Supporting information for

Approaching a Stable, Green Twisted Heteroacene Through "Clean reaction" Strategy

Gang Li,[†] Hieu M. Duong,[‡] Zhonghan Zhang,[†] Jinchong Xiao,[†] Lei Liu,[§] Yanli Zhao,[§] Hua Zhang,[†] Fengwei Huo,[†] Shuzhou Li,[†] Jan Ma,[†] Fred Wudl,^{"*} Qichun Zhang[†]*

[†]School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); [‡]Department of Chemistry,University of California, Los Angeles, CA, 90095; [§]School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); [†]Department of Chemistry and biochemistry,University of California,Santa Barbara, CA, 93106.

qczhang@ntu.edu.sg ; Wudl@chem.ucsb.edu

Contents

1.	General methods	2
2.	Synthesis	2-3
3.	Figure S1. The IR spectrum of compound 6	4
4.	Figure S2. The MS (ESI) spectrum of compound 6	5
5.	Figure S3. The ¹ H-NMR spectrum of compound 6	6
6.	Figure S4 . The 13 C-NMR spectrum of compound 6	7
7.	Figure S5. (a) The ¹ H-NMR spectrum of compound 3	8
8.	Figure S6 . The 13 C-NMR spectrum of compound 3	9
9.	Figure S7. The FT-IR spectrum of compound 3	10
10.	Figure S8. The MS-ESI spectrum of compound 3	11
11.	Figure S9. The MS-HiResMAIDI-TOF plot of compound 3	12
12.	Figure S10. The TGA analysis of compound 3	12
13.	X-ray crystallographic data of compound 6	13 -16
14.	References	16

1. General methods

1.1 *Measurements.* The NMR spectra were taken on a Bruker ARX 400 and 500 spectrometer. Electrochemistry was carried out with a BAS 100B/W potentiostat, employing a platinum button (diameter: 1.6 mm; area 0.02 cm²), a platinum wire and a 0.01 M Ag/AgNO₃ (Ag/Ag⁺) as working, counter and reference electrode, respectively. 0.1 M of tetrabutylammonium perchlorate (TBAP) in ODCB was used as the electrolyte. Since compound **3** was not very soluble in ODCB at room temperature, CV measurements were conducted at higher temperatures (*ca.* 150 °C).

Single-crystal data set of precursor **6** was collected at 103 K on a Bruker SMART APEX II CCD fitted with graphite monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). Data processing (APEXII and SMART) and absorption correction (SADABS) were accomplished by standard methods. The structure was solved by direct-methods using SHELXS-97 and refinement (anisotropic displacement parameters, hydrogen atoms in the riding model approximation and a weighting scheme of the form $w = 1/[\sigma^2(F_o^2) + (0.064P)^2 + 0.376P]$ for $P = (F_o^2 + 2F_c^2)/3)$ was on F^2 by means of SHELXL-97. CCDC number for compound **6** is 858853.

Materials. Meso-ionic pyrimidines $(5)^1$ and 3-amino-5,12-diphenyl-6:7,10:11bisbenzotetracene-2-carboxylic acid $(4)^2$ were prepared from reported procedures. All solvents were used without further purification.

2. Synthesis

2.1 Lactam cycloadduct 6. To mesoion **5** (114 mg, 0.39 mmol) and isoamyl nitrite (0.060 mL, 0.40 mmol) in 20 mL DCE was added a suspension of 3-amino-5,12-diphenyl-6:7,10:11-

bisbenzotetracene-2-carboxylic acid (4) (100 mg, 0.20 mmol) in 10 mL DCE over a span of 1h. After refluxing for an additional hour, DCE was removed. The resulting brown residue was purified by silica-gel column chromatography using dichloromethane : diethyl ether (9:1) as eluent to yield the lactam **6** (88 mg, 60%) as a tan powder; ¹H-NMR (500 MHz, CDCl₃) δ 8.12 (d, 2H), 8.05 (s, 1H), 7.88-7.85 (m, 6H), 7.79 (bs, 2H), 7.54-7.24 (bm, 19H), 2.71 (d, 6H); ¹³C-NMR (400 MHz, CDCl₃) δ 171.90, 142.13, 141.21, 137.06, 136.81, 135.86, 134.73, 131.92, 131.72, 131.62, 131.42, 131.10, 130.81, 130.55, 130.22, 130.1, 130.01, 129.93, 129.82, 129.26, 129.07, 128.80, 128.60, 127.68, 127.61, 127.46, 126.96, 126.86, 126.13, 125.86, 125.78, 125.28, 124.79, 124.73, 119.99, 81.06, 65.99, 33.93; IR (DRIFT) 3053, 2921, 1715, 1675, 1490, 1367, 1206, 1072, 831, 751, 694, 544 cm⁻¹. MS (ESI): 745.01 (M⁺ + H), calcd 745.28 (M⁺ + H); Elemental analysis, found C, 86.86; H, 4.95; N, 3.55; calcd C, 87.07; H, 4.87; N, 3.76.

2.2 2-Methyl-1,4,6,13- tetraphenyl-7:8,11:12-bisbenzo-anthro[g] isoquinolin-3(2*H*)-one 3. A neat sample of the lactam cycloadduct **6** (117 mg, 0.16 mmol) was purged 3x using nitrogen gas before heating at 220 °C under vacuum for 4h to give a green powder as **3** (105 mg, 100%). An alternate method is as follows: the lactam cycloadduct **6** was dispersed in tetrahydronaphthalene solvent. The solution was heated up to 220 °C for 4 hours and slow cooled to room temperature will give dark green crystals (98%). ¹H-NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.81-7.44 (m, 11H), 7.44-7.21 (m, 18H), 3.81 (s, 3H); ¹³C-NMR (400 MHz, CDCl₃) δ 158.24, 153.97, 141.18, 141.10, 136.82, 135.76, 135.65, 133.26, 132.17, 131.92, 131.78, 131.01, 130.79, 130.72, 130.43, 130.37, 130.17, 129.72, 129.60, 129.22, 129.07, 128.83, 128.76, 128.14, 127.48, 127.31, 126.80, 126.71, 126.19, 125.06, 125.00, 119.99, 117.40, 115.82, 37.18; IR (DRIFT): 3053, 2923, 1703, 1630, 1447, 1382, 1350, 1012, 829, 750, 701; MS (ESI): 688.47 (M⁺ + H), calcd 688.26 (M⁺ + H); MS (HiResMAlDI-TOF): 688.2637 (M⁺ + H), calcd 688.2640 (M⁺ + H), Elemental analysis, found C, 90.56; H, 4.65; N, 2.11; calcd C, 90.80; H, 4.84; N, 2.04.

Figure S1. The IR spectrum of compound 6.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Figure S2. The MS (ESI) spectrum of compound 6.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S3. The ¹H-NMR spectrum of compound 6.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Figure S4. The ¹³C-NMR spectrum of compound 6.

Figure S5. (a) The ¹H-NMR spectrum of compound **3**. (b) The magnified part of ¹H-NMR spectrum.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S6. The ¹³C-NMR spectrum of compound 3.

Figure S7. The FT-IR spectrum of compound 3.

Figure S8. The MS-ESI spectrum of compound 3.

Figure S9. The MS-HiResMAIDI-TOF plot of compound 3.

Figure S10. The TGA analysis of compound 3.

3. X-ray crystallographic data of compound 6

Table S1. Cell data parameters of Compound 6

Empirical formula	C55 H37Cl3 N2 O2		
Color and Habit	colorless plate		
Crystal Size (mm)	0.20×0.18×0.06		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions			
a (Å)	10.887(4)		
b (Å)	11.448(4)		
c (Å)	17.595(6)		
alpha (deg.)	102.152(5)		
beta (deg.)	96.560(5)		
gamma (deg.)	104.691(5)		
Volume(Å ³)	2041.0(11)		
Ζ	2		
Formula weight	864.22		
Density(cal.)(g/cm ³)	1.406		
Absorption coefficient(mm ⁻¹)	0.274		
F(000)	896		
Radiation	MoK\a 0.71073A		
Temperature(K)	100(2)		
Theta range (deg.)	1.90 to 28.29		
Reflections measured	18317		
Index ranges of measured data	-14<=h<=14, -14<=k<=15, -		
	22<=l<=22		
Independent reflections	9525 ($R_{int} = 0.0403$)		
Observed Reflection	6235 (>2sigma(I))		
Final R indices (obs.)	R1 = 0.0484, wR2 = 0.1068		
R indices (all)	R1 = 0.0902, wR2 = 0.1323		
Goodness-of-fit	0.769		

Table S2.	Bond	lengths	(Å)	and	angles	(deg.).	
1 abic 52.	Donu	lengths	(n)	anu	angies	(ucg.).	

O(1)-C(30)	1.214(3)	C(22)-C(39)	1.424(3)
O(2)-C(38)	1.222(3)	C(22)-C(23)	1.547(3)
N(1)-C(30)	1.378(3)	C(23)-C(24)	1.527(3)
N(1)-C(53)	1.473(3)	C(23)-C(38)	1.548(3)
N(1)-C(31)	1.498(3)	C(23)-C(30)	1.570(3)
N(2)-C(38)	1.356(3)	C(24)-C(29)	1.394(4)
N(2)-C(54)	1.467(3)	C(24)-C(25)	1.399(4)
N(2)-C(31)	1.483(3)	C(25)-C(26)	1.391(4)
C(1)-C(2)	1.394(3)	C(26)-C(27)	1.382(4)
C(1)-C(50)	1.395(3)	C(27)-C(28)	1.386(4)
C(2)-C(3)	1.376(4)	C(28)-C(29)	1.392(4)
C(3)-C(4)	1.395(4)	C(31)-C(32)	1.519(3)
C(4)-C(51)	1.424(3)	C(31)-C(39)	1.531(3)
C(4)-C(5)	1.442(4)	C(32)-C(33)	1.393(4)
C(5)-C(6)	1.346(4)	C(32)-C(37)	1.398(4)
C(6)-C(7)	1.434(4)	C(33)-C(34)	1.389(4)
C(7)-C(8)	1.401(4)	C(34)-C(35)	1.387(4)
C(7)-C(52)	1.433(3)	C(35)-C(36)	1.384(4)
C(8)-C(9)	1.374(4)	C(36)-C(37)	1.384(4)
C(9)-C(10)	1.398(4)	C(39)-C(40)	1.354(3)
C(10)-C(11)	1.394(3)	C(40)-C(41)	1.430(3)
C(11)-C(52)	1.419(3)	C(41)-C(42)	1.423(3)
C(11)-C(12)	1.490(3)	C(42)-C(49)	1.409(3)
C(12)-C(13)	1.402(3)	C(42)-C(43)	1.495(3)
C(12)-C(49)	1.443(3)	C(43)-C(48)	1.386(3)
C(13)-C(20)	1.422(3)	C(43)-C(44)	1.397(3)
C(13)-C(14)	1.497(3)	C(44)-C(45)	1.388(4)
C(14)-C(15)	1.389(4)	C(45)-C(46)	1.384(4)
C(14)-C(19)	1.399(3)	C(46)-C(47)	1.387(4)
C(15)-C(16)	1.394(4)	C(47)-C(48)	1.392(4)
C(16)-C(17)	1.387(4)	C(49)-C(50)	1.487(3)
C(17)-C(18)	1.379(4)	C(50)-C(51)	1.427(3)
C(18)-C(19)	1.382(4)	C(51)-C(52)	1.431(3)
C(20)-C(41)	1.413(3)	C(1S)- $Cl(3)$	1.758(3)
C(20)-C(21)	1.432(3)	C(1S)- $Cl(1)$	1.756(3)
C(21)-C(22)	1.368(3)	C(1S)- $Cl(2)$	1.767(3)
C(30)-N(1)-C(53)	114.2(2)	C(27)-C(28)-C(29)	121.0(3)
C(30)-N(1)-C(31)	113.8(2)	C(28)-C(29)-C(24)	120.5(3)
C(53)-N(1)-C(31)	119.0(2)	O(1)-C(30)-N(1)	123.4(2)
C(38)-N(2)-C(54)	119.0(2)	O(1)-C(30)-C(23)	122.9(2)
$C(\overline{38})-N(2)-C(31)$	117.2(2)	N(1)-C(30)-C(23)	113.5(2)
C(54)-N(2)-C(31)	122.6(2)	N(2)-C(31)-N(1)	106.83(19)
C(2)-C(1)-C(50)	122.3(2)	N(2)-C(31)-C(32)	108.8(2)
C(3)-C(2)-C(1)	120.5(2)	N(1)-C(31)-C(32)	113.4(2)

C(2)-C(3)-C(4)	119.9(2)	N(2)-C(31)-C(39)	107.2(2)
C(3)-C(4)-C(51)	120.0(2)	N(1)-C(31)-C(39)	103.44(19)
C(3)-C(4)-C(5)	120.5(2)	C(32)-C(31)-C(39)	116.6(2)
C(51)-C(4)-C(5)	119.5(2)	C(33)-C(32)-C(37)	118.3(2)
C(6)-C(5)-C(4)	121.3(2)	C(33)-C(32)-C(31)	122.0(2)
C(5)-C(6)-C(7)	121.2(2)	C(37)-C(32)-C(31)	119.4(2)
C(8)-C(7)-C(52)	119.9(2)	C(34)-C(33)-C(32)	120.4(3)
C(8)-C(7)-C(6)	121.0(2)	C(35)-C(34)-C(33)	120.3(3)
C(52)-C(7)-C(6)	119.0(2)	C(36)-C(35)-C(34)	119.7(3)
C(9)-C(8)-C(7)	120.0(2)	C(35)-C(36)-C(37)	119.9(3)
C(8)-C(9)-C(10)	120.4(2)	C(36)-C(37)-C(32)	121.1(3)
C(11)-C(10)-C(9)	121.8(2)	O(2)-C(38)-N(2)	123.1(2)
C(10)-C(11)-C(52)	118.1(2)	O(2)-C(38)-C(23)	125.3(2)
C(10)-C(11)-C(12)	122.6(2)	N(2)-C(38)-C(23)	111.6(2)
C(52)-C(11)-C(12)	119.2(2)	C(40)-C(39)-C(22)	120.5(2)
C(13)-C(12)-C(49)	119.6(2)	C(40)-C(39)-C(31)	127.5(2)
C(13)-C(12)-C(11)	121.9(2)	C(22)-C(39)-C(31)	111.6(2)
C(49)-C(12)-C(11)	118.5(2)	C(39)-C(40)-C(41)	121.0(2)
C(12)-C(13)-C(20)	120.3(2)	C(20)-C(41)-C(42)	120.3(2)
C(12)-C(13)-C(14)	122.1(2)	C(20)-C(41)-C(40)	118.8(2)
C(20)-C(13)-C(14)	117.5(2)	C(42)-C(41)-C(40)	120.8(2)
C(15)-C(14)-C(19)	119.1(2)	C(49)-C(42)-C(41)	120.1(2)
C(15)-C(14)-C(13)	118.8(2)	C(49)-C(42)-C(43)	124.8(2)
C(19)-C(14)-C(13)	122.2(2)	C(41)-C(42)-C(43)	115.1(2)
C(14)-C(15)-C(16)	120.5(3)	C(48)-C(43)-C(44)	118.6(2)
C(17)-C(16)-C(15)	119.7(3)	C(48)-C(43)-C(42)	120.9(2)
C(18)-C(17)-C(16)	120.1(3)	C(44)-C(43)-C(42)	120.4(2)
C(19)-C(18)-C(17)	120.5(3)	C(45)-C(44)-C(43)	121.1(2)
C(18)-C(19)-C(14)	120.2(3)	C(46)-C(45)-C(44)	119.6(3)
C(41)-C(20)-C(13)	119.0(2)	C(45)-C(46)-C(47)	120.0(2)
C(41)-C(20)-C(21)	118.8(2)	C(46)-C(47)-C(48)	120.2(3)
C(13)-C(20)-C(21)	122.2(2)	C(43)-C(48)-C(47)	120.5(3)
C(22)-C(21)-C(20)	120.9(2)	C(42)-C(49)-C(12)	118.5(2)
C(21)-C(22)-C(39)	119.9(2)	C(42)-C(49)-C(50)	123.3(2)
C(21)-C(22)-C(23)	126.2(2)	C(12)-C(49)-C(50)	118.2(2)
C(39)-C(22)-C(23)	113.6(2)	C(1)-C(50)-C(51)	117.2(2)
C(24)-C(23)-C(22)	113.6(2)	C(1)-C(50)-C(49)	123.3(2)
C(24)-C(23)-C(38)	117.5(2)	C(51)-C(50)-C(49)	119.4(2)
C(22)-C(23)-C(38)	107.21(19)	C(4)-C(51)-C(50)	120.1(2)
C(24)-C(23)-C(30)	111.4(2)	C(4)-C(51)-C(52)	119.0(2)
C(22)-C(23)-C(30)	100.95(19)	C(50)-C(51)-C(52)	120.9(2)
C(38)-C(23)-C(30)	104.55(19)	C(11)-C(52)-C(7)	119.3(2)
C(29)-C(24)-C(25)	117.8(2)	C(11)-C(52)-C(51)	120.8(2)
C(29)-C(24)-C(23)	124.1(2)	C(7)-C(52)-C(51)	119.9(2)
C(25)-C(24)-C(23)	118.1(2)	Cl(3)-C(1S)-Cl(1)	110.21(15)

C(26)-C(25)-C(24)	121.6(2)	Cl(3)-C(1S)-Cl(2)	110.11(15)
C(27)-C(26)-C(25)	120.0(3)	Cl(1)-C(1S)-Cl(2)	111.30(15)
C(26)-C(27)-C(28)	119.2(3)		

4. References

- 1. Kappe, T.; Pocivalnik, D. Heterocycles 1983, 20, 1367.
- 2. Zhang, Q.; Divayana, Y.; Xiao, J.; Wang, Z.; Tiekink, E. R. T.; Doung, H. M.; Zhang, H.; Boey, F.; Sun, X. W.; Wudl F. *Chem. Eur. J.* **2010**, *16*, 7422.