Supporting Information

Gold-catalyzed Room-Temperature Isomerization of Unactivated Allenes to 1,3-Dienes

Ting Chun-Ming, Hsu Yi-Lin and Rai-Shung Liu*

Table of contents:

(a)	Experimental	Procedures	for	Synthesis	of	the	Substrates	and	Catalytic
	Operations								S2
(b)	Standard proce	edure for catal	ytic	operations					S7
(c)	Spectrum data-								S8
(d)	X-Ray data for	compound (5c)						S20

(a)Experimental Procedures for Synthesis of the Substrates and Catalytic Operations

(1) General Sections

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula and septa apparatus. Benzene, , tetrahydrofuran and hexane were dried with sodium benzophenone and distilled before use. Dichloromethane, diethyl ether and acetonitrile was dried over CaH₂ and distilled before use. NMR spectra were run at 400 MHz (¹H NMR) or 100 MHz (¹³C NMR) in CDCl₃ or CD₂Cl₂.

(2)Preparation of (3-methylbuta-1,2-dien-1-yl)benzene (1a)

To a THF (60 mL) solution of 1-bromo-1-propene (2.6 mL, 30.1 mmol) was added n-butyl-lithium (2.5 M, 22.6 mL, 56.5 mmol) at -78 °C, and the mixture was stirred for 30 min before it was treated with benzaldehyde (2g, 18.8 mmol in 5 mL THF). The solution was stirred for 1 hour at room temperature. Acetic anhydride (2.8 mL, 30.1 mmol) was add to this solution at 0 °C, and the solution was stirred for another 1 hour before addition water. The aqueous solution was extracted with EtOAc, and the organic phase was dried over MgSO4, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate S-1 (3.05 g, 86 %).

To a THF (50 mL) solution of CuI (5,87 g, 21.2 mmol) and LiBr (2.67 g, 21.1 mmol) was added MeMgCl (22 wt% in THF, 10.2 mL, 21.2 mmol) at 0 °C. The solution was stirred for 1 hour before added the S-1 (2.9 g, 15.4 mmol) and stirred 8 hour at room temperature. The solution was put into a beaker that contained 50 ml Sat.Na₂CO_{3(aq)} and 50 mL hexane, then removed the solid by filter paper. The

aqueous solution was extracted with EtOAc, and the organic phase was dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate **1a** (2 g, 92 %) as colorless oil. We used the same procedure to prepared substrate **1b~d** and **1k~n**.

(3) Preparation of buta-1,2-diene-1,3-diyldibenzene^[s1] (1e)

To a THF (30 mL) solution of phenylacetylene (2 g, 19.6 mmol) was added n-butyl-lithium (2.5 M, 9.4 mL, 23.5 mmol) at -40 °C. After stirring in this temperature for 30 min, HMPA (1 mL, 5.5 mmol) was added and the reaction was allowed to warm up to room temperature within 20 min. Then iodoethane (2.2 mL, 29.4 mmol) was added to the solution and the resulting solution was heated to reflux for 8 hours, The reaction was then quenched with a saturated aqueous NH₄Cl solution, The aqueous solution was extracted with ether, and the organic phase was dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate S-2 (1.9 g, 75 %).

To a THF (20 mL) solution of S-2 (500 mg, 3.8 mmol) was added LDA (6.9 mmol) at 0 $^{\circ}$ C, the reaction was allowed to warm up to room temperature within 1 h, Then a solution of dry ZnBr₂ (4.32 g, 19.0 mmol) in THF (10 mL) was added and stirred for 25 min. Pd(PPh₃)₄ (222 mg, 0.2 mmol) in THF(3 mL) and 4-bromoiodobenzene (0.44 mL, 3.4 mmol) were added subsequently, and the resulting mixture was stirred at room temperature. After the reaction was complete as monitored by TLC, it was quenched with saturated NH₄Cl solution. The aqueous solution was extracted with ether, and the organic phase was dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate **1e** (0.8 g, 80 %).

[s1]: Jinbo Zhao, Yu Liu, Qiwen He, Yuxue Li, Shengming Ma, *Chem. Eur. J.* 2009, 15, 11361

(4)Preparation of (3-methylhepta-1,2-dien-1-yl)benzene (1f)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

To a THF (30 mL) solution of 1-hexyne (1.4 mL, 12.2 mmol) was added n-butyl-lithium (2.5 M, 4.5 mL, 11.4 mmol) at -78 °C, and the mixture was stirred for 30 min before it was treated with benzaldehyde (1g, 9.4 mmol in 5 mL THF). The solution was stirred for 1 hour at room temperature. Acetic anhydride (1.5 mL, 15.1 mmol) was add to this solution at 0 °C, and the solution was stirred for another 1 hour before addition water. The aqueous solution was extracted with EtOAc, and the organic phase was dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate S-3 (2.0 g, 92 %).

To a THF (50 mL) solution of CuI (3.6 g, 8.6 mmol) and LiBr (0.75 g, 8.6 mmol) was added MeMgCl (22 wt% in THF, 2.9 mL, 8.6 mmol) at 0 °C. The solution was stirred for 1 hour before added the S-3 (1 g, 4.3 mmol) and stirred 8 hour at room temperature. The solution was put into a beaker that contained 50 ml Sat.Na₂CO_{3(aq)} and 50 mL hexane, then removed the solid by filter paper. The aqueous solution was extracted with EtOAc, and the organic phase was dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate **1f** (0.7 g, 86 %) as colorless oil.

(5) Preparation of (2-cyclopentylidenevinyl)benzene^[s2] (1h)

To a solution of THF (20 mL) of phenylacetylene (0.77 mL, 6.8 mmol) was added n-butyl-lithium (2.5 M, 2.6 mL, 6.5 mmol) at 0 °C. After stirring for 1 h at the same tempreture, Cyclopentanone (0.5 g, 5.9 mmol)was added and the mixture was

warmed up to room tempreture and stirred for 3 h. The reaction mixture was quenched with with a saturated aqueous NH_4Cl solution, The aqueous solution was extracted with ether, and the organic phase was dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate S-4 (0.9 g, 83 %).

At 0 °C, to a suspension of NaH (0.3 g, 7.4 mmol) in THF and DMF (5:1) was added dropwise to a THF solution (5 mL) of S-4 (1.15 g, 6.2 mmol) with stirring for 1 hour, Me_2SO_4 (1.5 equiv) was added at 0 °C and stirred at room tempreture for another 2 h. The reaction mixture was quenched with with a saturated aqueous NH₄Cl solution, The aqueous solution was extracted with ether, and the organic phase was dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate S-5 (1.13 g, 92 %).

To a solution of Cp_2ZrCl_2 (1.16 g, 3.99 mmol) in THF (20 mL) was added *n*-BuLi (2.5 M, 3.2 mL, 7.98 mmol) at -78 °C. After the mixture was stirred for 1 h at the same temperature, S-5 (0,5 g, 2.5 mmol) was added, and then the mixture was warmed to room temperature and stirred for 3 h. The reaction mixture was quenched with 3 N HCl aqueous solution and extracted with ethyl ether. The extract was washed with saturated NaHCO3 solution and dried over MgSO₄, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate S-4 (0.36 g, 85 %). We used the same procedure to prepared substrate **1g**, **1i**. and **d**₆-**2a**.

[s2]: Hao Zhang, Xiaoping Fu, Jingjin Chen, Erjuan Wang, Yuanhong Liu,, Yuxue Li, *J. Org. Chem.* **2009**, *74*, 9351.

(6) Preparation of octa-2,3-dien-2-ylbenzene (1j)

To a stirred solution of phenylacetylene (2.37 g, 23.2 mmol) in THF (20 mL) at 0 $^{\circ}$ C was slowly added *n*-BuLi (2.5 M in hexane, 9.3 mL, 23.2 mmol). The reaction mixture was further stirred at 0 $^{\circ}$ C for 30 min before addition of n-Valeraldehyde (2.00 g, 23.2 mmole). The reaction was then warmed to room temperature for 30 mins. After the addition of acetic anhydride (3.5 mL, 37.2 mmol) at 0 $^{\circ}$ C, the reaction mixture was

further stirred at room temperature for 2 hour. The reaction mixture was quenched with water followed by extraction with ethyl acetate. The organic layer was washed with brine, dried over anhydrous MgSO₄, and concentrated. The resulting oily residue was purified by silica gel column chromatography (hexane:EA = 10:1) to give pure S-6 (4.80 g, 20.9 mmol, 90%).

Then a stirred solution of CuI (3.31 g, 17.4 mmol) and LiBr (1.51 g, 17.4 mmol) in THF at 0 °C was slowly added MeMgCl (22% in THF, 5.79 mL, 17.4 mmol). The reaction mixture was further stirred at room temperature for 30 min before addition of S-6 (2.00 g, 8.7 mmol) at 0 °C. The reaction mixture was then stirred at room temperature overnight. The solution was put into a beaker that contained 50 ml Sat.Na2CO3(aq) and 50 mL hexane, then removed the solid by filter paper. The aqueous solution was extracted with EtOAc, and the organic phase was dried over MgSO4, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate1j (1.33g, 7.1 mmol, 82%).

(7) Preparation of (4-methylpenta-2,3-dien-2-yl)benzene (10)

To a stirred solution of 1-bromo-1-propene (2.3 mL, 26.6 mmol) in THF (80 mL) at -78 °C was slowly added *n*-BuLi (2.5 M in hexane, 20.0 mL, 50.0 mmol). The reaction mixture was further stirred for 30 min before addition of acetophenone (2.00 g, 16.6 mmole). The reaction was then warmed to room temperature for 30 mins. After the addition of acetic anhydride (3.1 mL, 33.3 mmol) at 0 °C, the reaction mixture was further stirred at room temperature for 2h. The reaction mixture was quenched with water followed by extraction with ethyl acetate. The organic layer was washed with brine, dried over anhydrous MgSO₄, and concentrated. The resulting oily residue was purified by silica gel column chromatography (hexane:EA = 10:1) to give pure S-7 (2.96 g, 14.6 mmol, 88% yield).

Then a stirred solution of CuI (3.77 g, 19.8 mmol) and LiBr (1.73 g, 19.8 mmol) in THF at 0 °C was slowly added MeMgCl (22% in THF, 6.67 mL, 19.8 mmol). The reaction

mixture was further stirred at room temperature for 30 min before addition of S-7 (2.00 g, 9.9 mmol) at 0 °C. The solution was put into a beaker that contained 50 ml Sat.Na2CO3(aq) and 50 mL hexane, then removed the solid by filter paper. The aqueous solution was extracted with EtOAc, and the organic phase was dried over MgSO4, and evaporated to dryness. The residues were eluted through a silica gel column to afford substrate **10** (1.43 g, 8.3 mmol, 84%). Compound **1p** and **1q** were prepared by following this procedure.

(8) Preparation of 1-(hepta-1,2-dien-3-yl)-4-methoxybenzene^[s3] (3a)

To a solution of 1-ethynyl-4-methoxybenzene (0.7 g, 5.3 mmol) in anhydrous ether (15.0 mL) was added dropwise a solution of *n*-BuLi (2.5 M, 2.1 mL, 5.3 mmol) at -40 °C within 10 min. After being stirred for 30 min, MOMCl (0.42 mL, 5,3 mmol) was added dropwise at the same temperatue, which was followed by warming up to room temperature naturally for about 1.5 h. Then CuBr (0.152 g, 1.06 mmol) and a solution of n-C₄H₉MgBr in ether (10.6 mmol) were added dropwise sequentially to the reaction mixture for 0.5 h at room temperature. After being stirred for 1.5 hour as monitored by TLC, the reaction mixture was quenched with an aqueous solution of saturated ammonium chloride (5 mL), extracted with ether, washed with saturated brine, and dried over anhydrous sodium sulfate. The residues were eluted through a silica gel column to afford substrate **3a.** We used the same procedure to prepared substrate **3b** and **3c**.

[s3] Jing Li, Chao Zhou, Chunling Fu, Shengming Ma, Tetrahedron, 2009, 65, 3695.

(9) Preparation of 1-(hexa-1,2-dien-1-yl)-4-methoxybenzene (3d)

To a stirred solution of 4-methoxyphenol (3.0 g, 24.2 mmol) in dichloromethane (160 mL) was slowly added bromine (1.37 mL, 26.6 mmol) to give S-8 (4.91 g, 24.2 mmol, 100% yield).

A mixture of S-8 (6.00 g, 29.6 mmol) and HMDS (5.72 g, 35.5mmol) in THF (96 mL) was refluxed at least 2 hour. The solvent was evaporated, and the residue was vacuumed to remove NH₃ and unreacted HMDS. The product was dissolved in THF (96 mL) and cooled to -78 °C. The *n*-BuLi (2.5 M in hexane, 13.0 mL, 32.5 mmol) then was added slowly at -78 °C. Stirring was kept up for 1 hour until the temperature reached -30 °C. Then Et₂O (96 mL) was added. The reaction mixture was cooled to -78 °C again, Tf₂O (10.4 g, 36.9 mmol) was added dropwise. Stirring was kept up for 1 hour until the temperature reached -30 °C. The reaction mixture was quenched with NaHCO₃ solution and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous MgSO₄, and concentrated. The residue was purified by silica gel column chromatography (hexane:EA = 10:1) to give S-9 (7.0 g, 21.3 mmol, 72%).

A mixture of KF (0.39 g, 6.9 mmol) and 18-crown-6-ether (2.11 g, 8.0 mmol) was dissolved in THF (9 mL) before addition of S-9 (0.75 g, 2.3 mmol) and 1-hexyne (0.75 g, 9.1 mmol). The reaction mixture was stirred at room temperature for 8 hour. The reaction mixture was diluted with CH₂Cl₂, filtered through celite and silica gel. The residue was purified by silica gel column chromatography using hexane as eluent to give pure **3d** (0.27g, 1.4 mmol, 62%).

(c) Standard procedure for catalytic operations

A 10-ml flask containing $AuCl_3$ (7.4 mg, 5 mole %) was dried in vacuum for 1 h before it was filled with N_2 using a N_2 balloon. To this flask was charged with

dichloromethane (3 mL), After 5 min **1a** (3-methylbuta-1,2-dien-1-yl)benzene (70 mg, 0.49 mmol) and nitrosobenzene (5 mg, 10 mol %) dissolved in dichloromethane was added to flask. After 3 hour, The solution was concentrated and eluted through a silica column (hexane) to afford compounds **2a** (64 mg, 92%).

A 10-ml flask containing AuCl₃ (7.4 mg, 5 mole %) was dried in vacuum for 1 h before it was filled with N₂ using a N₂ balloon. To this flask was charged with dichloromethane (3 mL), After 5 min **1a** (3-methylbuta-1,2-dien-1-yl)benzene (70 mg, 0.49 mmol) and nitrosobenzene (5 mg, 10 mol %) dissolved in dichloromethane was added to flask. After 3 hour was added maleic anhydride(1.05eq, in DCM). After 1 hour the solution was concentrated and eluted through a silica column (hexane/ethyl acetate = 10:1) to afford compounds **5a** (105 mg, 0.44 mol, 90%).

(c) Spectrum data

Spectra data for (3-methylbuta-1,2-dien-1-yl)benzene (1a)

IR (neat, cm⁻¹): 3010 (s), 1900 (s), 1620 (m), 760 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.28~7.26 (m, 4 H), 7.28~7.26 (m, 1 H), 5.99~5.93 (m, 1 H), 1.82 (s, 3 H), 1.81 (s, 3 H); ¹³C NMR (100

MHz, CDCl₃): δ 203.1, 136.0, 128.4(CH×2), 126.6(CH×2), 126.3, 99.1, 92.5, 20.2, (CH₃×2).; HRMS calcd for C₁₁H₁₂: 144.0939; Found : 144.0935.

Spectra data for 1-chloro-4-(3-methylbuta-1,2-dien-1-yl)benzene (1b)

IR (neat, cm⁻¹): 2980 (s), 1955 (s), 1570 (m), 790 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 10.8 Hz, 2 H), 7.16 (d, J = 8.8 Hz, 2 H), 5.94~5.91 (m, 1 H), 1.81 (s, 3 H), 1.80 (s,

3 H); ¹³C NMR (100 MHz, CDCl₃): δ 203.2, 134.5, 131.8, 128.5(CH×2), 127.8(CH×2),

99.6, 91.7, 20.1(CH₃×2). ; HRMS calcd for $C_{11}H_{11}Cl$: 178.0549; Found : 178.0547.

Spectra data for 1-bromo-4-(3-methylbuta-1,2-dien-1-yl)benzene (1c)

IR (neat, cm⁻¹): 2990 (s), 1950 (s), 1520 (m), 810 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 8.4 Hz, 2 H), 7.10 (d, *J* = 8.4 Hz, 2 H), 5.92~5.89 (m, 1 H), 1.80 (s, 6 H); ¹³C NMR

(100 MHz, CDCl₃): δ 203.2, 135.0, 131.5(CH×2), 128.1(CH×2), 119.9, 99.6, 91.7, 20.1(CH₃×2).; HRMS calcd for C₁₁H₁₁Br: 222.0044; Found : 222.0043.

Spectra data for 1-methyl-4-(3-methylbuta-1,2-dien-1-yl)benzene (1d)

IR (neat, cm⁻¹): 3030 (s), 1945 (s), 1640 (m), 795 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, J = 8.0 Hz, 2 H), 8.08 (d, J = 8.0 Hz, 2 H), 5.96~5.93 (m, 1 H), 2.31 (s, 3 H), 1.80 (s, 3

H), 1.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 135.9, 132.9, 129.1(CH×2), 126.5(CH×2), 98.8, 92.3, 21.0, 20.2(CH₃×2).; HRMS calcd for C₁₁H₁₄: 158.1096; Found : 158.1094.

Spectra data for buta-1,2-diene-1,3-diyldibenzene (1e)

IR (neat, cm⁻¹): 3025 (s), 1950 (s), 1620 (m), 780 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.46~7.44 (m, 2 H), 7.33~7.27 (m, 4 H), 7.22~7.17 (m, 2 H), 6.47~6.45 (m, 1 H), 2.21 (d, *J* = 2.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 206.8, 136.3, 134.5,128.7(CH×2),128.4(CH×2), 127.0(CH×2), 126.9(CH×2),

125.8(CH×2), 104.5, 96.6, 16.7. ; HRMS calcd for $C_{16}H_{14}{:}$ 206.1096; Found : 206.1094.

Spectra data for (3-methylhepta-1,2-dien-1-yl)benzene (1f)

IR (neat, cm⁻¹): 3015 (s), 1940 (s), 1580 (m), 790 (s)¹H NMR (400 MHz, CDCl₃): δ 7.27~7.24 (m, 4 H), 7.16~7.12 (m, 1 H), 6.04~6.01 (m, 1 H), 2.08~2.04 (m, 2 H), 1.78 (d, *J* = 2.8 Hz, 3 H), 1.49~1.41 (m, 2 H), 1.38~1.31 (m, 2 H), 0.87 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 202.7, 136.1,

128.4(CH×2), 126.5(CH×2), 126.3, 103.7, 93.8, 33.8, 29.7, 22.5, 18.8, 13.9.; HRMS calcd for $C_{14}H_{18}$: 186.1406; Found : 186.1402.

Spectra data for (3-ethylpenta-1,2-dien-1-yl)benzene (1g)

IR (neat, cm⁻¹): 2995 (s), 1920 (s), 1550 (m), 765 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.27~7.26 (m, 4 H), 7.17~7.12 (m,

1 H), 6.18~6.15 (m, 1 H), 2.15~2.05 (m, 4 H), 1.04 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 201.6, 128.4(CH×2), 126.3(CH×3), 112.3, 96.5, 25.8(CH₂×2), 12.3(CH₃×2).; HRMS calcd for C₁₃H₁₆: 172.1252; Found : 172.1252.

Spectra data for (2-cyclopentylidenevinyl)benzene (1h)

IR (neat, cm⁻¹): 3030 (s), 1951 (s), 1598 (m), 693 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.28~7.24 (m, 4 H), 7.16~7.12 (m, 1 H), 6.09~6.05 (m, 1 H), 2.54~2.41 (m, 4 H), 1.76~1.72 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 136.0, 128.4(CH×2), 126.6(CH×2), 126.3, 107.5, 94.9, 31.1(CH₂×2), 27.1(CH₂×2).

HRMS calcd for C₁₃H₁₄: 170.1096; Found : 170.1094.

Spectra data for (2-cyclohexylidenevinyl)benzene (1i)

IR (neat, cm⁻¹): 2928 (s), 1965 (s), 1446 (m), 851 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.27~7.26 (m, 4 H), 7.16~7.12 (m, 1 H), 5.98~5.96 (m, 1 H), 2.28~2.26 (m, 2 H), 2.21~2.14 (m, 2 H), 1.71~1.57 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 136.1, 128.4(CH×2), 126.5(CH×2), 126.2, 106.4, 92.4,

31.3(CH₂×2), 27.7(CH₂×2), 26.1.; HRMS calcd for $C_{14}H_{16}$: 184.1252; Found : 184.1251.

Spectra data for octa-2,3-dien-2-ylbenzene (1j)

IR (neat, cm⁻¹): 1952, 1612, 3014, 2935; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 7.2 Hz, 2 H), 7.30 (t, J = 8.0 Hz, 2 H), 7.17 (t, J = 7.2 Hz, 1 H), 5.42 (s, 1 H), 2.07~2.12 (m, 5 H), 1.34~1.46 (m, 4 H), 0.89 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100

MHz, CDCl₃): δ 204.1, 137.7, 128.2(CH×2), 126.2, 125.5(CH×2), 100.3, 93.0, 31.4, 28.7, 22.3, 17.1, 13.9; HRMS calcd. For C₁₄H₁₈: 186.2920; Found: 182.2920.

Spectra data for 2-(3-methylbuta-1,2-dien-1-yl)thiophene (1k)

IR (neat, cm⁻¹): 3110 (m), 1890 (s), 1540 (m), 690 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.09 (d, J = 5.2 Hz, 1 H), 6.90 (dd, J = 5.2, 3.6 Hz, 1 H), 6.83 (d, J = 3.6 Hz, 1 H), 6.19~6.16 (m, 1 H), 1.79 (s, 3 H), 1.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 202.4, 140.9,

127.3, 123.9, 123.8, 99.6, 86.8, 20.3(CH₃×2).; HRMS calcd for $C_9H_{10}S$: 150.0503; Found : 150.0500.

Spectra data for 3-(3-methylbuta-1,2-dien-1-yl)thiophene (11)

IR (neat, cm⁻¹): 2970 (m), 1820 (s), 1490 (m), 720 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.23~7.21 (m, 1 H), 7.02 (d, J = 4.8 Hz, 1 H), 6.99 (d, J = 3.2 Hz, 1 H), 6.05~6.02 (m, 1 H), 1.78 (s, 3 H), 1.77 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 203.1, 137.5, 126.4,

125.5, 119.8, 89.2, 87.1, 20.4(CH₃×2).; HRMS calcd for C₉H₁₀S: 150.0503; Found : 150.0502.

Spectra data for 3-(3-methylbuta-1,2-dien-1-yl)furan (1m)

IR (neat, cm⁻¹): 3110 (m), 1880 (s), 1155 (s) , 869 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.32 (s, 2 H), 6.33 (s, 1 H), 5.88~5.85 (m, 1 H), 1.76 (s, 3 H), 1.75 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 143.1, 138.9, 121.6, 109.0, 98.0, 82.4, 20.3(CH₃×2).

HRMS calcd for C₉H₁₀O: 134.0732; Found : 134.0732.

Spectra data for 3-(3-methylbuta-1,2-dien-1-yl)benzo[b]thiophene (1n)

IR (neat, cm⁻¹): 3070 (m), 1910 (s), 1500 (s), 800 (s); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 7.6 Hz, 1 H), 7.82 (d, J = 7.6 Hz, 1 H), 7.39~7.31 (m, 2 H), 7.20 (s, 1 H), 6.35~6.32 (m, 1 H), 1.86 (s, 3 H), 1.85 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 203.5, 140.7, 137.4, 130.5, 124.3, 124.1, 122.7, 122.6, 122.5,

98.0, 86.1, 20.7(CH₃×2); HRMS calcd for C₁₃H₁₂S: 200.0600; Found : 200.0598.

Spectra data for (4-methylpenta-2,3-dien-2-yl)benzene (10)

IR (neat, cm⁻¹): 1910, 1622, 3015, 2905; ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 7.6 Hz, 2 H), 7.29 (t, J = 7.6 Hz, 2 H), 7.15 (t, J = 7.2 Hz, 1 H), 2.04 (s, 3 H), 1.78 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 138.7, 128.1(CH×2), 126.1,

125.7(CH×2), 98.1, 96.8, 20.4(CH₃×2), 17.2; HRMS calcd. For $C_{12}H_{14}$: 158.2390; Found: 158.2390

Spectra data for penta-2,3-diene-2,4-diyldibenzene (1p)

IR (neat, cm⁻¹): 1945, 1615, 3016, 2945; ¹H NMR (400 MHz, d^2 -DCM): δ 7.42 (d, J = 6.4 Hz, 4 H), 7.31 (t, J = 6.8 Hz, 4 H), 7.20 (t, J = 7.6 Hz, 2 H), 2.20 (s, 6 H); ¹³C NMR (100 MHz, d^2 -DCM): δ 206.9, 137.6(C×2), 128.8 (CH×4), 127.1(CH×2),

126.1(CH×4), 102.9(C×2), 17.0(CH₃×2); HRMS calcd. For $C_{17}H_{16}$: 220.3083; Found: 220.3083.

Spectra data for (1-cyclopentylideneprop-1-en-2-yl)benzene (1q)

IR (neat, cm⁻¹): 1956, 1610, 3015, 2940; ¹H NMR (400 MHz, d^2 -DCM): δ 7.36 (d, J = 6.8 Hz, 2 H), 7.28 (t, J = 7.6 Hz, 2 H), 7.15 (t, J = 7.6 Hz, 1 H), 2.05~2.46 (m, 4 H), 2.05 (s, 3H), 1.55~1.76 (m, 4 H); ¹³C NMR (100 MHz, d^2 -DCM): δ 208.1,

139.2, 128.6(CH×2), 126.4, 126.1(CH×2), 106.0, 101.0, 31.4(CH₂×2), 27.6 CH₂×2), 17.5; HRMS calcd. For C₁₄H₁₆: 184.2762; Found: 184.2762.

Spectra data for (*E*)-(3-methylbuta-1,3-dien-1-yl)benzene (2a)

IR (neat, cm⁻¹): 2900(s), 1605 (s), 1375 (s), 753 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 7.2 Hz, 2 H), 7.30 (t, J = 7.6 Hz, 2 H), 7.21 (t, J = 7.6 Hz, 1 H), 6.86 (d, J = 16.0 Hz, 1 H), 6.52 (d, J = 16.0 Hz, 1 H), 5.10 (s, 1 H), 5.06 (s, 1 H), 1.96 (s, 3

H); ¹³C NMR (100 MHz, CDCl₃): δ 142.0, 137.4, 131.6, 128.7, 128.6(CH×2), 127.4, 126.4(CH×2), 117.3, 18.6.; HRMS calcd for C₁₁H₁₂: 144.0939; Found : 144.0937.

Spectra data for (*E*)-1-chloro-4-(3-methylbuta-1,3-dien-1-yl)benzene (2b)

IR (neat, cm⁻¹): 2940 (s), 1620 (s), 1370 (s), 860 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 8.4 Hz, 2 H), 7.26 (d, J = 8.4 Hz, 2 H), 6.82 (d, J = 16.4 Hz, 1 H), 6.46 (d, J = 16.4 Hz, 1 H), 5.11 (s, 1 H), 5.08 (s, 1 H), 1.95 (s, 6 H); ¹³C

NMR (100 MHz, CDCl₃): δ 141.8, 135.9, 132.9, 132.3, 128.7(CH×2), 127.6(CH×2), 127.4, 117.9, 18.5.; HRMS calcd for C₁₁H₁₁Cl: 178.0549; Found : 178.0549.

Spectra data for (*E*)-1-bromo-4-(3-methylbuta-1,3-dien-1-yl)benzene (2c)

IR (neat, cm⁻¹): 3050 (s), 1640 (s), 1350 (s), 855 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.4 Hz, 2 H), 7.27 (d, *J* = 8.4 Hz, 2 H), 6.84 (d, *J* = 16.0 Hz, 1 H), 6.44 (d, *J* = 16.0 Hz, 1 H), 5.11 (s, 1 H), 5.09 (s, 1 H), 1.95 (s, 3 H); ¹³C NMR

(100 MHz, CDCl₃): δ 147.8, 136.3, 132.4, 131.7(CH×2), 127.9(CH×2), 127.4, 121,1, 118.0, 18.5.; HRMS calcd for C₁₁H₁₁Br: 222.0044; Found : 222.0042.

Spectra data for (E)-1-methyl-4-(3-methylbuta-1,3-dien-1-yl)benzene (2d)

IR (neat, cm⁻¹): 2970 (s), 1600 (s), 1330 (m), 790 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.0 Hz, 2 H), 7.11 (d, J = 8.0 Hz, 2 H), 6.82 (d, J =

16.4 Hz, 1 H), 6.49 (d, J = 16.4 Hz, 1 H), 5.07 (s, 3 H), 5.02 (s, 3 H), 2.32 (s, 3 H), 1.95 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 137.2, 134.6, 130.7, 129.3(CH×2), 128.6, 126.4(CH×2), 116.8, 21.2, 18.6.; HRMS calcd for C₁₁H₁₄: 158.1096; Found : 158.1096.

Spectra data for (*E*)-buta-1,3-diene-1,3-diyldibenzene (2e)

IR (neat, cm⁻¹): 3010 (s), 1580 (s), 1395 (m), 760 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.39~7.35 (m, 7 H), 7.31~7.28 (m, 2 H), 7.23~7.19 (m, 1 H), 7.03 (d, J = 16.4 Hz, 1 H), 6.48 (d, J = 16.4 Hz, 1 H), 5.40 (s, 1 H), 5.03 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃):

δ 148.1, 140.2, 137.2, 131.9, 130.3, 128.6(CH×2), 128.4(CH×2), 128.2(CH×2), 127.6, 127.5, 126.5(CH×2), 117.3.; HRMS calcd for C₁₆H₁₄: 206.1096; Found : 206.1095.

Spectra data for ((1*E*,3*E*)-3-methylhepta-1,3-dien-1-yl)benzene (2f-I)

IR (neat, cm⁻¹): 2930 (s), 1560 (s), 1335 (m), 735 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.0 Hz, 2 H), 7.27 (t, J = 7.6 Hz, 2 H), 7.16 (t, J = 8.0 Hz, 1 H), 6.80 (d, J = 16.0 Hz, 1 H), 6.43 (d, J = 16.0 Hz, 1 H), 5.63 (t, J = 7.6 Hz,

1 H), 2.16 (q, J = 7.2 Hz, 2 H), 1.85 (s, 3 H), 1.46~1.40 (m, 2 H), 0.92 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 134.3, 134.1, 133.8, 128.5(CH×2), 126.8, 126.1(CH×2), 125.5, 30.5, 22.8, 13.9, 12.4.; HRMS calcd for C₁₄H₁₈: 186.1406; Found : 186.1404.

Spectra data for ((1*E*,3*Z*)-3-methylhepta-1,3-dien-1-yl)benzene (2f- Ⅱ)

IR (neat, cm⁻¹): 2935 (s), 1560 (s), 1335 (m), 735 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 7.6 Hz, 2 H), 7.30 (t, J = 7.6 Hz, 2 H), 7.19 (t, J = 7.6 Hz, 1 H), 7.18 (d, J = 16.0 Hz, 1 H), 6.53 (d, J = 16.0 Hz, 1 H), 5.45 (t, J = 7.6 Hz, 1 H), 2.32 (q, J = 7.6 Hz, 2 H), 1.92 (s, 3 H), 1.47~1.38 (m, 2 H), 0.93 (t,

J=7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 132.3, 132.0, 128.6(CH×2), 128.0, 127.1, 126.3(CH×2), 126.2, 29.7, 23.1, 20.5, 13.9.; HRMS calcd for C₁₄H₁₈: 186.1406; Found : 186.1406.

Spectra data for ((1*E*,3*E*)-3-ethylpenta-1,3-dien-1-yl)benzene (2g-I)

IR (neat, cm⁻¹): 2910 (s), 1600 (s), 1355 (m), 900 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, *J* = 7.6 Hz, 2 H), 7.28 (t, *J* = 7.6 Hz, 2 H), 7.17 (t, *J* = 7.6 Hz, 1 H), 6.68 (d, *J* = 16.4 Hz, 1 H), 6.45 (d, *J* = 16.4 Hz, 1 H), 5.64 (q, *J* = 7.2 Hz, 1 H), 2.35 (q, J = 7.6 Hz, 2 H), 1.77 (d, J = 7.2 Hz, 3 H), 1.05 (t, J = 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 141.0, 138.1, 132.4, 128.5(CH×2), 127.5, 126.8, 126.1(CH×2), 124.8, 19.5, 13.7, 13.3.; HRMS calcd for C₁₃H₁₆: 172.1252; Found : 172.1252.

Spectra data for ((1*E*,3*Z*)-3-ethylpenta-1,3-dien-1-yl)benzene (2g- Ⅱ)

IR (neat, cm⁻¹): 2915 (s), 1610 (s), 1355 (m), 720 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 7.6 Hz, 2 H), 7.31 (t, *J* = 7.6 Hz, 2 H), 7.20 (t, *J* = 7.6 Hz, 1 H), 7.13 (d, *J* = 16.4 Hz, 1 H), 6.57 (d, *J* = 16.4 Hz, 1 H), 5.53 (q, *J* = 7.2 Hz, 1 H), 2.31 (q,

J = 7.6 Hz, 2 H), 1.83 (d, J = 7.2 Hz, 3 H), 1.10 (t, J = 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 138.1, 128.6(CH×2), 127.4, 127.1, 126.3(CH×2), 124.9, 124.2, 26.5, 13.6, 13.1.; HRMS calcd for C₁₃H₁₆: 172.1252; Found : 172.1250.

Spectra data for (*E*)-(2-(cyclopent-1-en-1-yl)vinyl)benzene (2h)

IR (neat, cm⁻¹): 2920 (s), 1625 (s), 1340 (m), 920 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 7.6 Hz, 2 H), 7.29 (t, J= 7.6 Hz, 2 H), 7.18 (t, J = 7.6 Hz, 1 H), 7.00 (d, J = 16.4 Hz, 1 H), 6.39 (d, J = 16.4 Hz, 1 H), 5.84 (br, 1 H), 2.55~2.52 (m, 2

H), 2.48~2.44 (m, 2 H), 2.00~1.92 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 137.8, 132.0, 128.6, 128.5(CH×2), 127.0, 126.2(CH×2), 125.7, 33.0, 31.2, 23.1.; HRMS calcd for C₁₃H₁₄: 170.1096; Found : 170.1096.

Spectra data for (*E*)-(2-(cyclohex-1-en-1-yl)vinyl)benzene (2i)

IR (neat, cm⁻¹): 2905 (s), 1630 (s), 1330 (m), 960 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 7.6 Hz, 2 H), 7.28 (t, J= 7.6 Hz, 2 H), 7.17 (t, J = 7.2 Hz, 1 H), 6.76 (d, J = 16.4 Hz, 1 H), 6.42 (d, J = 16.4 Hz, 1 H), 5.89 (t, J = 4.0 Hz, 1 H),

2.26~2.24 (m, 2 H), 2.18~2.17 (m, 2 H), 1.74~1.68 (m, 2 H), 1.65~1.59 (m, 2 H); 13 C NMR (100 MHz, CDCl₃): δ 138.0, 135.8, 132.5, 130.8, 128.5(CH×2), 126.8, 126.1(CH×2), 124.6, 26.1, 24.5, 22.5(CH₂×2).; HRMS calcd for C₁₄H₁₆: 184.1252; Found : 184.1250.

Spectra data for octa-1,3-dien-2-ylbenzene (2j)

IR (neat, cm⁻¹): 2920, 1610, 1345, 910; ¹H NMR (400 MHz, CDCl₃) (*E* form is major isomer): δ 7.25~7.41 (m, 5 H), 6.28 (d, *J* = 16.0 Hz, 1 H), 5.61~5.72 (m, 1 H), 5.15 (s, 1 H), 5.03 (s, 1 H), 2.08~2.13 (m, 2 H), 1.22~1.35 (m, 4 H), 0.80~0.89

(m, 3 H); Z isomer selected peaks, δ 6.10 (d, J = 11.6 Hz, 1 H), 5.50 (s, 1 H), 5.12 (s,

1 H), the remaining peaks are overlapped; ¹³C NMR (100 MHz, CDCl₃) (E+Z): δ 148.2, 148.6, 140.9, 134.6, 134.6, 131.3, 128.7, 128.2(CH×2), 128.2(CH×2), 128.0 (CH×2), 127.4, 127.2, 126.6(CH×2), 114.6, 114.4, 32.5, 32.0, 31.4, 28.3, 22.7, 22.3, 13.9, 13.9; HRMS calcd For C₁₄H₁₈: 186.2920; Found: 182.2920.

Spectra data for (*E*)-2-(3-methylbuta-1,3-dien-1-yl)thiophene (2k)

IR (neat, cm⁻¹): 3100 (s), 1655 (s), 1420 (m), 670 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.14 (d, J = 4.8 Hz, 1 H), 6.98~6.94 (m, 2 H), 6.66 (dd, J = 16.0 Hz, 2 H), 5.07 (s, 1 H), 5.03 (s, 1 H), 1.92 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 141.6, 131.5, 127.5,

125.8, 124.1, 121.8, 117.2, 18.4.; HRMS calcd for $C_9H_{10}S$: 150.0503; Found : 150.0503.

Spectra data for (*E*)-3-(3-methylbuta-1,3-dien-1-yl)thiophene (2l)

IR (neat, cm⁻¹): 3020 (s), 1700 (s), 1425 (m), 610 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.27~7.23 (m, 2 H), 7.17~7.16 (m, 1 H), 6.71 (d, *J* = 16.0 Hz, 1 H), 6.53 (d, *J* = 16.0 Hz, 1 H), 5.06 (s, 1 H), 5.02 (s, 1 H), 1.93 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 142.0,

140.1, 131.7, 126.0, 124.9, 122.9, 122.0, 116.8, 18.5.; HRMS calcd for $C_9H_{10}S$: 150.0503; Found : 150.0502.

Spectra data for (*E*)-3-(3-methylbuta-1,3-dien-1-yl)furan (2m)

IR (neat, cm⁻¹): 3120 (s), 1670 (s), 1450 (m), 830 (s); ¹H NMR

(400 MHz, CDCl₃): δ 7.44 (s, 1 H), 7.36 (t, J = 1.6 Hz, 1 H), 6.57 (d, J = 16.0 Hz, 1 H), 6.55 (s, 1 H), 6.38 (d, J = 16.0 Hz, 1 H), 5.02 (s, 1 H), 4.99 (s, 1 H), 1.91 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 141.9, 140.7, 131.5, 124.3, 118.4, 116.3, 107.4, 18.4.; HRMS calcd for C₉H₁₀O: 134.0732; Found : 134.0730.

Speetra data for (*E*)-3-(3-methylbuta-1,3-dien-1-yl)benzo[b]thiophene (2n)

IR (neat, cm⁻¹): 3080 (s), 1680 (s), 1490 (m), 820 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 7.6 Hz, 1 H), 7.85 (d, *J* = 7.6 Hz, 1 H), 7.46 (s, 1 H), 7.43~7.33 (m, 2 H), 6.95 (d, *J* = 16.0 Hz, 1 H), 6.79 (d, *J* = 16.0 Hz, 1 H), 5.14 (s, 1 H), 5.09 (s, 1 H), 2.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 142.0, 140.4, 137.8, 134.0,

133.2, 124.4, 124.2, 122.9, 121.8, 121.4, 120.5, 117.4, 18.5.; HRMS calcd for C₁₃H₁₂S:

200.0600; Found : 200.0600.

Spectra data for (4-methylpenta-1,3-dien-2-yl)benzene (20) and (Z)-(4-methylpenta-2,4-dien-2-yl)benzene (20')

IR (neat, cm⁻¹): 2910, 1600, 1340, 905, 730; ¹H NMR (600 MHz, CDCl₃) (20 form is major isomer): 20 isomer, δ 7.16~7.42 (m, 5 H), 5.93 (s, 1 H), 5.50 (s, 1 H), 5.05 (s, 1 H), 1.86 (s, 3 H), 1.69(s, 3 H); 20' isomer

selected peaks, δ 6.20 (s, 1 H), 5.08 (s, 1 H), 4.92 (s, 1 H), 2.21 (s, 3 H), 1.93 (s, 1 H), the remaining peaks are overlapped; ¹³C NMR (100 MHz, CDCl₃) (20+20'): δ 145.4, 144.3, 142.2, 141.4, 136.8, 136.2, 129.7, 128.2, 128.1(CH×2), 127.3(CH×2), 126.9, 126.6(CH×2), 125.9(CH×2), 125.0, 115.3, 114.3, 26.3, 23.7, 19.6, 17.5; HRMS calcd. For C₁₂H₁₄: 158.2390; Found: 158.2390.

Spectra data for (*E*)-penta-1,3-diene-2,4-diyldibenzene (2p)

IR (neat, cm⁻¹): 2920, 1610, 1335, 910; ¹H NMR (400 MHz, d^2 -DCM): δ 7.52 (d, J = 8.0 Hz, 2 H), 7.93 (t, J = 7.6 Hz, 2 H), 7.28~7.38 (m, 6 H), 6.56 (s, 1 H), 5.69 (s, 1 H), 5.25 (s, 1 H), 2.12 (s, 3 H); ¹³C NMR (100 MHz, d^2 -DCM): δ 148.5, 143.8, 141.3, 139.3,

128.7(CH×2), 128.7(CH×2), 128.0, 127.7, 127.6, 126.9(CH×2), 126.3(CH×2), 115.6, 17.8; HRMS calcd. For C₁₇H₁₆: 220.3083; Found: 220.3083.

Spetra data for (1-(cyclopent-1-en-1-yl)prop-1-en-2-yl)benzene (2q)

IR (neat, cm⁻¹): 2925, 1615, 1340, 915. 730; ¹H NMR (400 MHz, d^2 -DCM) (*E* form is major isomer): *E* isomer, δ 7.15~7.43 (m, 5 H), 6.42 (s, 1 H), 5.80 (s, 1 H), 2.65 (t, *J* = 6.8 Hz, 2 H), 2.43 (t, *J* = 6.8 Hz, 2 H), 2.24 (s, 3H), 1.91~1.98 (m, 2 H); *Z* isomer selected peaks,

δ 6.25 (s, 1 H), 5.58 (s, 1 H), 2.22 (t, J = 6.8 Hz, 2 H), 2.07 (s, 3 H), 1.73 (t, J = 6.8 Hz, 2 H), 1.61~1.67 (m, 2 H), the remaining peaks are overlapped; ¹³C NMR (100 MHz, d^2 -DCM): *E* isomer, 145.1, 142.4, 135.6, 132.4, 128.6 (CH×2), 127.1, 126.2 (CH×2), 125.0, 35.9, 32.9, 24.4, 17.9; *Z* isomer, 143.8, 142.6, 137.5, 131.6, 128.7 (CH×2), 128.0 (CH×2), 127.0, 124.4, 34.1, 32.2, 27.8, 24.6; HRMS calcd. For C₁₄H₁₈: 184.2762; Found: 184.2762.

Spectra data for 1-(hepta-1,2-dien-3-yl)-4-methoxybenzene (3a)

IR (neat, cm⁻¹): 2995 (s), 1950 (s), 1690 (w), 875 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 9.2 Hz, 2 H), 6.85 (d, *J* = 9.2 Hz, 2 H), 5.02~5.01 (m, 1 H), 3.79 (s, 3 H), 2.39~2.34 (m, 2H), 1.41~1.34 (m, 2 H), 0.91 (t, J = 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 208.2, 158.3, 128.6, 127.0(CH×2), 113.7(CH×2), 104.4, 77.9, 55.1, 30.0, 29.3, 22.5, 14.0. HRMS calcd for C₁₄H₁₈O: 202.1358; Found : 202.1356.

Spectra data for 2-(hepta-1,2-dien-3-yl)thiophene (3b)

IR (neat, cm⁻¹): 3159 (s), 1945 (s), 1650 (w), 860 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.16~7.14 (m, 1 H), 6.96~6.94 (m, 1 H), 6.92~6.91 (m, 1 H), 5.08~5.06 (m, 2 H), 2.41~2.35 (m, 2 H), 1.58~1.51 (m, 2 H), 1.44~1.35 (m, 2 H), 0.92 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz,

CDCl₃): δ 207.7, 141.5, 127.2, 124.0, 122.7, 101.1, 78.7, 30.4, 29.9, 22.4, 13.9.; HRMS calcd for C₁₄H₁₁S: 178.0816; Found : 178.0810.

Spectra data for 3-(hepta-1,2-dien-3-yl)thiophene (3c)

IR (neat, cm⁻¹): 3010 (s), 1845 (s), 1670 (w), 850 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.24~7.22 (m, 1 H), 7.11~7.10 (m, 1 H), 7.05~7.04 (m, 1 H), 5.02~5.00 (m, 2 H), 2.38~2.32 (m, 2 H), 1.57~1.49 (m, 2 H), 1.43~1.35 (m, 2 H), 0.92 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz,

CDCl₃): δ 208.8, 138.3, 126.8, 125.2, 118.5, 101.4, 77.8, 29.9(CH₂×2), 22.5, 14.0.; HRMS calcd for C₁₄H₁₁S: 178.0816; Found : 178.0814.

Spectra data for 1-(hexa-1,2-dien-1-yl)-4-methoxybenzene (3d)

IR (neat, cm⁻¹): 1930, 1610, 3015, 2940; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, *J* = 7.6 Hz, 2 H), 6.85 (d, *J* = 7.2 Hz, 2 H), 6.05~6.10 (m, 1 H), 5.50~5.57 (m, 1 H), 2.05~2.11 (m, 2 H), 1.44~1.52 (m, 2 H), 0.95 (t, *J*

= 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): 204.5, 158.5, 127.6, 127.4, 114.0, 94.8, 93.9, 55.1, 30.8, 22.4, 13.7; HRMS calcd. For $C_{11}H_{12}O$: 160.2119; Found: 160.2119.

Speetra data for 1-(hepta-1,3-dien-3-yl)-4-methoxybenzene (4a)

IR (neat, cm⁻¹): 3000 (s), 1650 (s), 1405 (s), 780 (s); ¹H NMR (400 MHz, CDCl₃): (*E* form is major isomer): δ 7.19 (d, *J* = 8.4 Hz, 2 H), 6.84 (d, *J* = 8.4 Hz, 2 H), 6.86~6.79 (m, 1 H), 5.50 (t, *J* = 7.6 Hz, 1 H), 5.19 (dt, *J* = 10.8, 2.0 Hz, 1 H), 5.05 (dd, *J* = 19.2, 1.6 Hz, 1 H), 3.80 (s, 3 H), 2.43 (ABq, 2 H, Δ_{AB} =12.9 Hz, *J*_{AB}=7.2 Hz), 1.51~1.42 (m, 2 H), 0.94 (t, *J* = 7.2 Hz, 3 H); (*Z*

form): δ 7.02 (d, J = 8.4 Hz, 2 H), 6.89 (d, J = 8.4 Hz, 2 H), 6.56~6.49 (m, 1 H), 5.68 (t, J = 7.6 Hz, 1 H), 4.95(d, J = 10.4 Hz, 1 H), 4.67 (d, J = 17.2 Hz, 1 H), 3.81 (s, 3 H), 1.91 (ABq, 2 H, Δ_{AB} =12.9 Hz, J_{AB} =7.2 Hz), 1.37~1.31 (m, 2 H), 0.82 (t, J = 7.2 Hz, 3

H); ¹³C NMR (100 MHz, CDCl₃): (*E* form is major isomer): δ 158.5, 141.0, 134.1, 133.5, 132.4, 129.8, 116.9, 113.3, 55.2, 30.1, 22.9, 13.8.; (*Z* form): δ 158.3, 141.1, 134.1, 130.6, 113.4, 55.1, 31.1, 22.8, 13.9, the remaining peaks are overlapped.; HRMS calcd for C₁₄H₁₈O: 202.1358; Found : 202.13568.

Spectra data for 2-(octa-1,3-dien-3-yl)thiophene (4b)

IR (neat, cm⁻¹): 3105 (s), 1680 (s), 950 (s), 720 (s); ¹H NMR (400 MHz, CDCl₃): (*E* form is major isomer): δ 7.16 (dd, *J* = 4.8, 1.2 Hz, 1 H), 6.98~6.94 (m, 1 H), 6.78~6.71 (m, 1 H), 5.81 (t, *J* = 7.2 Hz, 1 H), 5.39 (dd, *J* = 17.6, 1.1 Hz, 1 H), 5.30 (dt, *J* = 11.2, 1.2 Hz, 1 H), 2.25 (ABq, 2 H, Δ_{AB} =12.9 Hz, *J*_{AB}=7.2 Hz), 1.52~1.43 (m, 2 H), 0.94 (t, *J* = 7.2 Hz, 3 H); (*Z* form): δ 7.63 (dd, *J* = 5.2, 1.2 Hz, 1 H),

7.05~7.03 (m, 1 H), 6.83~6.82 (m, 1 H), 6.57~6.50 (m, 1 H), 5.83 (t, J = 7.6 Hz, 1 H), 5.02 (d, J = 10.4 Hz, 1 H), 4.95 (d, J = 17.2 Hz, 1 H), 2.01 (ABq, 2 H, $\Delta_{AB}=12.9$ Hz, $J_{AB}=7.2$ Hz), 1.42~1.36 (m, 2 H), 0.86 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): (*E* form is major isomer): δ 143.9, 133.3, 132.8, 132.5, 126.8, 124.9, 123.6, 117.9, 30.4, 22.7, 13.8.; (*Z* form): δ 140.4, 137.0, 126.9, 126.6, 125.0, 114.4, 31.4, 14.0, the remaining peaks are overlapped.; HRMS calcd for C₁₄H₁₁S: 178.0816; Found : 178.0816.

Spectra data for 3-(octa-1,3-dien-3-yl)thiophene (4c)

IR (neat, cm⁻¹): 3050 (s), 1710 (s), 990 (s), 730 (s); ¹H NMR (400 MHz, CDCl₃): (*E* form is major isomer): δ 7.24 (d, *J* = 12.0 Hz, 1 H), 7.11 (d, *J* = 2.4 Hz, 1 H), 7.06 (d, *J* = 5.2 Hz, 1 H), 6.82~6.75 (m, 1 H), 5.68 (t, *J* = 7.6 Hz, 1 H), 5.25~5.18 (m, 2 H), 2.25 (ABq, 2 H, Δ_{AB} =12.9 Hz, *J*_{AB}=7.2 Hz), 1.51~1.42 (m, 2 H), 0.94 (t, *J* = 7.6 Hz, 3 H); (*Z* form): δ 7.31~7.29 (m, 1 H), 7.02 (m, 1 H), 6.90 (m,

1 H), 6.55~6.48 (m, 1 H), 5.71 (t, J = 7.6 Hz, 1 H), 4.97 (d, J = 10.8 Hz, 1 H), 4.80 (d, J = 16.8 Hz, 1 H), 1.98 (ABq, 2 H, $\Delta_{AB}=12.9$ Hz, $J_{AB}=7.2$ Hz), 1.39~1.34 (m, 2 H), 0.84 (t, J = 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): (*E* form is major isomer): δ 142.3, 135.1, 133.1, 132.5, 128.1, 124.6, 121.7, 117.0, 30.1, 22.8, 13.9,; (*Z* form): δ 140.5, 134.4, 129.1, 123.1, 113.9, 31.2, the remaining peaks are overlapped.; HRMS calcd for C₁₄H₁₁S: 178.0816; Found : 178.0815.

Spectrra data for

(3aR,7aS)-6-methyl-4-phenyl-3a,4,7,7a-tetrahydroisobenzofuran-1,3-dione (5a)

IR (neat, cm⁻¹): 3010 (s), 1840 (s), 1350 (s), 1100 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.35~7.28 (m, 3 H), 7.17 (d, *J* = 8.0

Hz, 2 H), 5.86 (br, 1 H), 3.74 (br, 1 H), 3.51~3.47 (m, 2 H), 2.76 (d, J = 13.6 Hz, 1 H), 2.41~2.36 (m, 1 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 173.8, 170.7, 138.1, 136.7, 128.7(CH×2), 128.5(CH×2), 127.7, 123.1, 45.9, 41.0, 40.0, 27.5, 23.5.; HRMS calcd for C₁₅H₁₄O₃: 242.0943; Found : 242.0942.

Spectra data for

(3aR,7aS)-2,6-dimethyl-4-phenyl-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dion e (5b)

IR (neat, cm⁻¹): 30303 (s), 1760 (s), 1710 (s), 1050 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.29~7.21 (m, 3 H), 7.12 (d, *J* = 8.4 Hz, 2 H), 5.80~5.79 (m, 1 H), 3.72 (br, 1 H), 3.27~3.23 (m, 1 H), 3.16 (td, *J* = 8.8, 2.4 Hz, 1 H), 2.77 (dd, *J* = 16.8, 2.4 Hz, 1 H), 2.37~2.31 (m, 1 H), 1.83 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 179.3, 177.2, 139.2, 135.8, 128.6(CH×2), 127.9(CH×2), 126.8

122.8, 45.1, 41.4, 38.9, 27.3, 24.0, 23.3.; HRMS calcd for $C_{16}H_{17}NO_2$: 222.1259; Found : 255.1257.

Spectra data for

(3aR,7aS)-6-methyl-2,4-diphenyl-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dion e (5c)

IR (neat, cm⁻¹): 3070 (s), 3020 (s). 1790 (s), 1070 ; ¹H NMR (400 MHz, CDCl₃): δ 7.28~7.23 (m, 6 H), 7.15 (d, *J* = 8.0 Hz, 2 H), 6.59 (d, *J* = 8.0 Hz, 2 H), 5.85~5.83 (m, 1 H), 3.92~3.89 (m, 1 H), 3.42~3.34 (m, 2 H), 2.91 (d, *J* = 18.4 Hz, 1 H), 2.50~2.43 (m, 1 H), 1.89 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 178.5, 176.5, 139.0, 135.0, 131.4, 129.1(CH×2), 128.7(CH×2),

128.3(CH×2), 128.2, 127.2, 126.1(CH×2), 122.7, 44.5, 41.4, 38.6, 26.5, 23.4.; HRMS calcd for C₂₁H₁₉NO₂: 317.1416; Found : 317.1416.

Speetra data for 7-methyl-5-phenylnaphthalene-1,4(5H,8H)-dione (5d)

IR (neat, cm⁻¹): 3030 (w), 3010 (s), 1690 (s), 1150 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.26~7.16 (m, 5 H), 6.70 (d, J =10.4 Hz, 1 H), 6.60 (d, J = 10.4 Hz, 1 H), 5.58~5.57 (m, 1 H), 4.58~4.56 (m, 1 H), 3.12~3.09 (m, 2 H), 1.81 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 187.3, 186.1, 142.9, 141.8, 139.2, 136.6, 135.9, 128.9, 128.5(CH×2), 128.3(CH×2), 126.8, 122.9, 41.5,

28.9, 22.7.; HRMS calcd for C₁₇H₁₄O₂: 250.0994; Found : 250.0992.

Spectra data for

4-phenyl-3a,4,7,8,9,9a-hexahydronaphtho[1,2-c]furan-1,3(6H,9bH)-dione (5e)

IR (neat, cm⁻¹): 3020 (s), 1800 (s), 1310 (s). 1000 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.33~7.26 (m, 3 H), 7.21~7.19 (m, 2 H), 6.66~6.65 (m, 1 H), 3.85~3.82 (m, 1 H), 3.48 (t, *J* = 8.0 Hz, 1 H), 3.39 (t, *J* = 8.0 Hz, 1 H), 2.58 (br, 1 H), 2.42~2.38 (m, 1 H), 2.29~2.26 (m, 1 H), 2.15~2.08 (m, 1 H), 2.00~1.90 (m, 2 H), 1.85~1.80 (m, 1 H), 1.50~1.45 (m, 1 H); ¹³C NMR (100

MHz, CDCl₃): δ 170.6, 170.5, 141.1, 137.8, 129.1(CH×2), 128.5(CH×2), 128.0, 119.0, 45.7, 42.1, 39.5, 34.5, 29.5, 26.2, 25.9.; HRMS calcd for C₁₈H₁₈O₃: 282.1256; Found : 282.1256.

Spectra data for

2,4-diphenyl-3a,4,6,7,8,9,9a,9b-octahydro-1H-benzo[e]isoindole-1,3(2H)-dione (5f)

IR (neat, cm⁻¹): 3100 (s), 3010 (s), 1820 (s), 1150 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.29~7.23 (m, 5 H), 7.22~7.19 (m, 3 H), 6.40~6.37 (m, 2 H), 5.65~5.64 (m, 1 H), 3.94~3.91 (m, 1 H), 3.44~3.34 (m, 2 H), 2.72~2.67 (m, 1 H), 2.62~2.59 (m, 1 H), 2.42~2.38 (m, 1 H), 2.15~2.10 (m, 1 H), 2.01~1.92 (m, 2 H), 1.86~1.83 (m, 1 H), 1.51~1.44 (m, 2 H); ¹³C NMR (100 MHz,

CDCl₃): δ 176.2, 176.0, 140.8, 138.8, 131.2, 129.7(CH×2), 128.6(CH×2), 128.3(CH×2), 128.1, 127.3, 126.3(CH×2), 119.1, 44.8, 40.9, 40.6, 36.1, 35.2, 30.3, 27.0, 26.6.; HRMS calcd for C₂₄H₂₃NO₂: 357.1729; Found : 357.1729.

Spectra data for 4-methyl-2,6-diphenyl-3,6-dihydro-2H-1,2-oxazine (6)

IR (neat, cm⁻¹): 3050 (s), 1350 (s), 1075 (s), 1050 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 6.4 Hz, 2 H), 7.37~7.23 (m, 5 H), 7.10 (d, J = 7.6 Hz, 2 H), 6.95 (t, J = 7.6 Hz, 1 H), 5.75~5.74 (m, 1 H), 5.53~5.20 (m, 1 H), 3.82~3.72 (m, 2 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 139.5, 131.5(CH×2),

128.3(CH×2), 128.2, 128.0(CH×2), 122.9, 122.1, 115.8(CH×2), 79.2, 55.3, 20.3; HRMS calcd for $C_{17}H_{17}NO$: 251.1310; Found : 251.1310.

(d) X-Ray data for compound (5c)

Table 1. Crystal data and structure refinement for twin5.

Identification code	twin5			
Empirical formula	C42 H38 N2 O4			
Formula weight	634.74			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 1 21 1			
Unit cell dimensions	a = 9.7876(18) Å	α= 90°.		
	b = 8.3007(14) Å	$\beta = 94.442(4)^{\circ}.$		
	c = 19.986(4) Å	$\gamma = 90^{\circ}$.		
Volume	1618.8(5) Å ³			
Z	2			
Density (calculated)	1.302 Mg/m ³			
Absorption coefficient	0.084 mm ⁻¹			
F(000)	672			
Crystal size	$0.28 \ x \ 0.25 \ x \ 0.22 \ mm^3$			
Theta range for data collection	2.04 to 26.54°.			
Index ranges	-12<=h<=12, 0<=k<=10, 0<=k	<=25		

Reflections collected	3637
Independent reflections	3637 [R(int) = 0.0399]
Completeness to theta = 26.54°	99.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7454 and 0.6525
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3637 / 1 / 436
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0337, wR2 = 0.0704
R indices (all data)	R1 = 0.0395, wR2 = 0.0727
Absolute structure parameter	0.5(14)
Largest diff. peak and hole	0.153 and -0.179 e.Å ⁻³

	Х	У	Z	U(eq)
O(1)	7386(2)	7205(3)	3743(1)	23(1)
O(2)	10339(2)	4223(3)	5121(1)	24(1)
O(3)	5247(2)	8757(3)	-215(1)	22(1)
O(4)	2790(2)	5834(3)	1207(1)	21(1)
N(1)	8612(2)	5640(3)	4534(1)	18(1)
N(2)	3728(2)	7349(3)	391(1)	16(1)
C(1)	5374(3)	3924(4)	5602(2)	27(1)
C(2)	6402(3)	4834(4)	5921(2)	27(1)
C(3)	7467(3)	5424(4)	5570(1)	23(1)
C(4)	7497(3)	5067(4)	4895(1)	18(1)
C(5)	8451(3)	6604(4)	3962(1)	19(1)
C(6)	9826(3)	6677(4)	3662(1)	19(1)
C(7)	9791(3)	5607(4)	3019(1)	20(1)
C(8)	8929(3)	4087(4)	3059(1)	20(1)
C(9)	9374(3)	2763(4)	3448(1)	24(1)
C(10)	8539(3)	1443(4)	3509(2)	28(1)
C(11)	7253(3)	1388(5)	3170(2)	30(1)
C(12)	5413(3)	3574(4)	4926(2)	29(1)
C(13)	6480(3)	4139(4)	4570(1)	25(1)
C(14)	11245(3)	5231(4)	2864(1)	22(1)
C(15)	12288(3)	5051(4)	3319(1)	21(1)
C(16)	13695(3)	4560(4)	3135(2)	29(1)
C(17)	12151(3)	5266(4)	4061(1)	22(1)
C(18)	10839(3)	6117(4)	4238(1)	19(1)
C(19)	9968(3)	5180(4)	4684(1)	18(1)
C(20)	7644(3)	4002(5)	2717(1)	25(1)
C(21)	6822(3)	2661(4)	2766(2)	29(1)
C(22)	202(3)	9178(4)	-678(2)	25(1)
C(23)	1145(3)	8294(4)	-1009(1)	24(1)
C(24)	2305(3)	7670(4)	-656(1)	21(1)
C(25)	2502(3)	7933(4)	28(1)	17(1)
C(26)	3775(3)	6420(4)	972(1)	16(1)
C(27)	5251(3)	6394(4)	1268(1)	16(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for twin5. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	5391(3)	7487(4)	1903(1)	18(1)
C(29)	4410(3)	8928(4)	1879(1)	18(1)
C(30)	3295(3)	8930(4)	2271(1)	22(1)
C(31)	2404(3)	10234(4)	2264(1)	25(1)
C(32)	2588(3)	11538(4)	1854(2)	26(1)
C(33)	423(3)	9437(4)	8(2)	25(1)
C(34)	1569(3)	8811(4)	360(1)	22(1)
C(35)	5029(3)	7818(4)	230(1)	16(1)
C(36)	6071(3)	6946(4)	686(1)	17(1)
C(37)	6851(3)	8050(4)	2036(1)	19(1)
C(38)	7742(3)	8247(4)	1574(2)	20(1)
C(39)	7413(3)	7868(4)	849(1)	19(1)
C(40)	9169(3)	8881(4)	1753(2)	26(1)
C(41)	4592(3)	10271(4)	1474(1)	20(1)
C(42)	3688(3)	11553(4)	1455(2)	26(1)

O(1)-C(5)	1.207(3)
O(2)-C(19)	1.215(3)
O(3)-C(35)	1.213(3)
O(4)-C(26)	1.207(3)
N(1)-C(19)	1.392(4)
N(1)-C(5)	1.394(4)
N(1)-C(4)	1.436(3)
N(2)-C(35)	1.393(4)
N(2)-C(26)	1.393(4)
N(2)-C(25)	1.437(3)
C(1)-C(2)	1.375(5)
C(1)-C(12)	1.385(4)
C(1)-H(1)	0.9500
C(2)-C(3)	1.390(4)
C(2)-H(2)	0.9500
C(3)-C(4)	1.383(4)
C(3)-H(3)	0.9500
C(4)-C(13)	1.381(4)
C(5)-C(6)	1.516(4)
C(6)-C(18)	1.533(4)
C(6)-C(7)	1.561(4)
C(6)-H(6)	1.0000
C(7)-C(14)	1.513(4)
C(7)-C(8)	1.523(4)
C(7)-H(7)	1.0000
C(8)-C(20)	1.387(4)
C(8)-C(9)	1.396(4)
C(9)-C(10)	1.378(4)
C(9)-H(9)	0.9500
C(10)-C(11)	1.384(4)
C(10)-H(10)	0.9500
C(11)-C(21)	1.377(5)
C(11)-H(11)	0.9500
C(12)-C(13)	1.390(4)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500

Table 3.	Bond lengths	[Å] a	nd angles	[°] for	twin5.
----------	--------------	-------	-----------	---------	--------

C(14)-C(15)	1.323(4)
C(14)-H(14)	0.9500
C(15)-C(16)	1.508(4)
C(15)-C(17)	1.509(4)
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(18)	1.531(4)
C(17)-H(17A)	0.9900
C(17)-H(17B)	0.9900
C(18)-C(19)	1.499(4)
C(18)-H(18)	1.0000
C(20)-C(21)	1.381(5)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
C(22)-C(23)	1.386(4)
C(22)-C(33)	1.389(4)
C(22)-H(22)	0.9500
C(23)-C(24)	1.390(4)
C(23)-H(23)	0.9500
C(24)-C(25)	1.384(4)
C(24)-H(24)	0.9500
C(25)-C(34)	1.377(4)
C(26)-C(27)	1.518(4)
C(27)-C(36)	1.535(4)
C(27)-C(28)	1.557(4)
C(27)-H(27)	1.0000
C(28)-C(37)	1.508(4)
C(28)-C(29)	1.532(4)
C(28)-H(28)	1.0000
C(29)-C(30)	1.392(4)
C(29)-C(41)	1.397(4)
C(30)-C(31)	1.389(4)
C(30)-H(30)	0.9500
C(31)-C(32)	1.377(5)
C(31)-H(31)	0.9500
C(32)-C(42)	1.389(4)
C(32)-H(32)	0.9500

C(33)-C(34)	1.378(4)
C(33)-H(33)	0.9500
C(34)-H(34)	0.9500
C(35)-C(36)	1.500(4)
C(36)-C(39)	1.533(4)
C(36)-H(36)	1.0000
C(37)-C(38)	1.327(4)
C(37)-H(37)	0.9500
C(38)-C(39)	1.493(4)
C(38)-C(40)	1.510(4)
C(39)-H(39A)	0.9900
C(39)-H(39B)	0.9900
C(40)-H(40A)	0.9800
C(40)-H(40B)	0.9800
C(40)-H(40C)	0.9800
C(41)-C(42)	1.382(4)
C(41)-H(41)	0.9500
C(42)-H(42)	0.9500
C(19)-N(1)-C(5)	112.3(2)
C(19)-N(1)-C(4)	123.4(2)
C(5)-N(1)-C(4)	124.1(2)
C(35)-N(2)-C(26)	112.0(2)
C(35)-N(2)-C(25)	122.2(2)
C(26)-N(2)-C(25)	125.4(2)
C(2)-C(1)-C(12)	119.6(3)
C(2)-C(1)-H(1)	120.2
C(12)-C(1)-H(1)	120.2
C(1)-C(2)-C(3)	120.7(3)
C(1)-C(2)-H(2)	119.7
C(3)-C(2)-H(2)	119.7
C(4)-C(3)-C(2)	119.3(3)
C(4)-C(3)-H(3)	120.3
C(2)-C(3)-H(3)	120.3
C(13)-C(4)-C(3)	120.6(3)
C(13)-C(4)-N(1)	119.7(2)
C(3)-C(4)-N(1)	119.6(3)
O(1)-C(5)-N(1)	125.0(3)

O(1)-C(5)-C(6)	127.5(3)
N(1)-C(5)-C(6)	107.5(2)
C(5)-C(6)-C(18)	103.5(2)
C(5)-C(6)-C(7)	109.8(2)
C(18)-C(6)-C(7)	114.7(2)
C(5)-C(6)-H(6)	109.6
C(18)-C(6)-H(6)	109.6
C(7)-C(6)-H(6)	109.6
C(14)-C(7)-C(8)	111.9(2)
C(14)-C(7)-C(6)	109.0(2)
C(8)-C(7)-C(6)	113.9(2)
C(14)-C(7)-H(7)	107.2
C(8)-C(7)-H(7)	107.2
C(6)-C(7)-H(7)	107.2
C(20)-C(8)-C(9)	117.8(3)
C(20)-C(8)-C(7)	120.0(3)
C(9)-C(8)-C(7)	122.1(2)
C(10)-C(9)-C(8)	121.0(3)
C(10)-C(9)-H(9)	119.5
C(8)-C(9)-H(9)	119.5
C(9)-C(10)-C(11)	120.4(3)
C(9)-C(10)-H(10)	119.8
C(11)-C(10)-H(10)	119.8
C(21)-C(11)-C(10)	119.2(3)
C(21)-C(11)-H(11)	120.4
C(10)-C(11)-H(11)	120.4
C(1)-C(12)-C(13)	120.4(3)
C(1)-C(12)-H(12)	119.8
C(13)-C(12)-H(12)	119.8
C(4)-C(13)-C(12)	119.3(3)
C(4)-C(13)-H(13)	120.3
C(12)-C(13)-H(13)	120.3
C(15)-C(14)-C(7)	124.8(3)
C(15)-C(14)-H(14)	117.6
C(7)-C(14)-H(14)	117.6
C(14)-C(15)-C(16)	122.2(3)
C(14)-C(15)-C(17)	122.7(2)
C(16)-C(15)-C(17)	115.1(2)

C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(15)-C(17)-C(18)	114.9(2)
C(15)-C(17)-H(17A)	108.5
C(18)-C(17)-H(17A)	108.5
C(15)-C(17)-H(17B)	108.5
C(18)-C(17)-H(17B)	108.5
H(17A)-C(17)-H(17B)	107.5
C(19)-C(18)-C(17)	115.1(2)
C(19)-C(18)-C(6)	103.9(2)
C(17)-C(18)-C(6)	118.1(2)
C(19)-C(18)-H(18)	106.3
C(17)-C(18)-H(18)	106.3
C(6)-C(18)-H(18)	106.3
O(2)-C(19)-N(1)	124.2(3)
O(2)-C(19)-C(18)	127.9(2)
N(1)-C(19)-C(18)	107.8(2)
C(21)-C(20)-C(8)	121.2(3)
C(21)-C(20)-H(20)	119.4
C(8)-C(20)-H(20)	119.4
C(11)-C(21)-C(20)	120.4(3)
C(11)-C(21)-H(21)	119.8
C(20)-C(21)-H(21)	119.8
C(23)-C(22)-C(33)	119.6(3)
C(23)-C(22)-H(22)	120.2
C(33)-C(22)-H(22)	120.2
C(22)-C(23)-C(24)	120.2(3)
C(22)-C(23)-H(23)	119.9
C(24)-C(23)-H(23)	119.9
C(25)-C(24)-C(23)	119.2(3)
C(25)-C(24)-H(24)	120.4
C(23)-C(24)-H(24)	120.4
C(34)-C(25)-C(24)	120.8(3)
C(34)-C(25)-N(2)	119.7(2)

C(24)-C(25)-N(2)	119.4(2)
O(4)-C(26)-N(2)	124.9(2)
O(4)-C(26)-C(27)	127.4(2)
N(2)-C(26)-C(27)	107.6(2)
C(26)-C(27)-C(36)	103.8(2)
C(26)-C(27)-C(28)	109.3(2)
C(36)-C(27)-C(28)	115.2(2)
C(26)-C(27)-H(27)	109.5
C(36)-C(27)-H(27)	109.5
C(28)-C(27)-H(27)	109.5
C(37)-C(28)-C(29)	110.3(2)
C(37)-C(28)-C(27)	110.3(2)
C(29)-C(28)-C(27)	114.5(2)
C(37)-C(28)-H(28)	107.1
C(29)-C(28)-H(28)	107.1
C(27)-C(28)-H(28)	107.1
C(30)-C(29)-C(41)	117.7(3)
C(30)-C(29)-C(28)	120.0(3)
C(41)-C(29)-C(28)	122.3(2)
C(31)-C(30)-C(29)	120.9(3)
C(31)-C(30)-H(30)	119.5
C(29)-C(30)-H(30)	119.5
C(32)-C(31)-C(30)	120.5(3)
C(32)-C(31)-H(31)	119.7
C(30)-C(31)-H(31)	119.7
C(31)-C(32)-C(42)	119.4(3)
C(31)-C(32)-H(32)	120.3
C(42)-C(32)-H(32)	120.3
C(34)-C(33)-C(22)	120.2(3)
C(34)-C(33)-H(33)	119.9
C(22)-C(33)-H(33)	119.9
C(25)-C(34)-C(33)	119.9(3)
C(25)-C(34)-H(34)	120.1
C(33)-C(34)-H(34)	120.1
O(3)-C(35)-N(2)	124.4(3)
O(3)-C(35)-C(36)	127.2(3)
N(2)-C(35)-C(36)	108.4(2)
C(35)-C(36)-C(39)	114.8(2)

C(35)-C(36)-C(27)	103.5(2)
C(39)-C(36)-C(27)	118.5(2)
C(35)-C(36)-H(36)	106.4
C(39)-C(36)-H(36)	106.4
C(27)-C(36)-H(36)	106.4
C(38)-C(37)-C(28)	125.5(3)
C(38)-C(37)-H(37)	117.3
C(28)-C(37)-H(37)	117.3
C(37)-C(38)-C(39)	123.0(2)
C(37)-C(38)-C(40)	121.6(3)
C(39)-C(38)-C(40)	115.4(2)
C(38)-C(39)-C(36)	115.4(2)
C(38)-C(39)-H(39A)	108.4
C(36)-C(39)-H(39A)	108.4
C(38)-C(39)-H(39B)	108.4
C(36)-C(39)-H(39B)	108.4
H(39A)-C(39)-H(39B)	107.5
C(38)-C(40)-H(40A)	109.5
C(38)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
C(38)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
C(42)-C(41)-C(29)	121.4(3)
C(42)-C(41)-H(41)	119.3
C(29)-C(41)-H(41)	119.3
C(41)-C(42)-C(32)	120.0(3)
C(41)-C(42)-H(42)	120.0
C(32)-C(42)-H(42)	120.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
0(1)	23(1)	25(1)	22(1)	2(1)	2(1)	8(1)
O(2)	22(1)	23(1)	26(1)	6(1)	-1(1)	1(1)
O(3)	21(1)	24(1)	23(1)	7(1)	4(1)	3(1)
O(4)	18(1)	23(1)	22(1)	2(1)	3(1)	-6(1)
N(1)	18(1)	19(1)	18(1)	-1(1)	3(1)	0(1)
N(2)	14(1)	15(1)	18(1)	1(1)	1(1)	-1(1)
C(1)	20(1)	30(2)	33(2)	8(2)	10(1)	1(1)
C(2)	28(2)	33(2)	19(1)	3(1)	5(1)	4(2)
C(3)	22(1)	22(2)	23(1)	-2(1)	-2(1)	1(1)
C(4)	16(1)	20(2)	20(1)	4(1)	4(1)	4(1)
C(5)	22(1)	19(2)	18(1)	-3(1)	6(1)	0(1)
C(6)	20(1)	15(2)	23(1)	0(1)	6(1)	2(1)
C(7)	24(1)	20(2)	16(1)	1(1)	7(1)	5(1)
C(8)	22(1)	21(2)	16(1)	-3(1)	5(1)	6(1)
C(9)	24(1)	20(2)	25(1)	-2(1)	-5(1)	2(1)
C(10)	38(2)	20(2)	26(2)	-2(2)	0(1)	2(2)
C(11)	34(2)	26(2)	32(2)	-15(2)	12(2)	-7(2)
C(12)	19(1)	28(2)	41(2)	-6(2)	0(1)	-6(1)
C(13)	23(1)	31(2)	21(1)	-5(1)	2(1)	-1(2)
C(14)	23(1)	19(2)	24(1)	0(1)	8(1)	3(1)
C(15)	20(1)	17(2)	26(1)	-1(1)	10(1)	0(1)
C(16)	23(2)	30(2)	34(2)	-1(2)	6(1)	2(1)
C(17)	17(1)	23(2)	26(1)	1(1)	0(1)	1(1)
C(18)	19(1)	16(2)	23(1)	-1(1)	5(1)	0(1)
C(19)	20(1)	15(2)	19(1)	-2(1)	-2(1)	-2(1)
C(20)	25(1)	31(2)	19(1)	-6(1)	-1(1)	8(1)
C(21)	18(1)	37(2)	31(2)	-15(2)	0(1)	1(2)
C(22)	15(1)	28(2)	31(2)	4(2)	-4(1)	1(1)
C(23)	22(1)	26(2)	22(1)	1(1)	-4(1)	-2(1)
C(24)	20(1)	20(2)	22(1)	-1(1)	3(1)	4(1)
C(25)	15(1)	14(2)	22(1)	2(1)	0(1)	-1(1)
C(26)	20(1)	12(2)	15(1)	-3(1)	0(1)	0(1)
C(27)	18(1)	13(2)	17(1)	2(1)	0(1)	-2(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for twin5. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

C(28)	23(1)	18(2)	13(1)	2(1)	0(1)	-1(1)
C(29)	15(1)	21(2)	16(1)	-2(1)	-1(1)	-1(1)
C(30)	22(1)	24(2)	20(1)	0(1)	1(1)	-3(1)
C(31)	18(1)	33(2)	24(1)	-10(2)	1(1)	0(1)
C(32)	25(2)	27(2)	27(2)	-10(2)	-5(1)	9(1)
C(33)	20(1)	24(2)	31(2)	3(1)	6(1)	5(1)
C(34)	19(1)	25(2)	22(1)	1(1)	3(1)	-3(1)
C(35)	18(1)	14(2)	17(1)	-2(1)	2(1)	1(1)
C(36)	17(1)	18(2)	17(1)	-1(1)	3(1)	-1(1)
C(37)	20(1)	17(2)	20(1)	-2(1)	-2(1)	0(1)
C(38)	18(1)	17(2)	26(2)	0(1)	-2(1)	0(1)
C(39)	16(1)	21(2)	21(1)	3(1)	4(1)	0(1)
C(40)	20(1)	28(2)	28(1)	-1(2)	-2(1)	-6(1)
C(41)	21(1)	21(2)	18(1)	-3(1)	1(1)	-2(1)
C(42)	31(2)	18(2)	28(2)	-1(1)	-4(1)	0(2)

	Х	У	Z	U(eq)
H(1)	4642	3537	5843	33
H(2)	6383	5062	6386	32
H(3)	8168	6065	5792	27
H(6)	10033	7817	3543	23
H(7)	9369	6266	2638	23
H(9)	10265	2771	3673	28
H(10)	8848	565	3786	34
H(11)	6674	482	3215	36
H(12)	4705	2943	4704	35
H(13)	6509	3890	4107	30
H(14)	11422	5115	2405	26
H(16A)	13700	4496	2646	43
H(16B)	13929	3505	3332	43
H(16C)	14369	5360	3308	43
H(17A)	12949	5890	4254	26
H(17B)	12188	4191	4276	26
H(18)	11138	7109	4494	23
H(20)	7324	4881	2444	30
H(21)	5953	2618	2519	35
H(22)	-591	9605	-920	30
H(23)	997	8114	-1479	29
H(24)	2956	7069	-882	25
H(27)	5516	5265	1396	19
H(28)	5173	6805	2293	22
H(30)	3141	8028	2548	27
H(31)	1662	10226	2543	30
H(32)	1969	12420	1845	32
H(33)	-218	10048	236	30
H(34)	1715	8985	829	27
H(36)	6318	5948	442	21
H(37)	7160	8282	2488	23
H(39A)	8174	7225	689	23

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for twin5.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

H(39B)	7369	8891	594	23
H(40A)	9284	9106	2236	38
H(40B)	9307	9874	1502	38
H(40C)	9843	8073	1638	38
H(41)	5352	10304	1207	24
H(42)	3820	12444	1169	31

