Supporting Information for

Selective total encapsulation of the sulfate anion by neutral nano-jars

Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei*

Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA

gellert.mezei@wmich.edu

GENERAL

All commercially available reagents were used as received. NMR and UV-Vis spectra were recorded at room temperature on a Jeol JNM-ECP400 and a Shimadzu UV 2101 PC spectrophotometer, respectively. X-Ray diffraction data was collected at 100 K from single crystals mounted atop a glass fiber under Paratone-N oil with a Bruker SMART APEX II diffractometer, using graphite-monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation.

EXPERIMENTAL DETAILS

Synthesis of $(Bu_4N)_2SO_4$. 340 mg (Bu₄N)HSO₄ (1 mmol) was dissolved in a minimum amount of water, and 1.00 ml aqueous Bu₄NOH ,1M (259 mg, 1 mmol) was added under stirring. The water was removed from the resulting solution under vacuum, and the product was dried for several days under high vacuum.

Synthesis of $Cu^{II}(\mu - OH)(\mu - pz)]_{\infty}$ A solution of 4.471 g KOH (pellets, 85%) (68 mmol) and 2.306 g pyrazole (34 mmol) in 150 ml H₂O was added dropwise under vigorous stirring to a solution of 8.456g CuSO₄·5H₂O (34 mmol) in 150 ml H₂O. The blue-purple precipitate formed was stirred overnight, then filtered and washed extensively with water. 4.950 g of [Cu(μ -OH)(μ -pz)]_n was obtained as a blue-purple powder after drying (99 %).

Synthesis of $(Bu_4N)_2[SO_4^{2-}] \subset \{cis-Cu^{II}(\mu-OH)(\mu-pz)\}_{6+12+10}]$ (Bu₄N-1), and $(Bu_4N)_2[SO_4^{2-}] \subset \{cis-Cu^{II}(\mu-OH)(\mu-pz)\}_{8+14+9}]$ (Bu₄N-2).

Method A. 1.000 g $[Cu^{II}(\mu-OH)(\mu-pz)]_{\infty}$ was stirred together with 150 mg $(Bu_4N)_2SO_4$ in 50 ml THF for 14 hours under reflux. The resulting deep blue solution was filtered, the solvent

removed, and the product dried in vacuum. Yield: 1.140 g dark blue powder. Similar result were obtained using toluene instead of THF.

Method B. 9.988 g CuSO₄·5H₂O (40 mmol), 5.093 g KOH (pellets, 85%) (77 mmol), 2.723 g pyrazole (40 mmol) and 3.0 ml Bu₄NOH (1M in H₂O) (3 mmol) were stirred together in 150 ml THF for 3 days. The deep blue solution was filtered and the solvent removed. Yield: 6.703 g dark blue powder (>99%).

Method C. A solution of 4.994 g CuSO₄·5H₂O (20 mmol) in 100 ml DMF was mixed with a solution of 2.546 g KOH (pellets, 85%) (39 mmol), 1.362 g pyrazole (20 mmol) and 1.5 ml Bu₄NOH (1M in H₂O) (1.5 mmol) in 20 ml methanol. The deep blue solution was stirred for 1 day, filtered and the solvent was removed under vacuum. Yield: 3.165 g (>94%).

Method D. 968 mg CuSO₄·5H₂O (3.9 mmol), 495 mg KOH (pellets, 85%) (7.5 mmol), 264 mg pyrazole (3.9 mmol) and 0.25 ml Bu₄NOH (1M in H₂O) (0.25 mmol) were added to 15 ml CH₂Cl₂, and stirred for 3 days. The deep blue solution was filtered and the solvent removed to yield 400 mg of a dark blue powder (> 62%).

Synthesis of $(Et_3NH)_2[SO_4^{2-} \subset \{cis-Cu^{II}(\mu-OH)(\mu-pz)\}_{6+12+10}]$ (Et_3NH-1) , and $(Et_3NH)_2[SO_4^{2-} \subset \{cis-Cu^{II}(\mu-OH)(\mu-pz)\}_{8+14+9}]$ (Et_3NH-2) . 9.988 g CuSO₄·5H₂O (40 mmol) were dissolved in 100 ml DMF with stirring. 2.723 g pyrazole (40 mmol) and 14 ml Et₃N (10.164 g, 100 mmol) were added consecutively, resulting in immediate color change from green to blue to dark blue. 300 ml H₂O were added under stirring, and the blue precipitate formed was filtered, washed thoroughly with water (until no sulfate could be detected with BaCl₂) and dried. Yield: 6.300 g dark blue powder (>99%).

Synthesis of $(K^+ \subset 18 \text{-} crown - 6)_2[SO_4^{2-} \subset \{cis - Cu^{II}(\mu - OH)(\mu - pz)\}_{6+12+10}]$ (K18C6-1), and $(K^+ \subset 18 \text{-} crown - 6)_2[SO_4^{2-} \subset \{cis - Cu^{II}(\mu - OH)(\mu - pz)\}_{8+14+9}]$ (K18C6-2). 968 mg CuSO₄·5H₂O (3.9 mmol), 512 mg KOH (pellets, 85%) (7.8 mmol), 264 mg pyrazole (3.9 mmol) and 73 mg 18-crown - 6 (0.3 mmol) were stirred together in 15 ml THF for 2 days. The deep blue solution was filtered and the solvent removed. Yield: 664 mg dark blue powder (>99%).

Sulfate binding studies. A solution of 500 mg Bu₄N-1/Bu₄N-2 in 10 ml CH₂Cl₂ was vigorously stirred with a solution of 118 mg Ba(OH)₂·8H₂O in 5 ml H₂O (pH = 13.2) for two weeks. The pH was then lowered to 1 with aqueous HCl solution, which led to the formation of a white BaSO₄ precipitate. A control reaction ran by stirring a solution of 60 mg (Bu₄N)₂SO₄ in 10 ml

 CH_2Cl_2 (containing the same amount of sulfate as the sample used above) with aqueous $Ba(OH)_2$ resulted in the immediate precipitation of $BaSO_4$.

Selectivity studies. 0.178 g CuSO₄·5H₂O, 4.487 g Cu(NO₃)₂·2.5H₂O (or 7.148 g Cu(ClO₄)₂·6H₂O), 1.362 g pyrazole and 7 ml Et₃N were stirred together in 50 ml DMF for two hours. 150 ml water was added, the blue precipitate stirred for 5 minutes, filtered, washed thoroughly with water and dried in vacuum. Similar results were obtained using an aqueous solution of the copper-salts and a CH₂Cl₂ solution of pyrazole and Et₃N, in which case the rings were extracted into the organic phase. 1000.0(±0.1) mg of the product was dissolved in 15 ml HCl 6 M at 90 °C, and a solution hot for two hours, the precipitated BaSO₄ was filtered on a pre-weighted filter crucible, washed with water and dried in an oven to constant weight. Expected BaSO₄ amount: 52.6 mg if the product was pure Et₃NH -1, and 47.9 mg if the product was pure Et₃NH -2. Amount of BaSO₄ found: $51.8(\pm0.1)$ mg for the sulfate/perchlorate experiment. A reference experiment with Et₃NH - 1/Et₃NH -2 synthesized from CuSO₄·5H₂O only was also carried out; $50.3(\pm0.1)$ mg of BaSO₄ were obtained.

CRYSTALLOGRAPHY

Once removed from the mother liquor, all crystals reported here are extremely sensitive to solvent loss at ambient conditions, and were mounted quickly under the cryostream to prevent decomposition. The structures were solved employing the SHELXTL-direct methods program and refined by full-matrix least-squares on F^2 , using the APEX2 v2008.2-0 software package.¹

<u>Bu₄N-1.6C₇H₈</u>. All non-hydrogen atoms were refined with independent anisotropic displacement parameters, except the disordered terminal tetrabutylammonium carbon atoms C100, C104, C288, and the toluene solvent molecules. C–H hydrogen atoms were placed in idealized positions and refined using the riding model, except for the disordered terminal tetrabutylammonium carbon atoms C87, C88, C288, C99, C100, C200, C103, C104, C204, and the toluene solvent molecules, on which they were not placed. O–H hydrogen atoms were located from the difference Fourier map; their displacement parameters were fixed to be 20 % larger than those of the attached O atoms, and the bond lengths were restrained to 0.82 Å. Three

sulfate O-atoms are disordered over two positions around the molecule's three-fold axis. Two toluene solvent molecules are each disordered over two positions.

<u>Bu₄N-2·2.5C₇H₈·2.5C₆H₁₄·0.5C₆H₁₂</u>: Due to poor crystal quality, over twenty-five crystals from five different batches were screened, and three data sets were collected; the best of the three is presented here. All non-hydrogen atoms were refined with independent anisotropic displacement parameters, except the disordered Bu₄N⁺ counterion and the solvent molecules (toluene, hexane, cyclohexane). Pyrazole C–H hydrogen atoms were placed in idealized positions and were refined using the riding model. Hydrogen atoms were not placed on the disordered Bu₄N⁺ counterion and the solvent molecules. The hydrogen atoms of the O–H groups could not be located in Fourier difference maps. The disorder could only be modeled in the case of a toluene and a hexane molecule, which occupy the same space with SOFs of 50% each. The cyclohexane molecule (which originates in the mixture of different hexane isomers used for crystal growth), has its SOFs fixed at 50%.

Despite the rather poor quality of the crystals, the identity of **1** and **2** was clearly identified in all crystals studied. Crystallographic details for **1** and **2** are summarized in Table S1, and thermal ellipsoid plots are shown in Figures S1 and S2. Preliminary data for Bu_4N-1 , Bu_4N-2 and $K^+18C6-2$, crystallized from different solvents, are shown below. In each case, the assembly crystallizes with several disordered solvent molecules.

Compound	$\underline{\mathrm{Bu}_{4}\mathrm{N-1}}\cdot 6(\underline{\mathrm{C}_{7}\mathrm{H}_{8}})$	$\underline{\text{Bu}_{4}\text{N-2}} \cdot 2.5(\underline{\text{C}_{7}\text{H}_{8}}) \cdot 2.5(\underline{\text{C}_{6}\text{H}_{14}}) \cdot 0.5(\underline{\text{C}_{6}\text{H}_{12}})$
Formula	$C_{158}H_{232}Cu_{28}N_{58}O_{32}S$	$C_{160.5}H_{257}Cu_{31}N_{64}O_{35}S$
Formula weight	5267.20	5645.10
Crystal system	Triclinic	Triclinic
Space group	P-1 (No. 2)	P-1 (No. 2)
a / Å	20.4917(3)	20.4153(9)
b / Å	20.7379(3)	22.910(1)
c / Å	28.6519(6)	25.866(1)
α/°	99.579(1)	103.685(3)
β/°	100.964(1)	94.975(3)
$\gamma/^{\circ}$	116.430(1)	110.593(3)
$V/Å^3$	10258.3(3)	10809.7(9)
Ζ	2	2
$D_{calc} / g cm^{-3}$	1.705	1.734
μ / mm^{-1}	2.919	3.062
Reflections collected/unique	462322 /48814	206783/38159
Observed reflections	34873	27784
Goodness-of-fit (on F ²)	1.219	2.849
$R(F); R_w(F) (I \ge 2\sigma(I))$	0.0490; 0.1519	0.1332; 0.4066

 Table S1. Crystallographic details.

 $(\mathbf{K}^+ \subset \mathbf{18C6})_2[\mathbf{SO_4}^{2-} \subset \{cis - \mathbf{Cu}^{\mathrm{II}}(\mu - \mathbf{OH})(\mu - \mathbf{pz})\}_{8+14+9}]$ from n-butyl acetate: monoclinic, C2/c, a = 50.639(1) Å, b = 27.6036(5) Å, c = 33.5667(6) Å, $\alpha = 90.000^\circ$, $\beta = 100.038(1)^\circ$, $\gamma = 90.000^\circ$, V = 46202(2) Å³, Z = 8.

 $(\mathbf{Bu_4N})_2[\mathbf{SO_4}^2 \subset \{cis-\mathbf{Cu^{II}}(\mu-\mathbf{OH})(\mu-\mathbf{pz})\}_{6+12+10}]$ from chlorobenzene: triclinic, P-1, a = 20.4484(3) Å, b = 20.7128(3) Å, c = 28.6607(6) Å, $\alpha = 100.025(1)^\circ$, $\beta = 100.125(1)^\circ$, $\gamma = 116.533(1)^\circ$, V = 10242.2(3) Å³, Z = 2.

 $(\mathbf{Bu_4N})_2[\mathbf{SO_4}^{2-} \subset \{cis-\mathbf{Cu^{II}}(\mu-\mathbf{OH})(\mu-\mathbf{pz})\}_{6+12+10}]$ from n-butanol: triclinic, P-1, a = 19.870(1) Å, b = 29.111(2) Å, c = 35.789(2) Å, $\alpha = 88.570(1)^\circ$, $\beta = 77.827(1)^\circ$, $\gamma = 77.036(1)^\circ$, $\mathbf{V} = 19714(1)$ Å³, Z = 4.

 $(\mathbf{Bu_4N})_2[\mathbf{SO_4}^{2-} \subset \{cis-\mathbf{Cu^{II}}(\mu-\mathbf{OH})(\mu-\mathbf{pz})\}_{8+14+9}]$ from chlorobenzene: triclinic, P-1, a = 20.548(1) Å, b = 22.937(2) Å, c = 25.545(3) Å, $\alpha = 103.374(6)^\circ$, $\beta = 95.460(6)^\circ$, $\gamma = 110.430(4)^\circ$, V = 10770(2) Å³, Z = 2.

 $(\mathbf{Bu_4N})_2[\mathbf{SO_4}^{2-} \subset \{cis-\mathbf{Cu^{II}}(\mu-\mathbf{OH})(\mu-\mathbf{pz})\}_{6+12+10}]$ from dichloromethane, triclinic, P-1, a = 14.7908(3) Å, b = 20.3545(3) Å, c = 35.4641(6) Å, $\alpha = 91.146(1)^\circ$, $\beta = 97.722(1)^\circ$, $\gamma = 101.687(1)^\circ$, V = 10348.4(3) Å³, Z = 2.

 $(\mathbf{Bu_4N})_2[\mathbf{SO_4}^{2-} \subset \{cis-\mathbf{Cu^{II}}(\mu-\mathbf{OH})(\mu-\mathbf{pz})\}_{8+14+9}]$ from toluene: triclinic, P-1, a = 20.4153(9) Å, b = 22.910(1) Å, c = 25.866(1) Å, a = 103.685(3)^\circ, $\beta = 94.975(3)^\circ$, $\gamma = 110.593(3)^\circ$, V = 10809.7(9) Å³, Z = 2.

 $(\mathbf{Bu_4N})_2[\mathbf{SO_4}^{2-} \subset \{cis-\mathbf{Cu^{II}}(\mu-\mathbf{OH})(\mu-\mathbf{pz})\}_{6+12+10}]$ from 1,2-dichloroethane: triclinic, P-1, a = 14.8699(6) Å, b = 20.3182(7) Å, c = 35.486(1) Å, \alpha = 91.049(2)^{\circ}, \beta = 96.495(2)^{\circ}, \gamma = 101.410(2)^{\circ}, V = 10433.0(7) Å^3, Z = 2.

 $(\mathbf{Bu_4N})_2[\mathbf{SO_4}^{2-} \subset \{cis-\mathbf{Cu^{II}}(\mu-\mathbf{OH})(\mu-\mathbf{pz})\}_{6+12+10}]$ from n-butylamine: triclinic, P-1, a = 20.246(3) Å, b = 29.767(10) Å, c = 35.507 (6) Å, $\alpha = 96.453(2)^{\circ}$, $\beta = 91.433(2)^{\circ}$, $\gamma = 103.069(2)^{\circ}$, V = 20685(3) Å³, Z = 4.

Figure S1. Thermal ellipsoid plot (50%) of $Bu_4N-1 \cdot 6C_7H_8$. H atoms, Bu_4N^+ counterions and solvent molecules are omitted for clarity.

Figure S2. Thermal ellipsoid plot (50%) of $Bu_4N-2 \cdot 2.5C_7H_8 \cdot 2.5C_6H_{14} \cdot 0.5C_6H_{12}$. H-atoms, Bu_4N^+ counterions and solvent molecules are omitted for clarity.

Figure S3. Illustration of the ion-association between Bu_4N^+ and the sulfate-encapsulating nano-toroid 1 (top-view). Color-code: S-yellow, O-red, Cu-blue, N-light blue, C-black, H-pink.

Figure S4. Illustration of the 6+12+10 ring assembly encapsulating the sulfate anion (side-view). Color code for atoms: Cu-dark blue, O-red, S-yellow. Pentagons denote pyrazole ligands (light blue: 6-membered ring, violet: 12-membered ring, lime green: 10-membered ring).

Figure S5. Illustration of the 6+12+10 ring assembly encapsulating the sulfate anion (top-view).

Figure S6. Illustration of the 8+14+9 ring assembly encapsulating the sulfate anion (side-view). Color code for atoms: Cu-dark blue, O-red, S-yellow. Pentagons denote pyrazole ligands (pink: 9-membered ring, orange: 14-membered ring, green: 8-membered ring).

Figure S7. Illustration of the 8+14+9 ring assembly encapsulating the sulfate anion (top-view).

SPECTROSCOPY

Figure S8. UV-vis spectrum of Bu₄N-1/Bu₄N-2 in DMF and CH₂Cl₂.

Table S2. ¹H NMR chemical shifts of the $[N(CH_2CH_2CH_2CH_3)_4]^+$ counterion protons in DMSO-d₆, CD₃CN, (CD₃)₂CO and CDCl₃.

	DMSO-d ₆	CD ₃ CN	(CD ₃) ₂ CO	CDCl ₃	DMSO-d ₆	CD ₃ CN	(CD ₃) ₂ CO	CDCl ₃	
	(Bu ₄ N) ₂ [SO ₄ {Cu(µ-OH)(µ-pz)} _n]				Bu₄N[Cu₃(μ₃-OH)(μ-pz)₃Cl₃]				
CH ₂	3.25	3.48	4.22	4.40	3.15	3.07	3.43	3.97	
CH ₂	1.67	2.75	3.39	~4.2	1.56	1.61	1.84	2.37	
CH ₂	1.58	2.14	2.71	3.16	1.30	1.37	1.48	2.37	
CH_3	1.18	2.03	2.30	2.97	0.93	0.98	1.01	1.49	
	(Bu ₄ N) ₂ SO ₄				Bu₄NCI				
CH_2	3.17	3.14	3.59	3.49	3.18	3.13	3.54	3.38	
CH_2	1.57	1.60	1.77	1.62	1.57	1.60	1.80	1.65	
CH_2	1.31	1.34	1.43	1.42	1.30	1.34	1.41	1.43	
CH ₃	0.93	0.96	0.96	0.93	0.93	0.95	0.96	0.98	