selected area electron diffraction (SAED) patterns were obtained using a JEOL 1200 EX II operating at 80 kV. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) data were performed on a FEI Nova NanoSEM 630 field-emission SEM.

Battery measurements were performed by first making a slurry in N-Methyl-2pyrrolidone (NMP) consisting of an 80:10:10 weight ratio of annealed SnS nanoflowers, Super P carbon black, and PVDF, respectively, was spread on a Cu foil using a doctorblade coating method, and then dried at 100 °C under vacuum overnight. The asprepared electrode, counter electrode (lithium metal) and separate membrane (Celgard 2400) were incorporated into a CR2016 coin-type cell in a glove box filled with Ar gas. The electrolyte was a 1 M LiPF₆ solution in a mixture of ethylene carbonate (EC), diethyl carbonate (DEC) and dimethyl carbonate (DMC) with a volume ratio of 1:1:1. The cointype cells were galvanostatically cycled on a battery testing system (BTS-5V1mA, Neware) under 50 mA g⁻¹ at room temperature. The cutoff potentials for charge and discharge were set at 1.1 V and 0.01 V vs. Li⁺/Li, respectively.

Synthesis:

A 1 M oleylamine-sulfide (OAM-S) stock solution was first prepared by dissolving 320 mg (10 mmol) of sulfur powder in 10 mL of oleylamine and sonicating until a dark red solution was obtained. In a typical synthesis of SnS nanoflowers, 40 mg (~0.1 mmol) of

Snl₂ and 20 mL (~60 mmol) of oleylamine were added to a 20 mL scintillation vial and sonicated until a clear colorless solution was obtained. This solution was then added to a 3-neck round-bottom flask fitted with a condenser, thermometer adapter, thermometer, and rubber septum. Next, 0.25 mL of the 1 M OAM-S stock solution (~0.25 mmol) and 1 mL (4.71 mmol) of hexamethyldisilazane (HMDS) were also added and stirred for 15 min. Finally, the solution was slowly heated to 200 °C at ~10 °C/min, resulting in the formation of a black-colored solution. This solution was allowed to age for 30 min and then was rapidly cooled by removing the reaction flask from the heating mantle. The samples prepared using SnBr₄ and SnI₄ were prepared using an identical procedure to the one above except that 90 mg and 60 mg of the starting Sn-precursor (~0.1 mmol) were used, respectively. The SnS nanoflowers were precipitated by adding 30 mL of a 3:1:1 acetone/hexane/toluene mixture and then centrifuged at 12,000 rpm for 10 min. The obtained powder was washed three times with a 1:1 toluene/ethanol mixture with centrifugation in between each wash. The product could then be suspended in toluene, hexane, ethanol, or methanol for further characterization, with dispersibility lasting on the order of a few minutes.

Additional Figures

Figure S1. Large-area FESEM image showing that the nanoflowers comprise the bulk of the sample.

Figure S2. EDX spectrum confirming the presence of Sn and S in a ~1:1 ratio.

Figure S3. EDX mapping data, showing the co-localization of Sn and S.

Figure S4. SnS nanoflowers formed using SnI_4 (left) and $SnBr_4$ (right) as the Sn reagent.

Figure S5. Nanoparticle agglomerates formed in the earliest stages of SnS nanoflower growth (comparable to Figures 3a and 3h).

Figure S6. Powder XRD pattern for SnS nanoflowers annealed at 600 $^{\circ}$ C for 1 h under N₂ (g).

Figure S7. Powder XRD pattern showing SnS nanoflowers after ~6 months of aging under ambient conditions in powder form. A TEM image showing the particle morphology after ~6 months of ambient storage is included in the inset.