Supplementary Information for

Sodium methoxide: simple but highly efficient catalyst for the direct amidation of esters

Takashi Ohshima*¹, Yukiko Hayashi², Kazushi Agura¹, Yuka Fujii², Asako Yoshiyama², and Kazushi Mashima*²

 ¹ Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
² Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

*To whom the correspondence should be addressed. E-mail: ohshima@phar.kyushu-u.ac.jp, mashima@chem.es.osaka-u.ac.jp

Table of Contents

1.	Additional Experimental Results	S-1
2.	Materials and methods	S-6
3.	Characterization data for the isolated products	S-7
4.	References for the Supplementary Information	S-19

1. Additional Experimental Results

1.1. Catalyst Screening

Sodium and potassium alkoxides gave high yields of benzyl amide, whereas lithium and calcium alkoxides had almost no catalytic activities (entries 1-5). Sodium hexamethyldisilazide showed an identical result to sodium methoxide (entries 1 and 7). Because of the generation of methanol as co-product with pK_a value of 15, the most part of sodium hexamethyldisilazide should convert to sodium methoxide and hexamethyldisilazane (p $K_a \approx 26$) during reaction. Lithium, sodium, potassium and calcium carbonates could not promote the reaction (entries 9-12). Alkali metal acetates, alkaline-earth metal acetates and µ-oxo bridged tetranuclear zinc cluster had no catalytic activity (entries 13-17).

	BnNH ₂ (1.3 eq) catalyst (5 mol%)	O Bn	
OMe	1,4-dioxane, 50 ^o C, 20 h		
entry	catalyst	yield (%) ^b	
<mark>1</mark>	<mark>NaOMe</mark>	<mark>90</mark>	
2	Ca(OMe) ₂	ND ^c	
3	LiO ^t Bu	6	
4	<mark>NaO^tBu</mark>	<mark>86</mark>	
5	KO ^t Bu	77	
6	LiHMDS	7	
7	<mark>NaHMDS</mark>	90	
8	KHMDS	82	
9 10 11 12	$\begin{array}{c} Li_2CO_3\\ Na_2CO_3\\ K_2CO_3\\ CaCO_3\end{array}$	ND ^c ND ^c ND ^c ND ^c	
13 ^d	LiOAc	trace	
14 ^d	NaOAc	trace	
15 ^d	Mg(OAc) ₂	trace	
16 ^d	Ca(OAc) ₂	trace	
17 ^{d,e}	Zn ₄ (OCOCF ₃) ₆ O	3	

Table S1. (Catalyst	Screening	for A	Amidation	of Ester	а
-------------	----------	-----------	-------	-----------	----------	---

^a 12.0 mmol scale, 5 mL of dioxane was used. ^b Determined by GC analysis using DB-5 column. ^c Not detected. ^d PhCl was used as a solvent. ^e Catalyst loading was 0.15 mmol (1.25 mol%).

1.2. Solvent Screening

The amidation of esters catalyzed by sodium methoxide proceeded heterogeneously in various polar and non-polar solvents, such as 1,4-dioxane, chlorobenzene, toluene, hexane, THF, diethoxymethane and NMP (entries 1–8). When using methanol, sodium methoxide promoted the reaction with only moderate activity (entry 9). Acetonitrile also inhibited the reaction (entry 10). As a result, we chose toluene as an appropriate solvent for studying about the sodium methoxide catalyzed-amidation system, considering the solubility of substrates and products in the reaction mixture.

Table S2. Solvent Effects in Amidation Catalyzed by NaOMe

	ⁿ HexNH ₂ (1.3 eq) NaOMe (5 mol%)	O Mex
OMe	solvent, 50 °C, 20 h	N H
entry	solvent	yield (%) ^b
1	none	>99 ^c
2	1,4-dioxane	>99
3	PhCl	>99
4	toluene	>99
5	hexane	>99
6	THF	91
7	diethoxymethane	91
8	N-methylpyrollidone	68
9	MeOH	47
10	MeCN	8

^a 12.0 mmol scale, 5 mL of solvent was used. ^b Determined by GC analysis using DB-5 column. ^c Isolated yield.

1.3. Amidation Catalyzed by NaOMe at 25 °C

1.4. Amidation in a Shield-tube

1.5. Amidation of Isopropyl and tert-Butyl Esters Catalyzed by NaOMe

1.6. Effects of Water in Amidation Catalyzed by NaOMe

We carried out the control experiments to investigate effects of water in the sodium methoxide catalyzed-amidation of ester. The catalytic amidation was completely inhibited in the presence of 5 mol% (1 equiv. to sodium methoxide) of water. In the water added reaction mixture, a white solid was generated and identified as sodium benzoate by FT-IR measurement. It is indicated that the existence of water cause the generation of catalytic inactive sodium benzoate via formation of sodium hydroxide by the reaction of sodium methoxide with water.

Figure S1. (a) Effects of Water in Amidation Catalyzed by NaOMe. (b) Amidation Using Sodium Benzoate as a Catalyst. (c) Generation of Sodium Benzoate by Saponification of Methyl Benzoate.

1.7. Plots for the amidation of chiral α -amino ester

Figure S2. ◆, yield of **3sa**; ■, ee of **3sa**. Data using *ortho*-substituted phenols (Entries 5 and 9 in Table 2) were omitted to eliminate their improper steric effects.

2. Materials and methods

General: Nuclear magnetic resonance (¹H NMR, ¹³C NMR, and ¹⁹F NMR) spectra were measured on a VARIAN-MERCURY300-C/H spectrometer operating at 300 MHz (¹H NMR), 75.5 MHz (¹³C NMR) and 282 MHz (¹⁹F NMR) or on a Brucker Avance 400 spectrometer operating at 400 MHz (¹H NMR), 100 MHz (¹³C NMR) and 376 MHz (¹⁹F NMR) in 5 mm NMR tube. All ¹H NMR chemical shifts were reported in ppm relative to internal references of TMS at δ 0.00. All ¹³C NMR chemical shifts were reported in ppm relative to carbon resonance in chloroform- d_1 at δ 77.00, in dimethylsulfoxide- d_6 at δ 40.45. IR spectra were recorded on a JASCO FT/IR-230 spectrometer or on a SHIMAZU FTIR-8400 spectrometer. Low and high resolution mass spectra were recorded by JEOL JMS-700 or by LCT Premier XE mass spectrometer (Waters). Melting points of air- and moisture-sensitive compounds were measured in sealed tubes using Yanaco micro melting point apparatus. All catalytic reactions were carried out by the standard Schlenk techniques under an argon atmosphere. Toluene was distilled from benzophenone ketyl. Ester substrates were purchased at the highest commercial quality or synthesized from the corresponding carboxylic acids by standard esterification reaction with catalytic amounts of SOCl₂. Solid substrates were used without further purification, and liquid substrates were distilled before use.

General procedure for the amidation of esters catalyzed by sodium methoxide

A mixture of sodium methoxide (0.4 mmol, 5 mol% based on ester), ester (8.0 mmol, 1.0 eq), amine (10.4 mmol, 1.3 eq), and toluene (2.0 mL) was heated at 50 °C for periodic time under an argon flow condition. The resulting mixture was quenched with aqueous saturated NH₄Cl. After extraction with ethyl acetate, the product was purified by flash column chromatography or recrystallization.

General procedure for the amidation of α -amino esters catalyzed by sodium methoxide with 4-trifluoromethylphenol

A mixture of sodium methoxide (0.2 mmol, 10 mol% based on ester), 4-trifluoromethylphenol (0.6 mmol, 30 mol% based on ester), ester (2.0 mmol, 1.0 eq), amine (2.6 mmol, 1.3 eq), MS3A (50 mg), and toluene (0.5 mL) was heated at 50 or 70 °C for periodic time under an argon flow condition. The resulting mixture was quenched with aqueous saturated NH₄Cl. After extraction with ethyl acetate, the product was purified by flash column chromatography or recrystallization. Enantiomeric excess of the product was determined by chiral HPLC analysis.

3. Characterization data for the isolated compounds

N-Hexylbenzamide (3aa)^{S-1}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.78 (dt, *J* = 7.0, 1.7 Hz, 2H, *aromatic*), 7.45 (tt, *J* = 7.4, 1.4 Hz, 1H, *aromatic*), 7.38 (tt, *J* = 7.4, 1.4 Hz, 2H, *aromatic*), 7.32-7.24 (m, 5H, *aromatic*), 6.65 (br s, 1H, NH), 4.60 (d, *J* = 5.7 Hz, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 167.3, 138.2, 134.4, 131.4, 128.7, 128.5, 127.8, 127.5, 126.9, 44.0; MS (EI) *m/z* (relative intensity) 211 ([M⁺], 23), 105 (100); HRMS (EI) *m/z* calcd. for C₁₄H₁₃NO 211.0997, found 211.1002; Other physical measurements were previously reported in the literature.

N-Hexylbenzamide (3ab)^{S-2}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); white solid; ¹H NMR (300 MHz, [

CDCl₃, 35 °C) δ 7.78-7.75 (m, 2H, *aromatic*), 7.46-7.36 (m, 3H, *aromatic*), 6.47 (br s, 1H, N*H*), 3.42 (dt, *J* = 5.8, 7.1 Hz, 2H, NHC*H*₂), 1.59-1.57 (m, 2H, NHCH₂C*H*₂), 1.32 (m, 6H, *methylene*), 0.88 (t, *J* = 6.8 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 167.5, 134.9, 131.1, 128.4, 126.8, 40.1, 31.5, 29.6, 26.6, 22.5, 13.9; MS (EI) *m/z* (relative intensity) 205 ([M⁺], 10), 148 (100), 105 (76), 77 (23); HRMS (EI) *m/z* calcd. for C₁₃H₁₉NO 205.1467, found 205.1438; Other physical measurements were previously reported in the literature.

4-Cyano-N-hexylbenzamide (3bb)^{S-3}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 2/1); white solid; ¹H NMR (300 NC

MHz, CDCl₃, 35 °C) δ 7.87-7.84 (m, 2H, *aromatic*), 7.74-7.71 (m, 2H, *aromatic*), 6.15 (br s, 1H, N*H*), 3.46 (dt, *J* = 5.8, 7.1 Hz, 2H, NHC*H*₂), 1.65-1.58 (m, 2H, NHCH₂C*H*₂), 1.34 (m, 6H, *methylene*), 0.90 (t, *J* = 6.9 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 165.7, 138.8, 132.4, 127.6, 118.0, 114.9, 40.4, 31.4, 29.5, 26.6, 22.5, 13.9; MS (EI) *m*/*z* (relative intensity) 230 ([M⁺], 13), 173 (17), 160 (37), 130 (100), 102 (56); HRMS (EI) *m*/*z* calcd. for C₁₄H₁₈N₂O 230.1419, found 230.1429; Other physical measurements were previously reported in the literature.

N-hexyl-4-(trifluoromethyl)benzamide (3cb)^{S-4}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); white solid; mp 76-77 °C; ¹H F_{3C} NMR (300 MHz, CDCl₃, 35 °C) δ 7.87 (d, J = 8.2 Hz,

2H, *aromatic*), 7.61 (d, J = 8.2 Hz, 2H, *aromatic*), 7.01 (s, 1H, N*H*), 3.41 (q, J = 6.3 Hz, 2H, NHC*H*₂), 1.66-1.54 (m, 2H, NHCH₂C*H*₂), 1.41-1.21 (m, 6H, *methylene*), 0.88 (t, J = 6.5 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 166.6, 138.1, 132.8 (q, $J_{C-F} = 33$ Hz), 127.4, 125.2, 123.6 (q, $J_{C-F} = 270.8$ Hz), 40.3, 31.4, 29.3, 26.6, 22.4, 13.7; MS (EI) *m/z* (relative intensity) 273.2 ([M⁺], 8), 173 (100), 145 (33); HRMS (EI) *m/z* calcd. for C₁₄H₁₈F₃NO 273.1340, found 273.1325; Other physical measurements were previously reported in the literature.

4-Chloro-N-hexylbenzamide (3db)

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); white solid; mp 67-68 °C; IR Cl \sim

(CHCl₃, ν /cm⁻¹) 3457, 3356, 3009, 2931, 2862, 1659, 1597, 1520, 1481, 1296; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 7.72-7.60 (m, 2H, *aromatic*), 7.45-7.37 (m, 2H, *aromatic*), 6.09 (br s, 1H, NH), 3.43 (dt, J = 5.8, 7.1 Hz, 2H, NHCH₂), 1.68-1.49 (m, 2H, NHCH₂CH₂), 1.45-1.16 (m, 6H, *methylene*), 0.90 (t, J = 6.9 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 166.5, 137.3, 133.1, 128.5, 128.3, 40.2, 31.4, 29.5, 26.6, 22.5, 13.9; MS (EI) *m/z* (relative intensity) 239 ([M⁺], 8), 139 (100), 111 (25); HRMS (EI) *m/z* calcd. for C₁₃H₁₈CINO 239.1077, found 239.1078.

N-hexyl-4-methylbenzamide (3eb)^{S-2}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1 to 0/1); white solid; mp 42-43 °C;

¹H NMR (300 MHz, CDCl₃, 35 °C) δ 7.65 (d, *J* = 8.2 Hz, 2H, *aromatic*), 7.21 (d, *J* = 8.2 Hz, 2H, *aromatic*), 6.13 (br s, 1H, N*H*), 3.43 (dt, *J* = 5.8, 7.1 Hz, 2H, NHC*H*₂), 2.38 (s, 3H, C6H4C*H*₃), 1.65-1.55 (m, 2H, NHCH₂C*H*₂), 1.40-1.28 (m, 6H, *methylene*), 0.89 (t, *J* = 6.8 Hz, 3H, CH2C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 167.4, 141.6, 132.1, 129.1, 126.8, 40.0, 31.5, 29.7, 26.7, 22.5, 21.4, 14.0; MS (EI) *m/z* (relative intensity) 219 ([M⁺], 21), 176 (18), 148 (32), 119 (100), 91 (48); HRMS (EI) *m/z* calcd. for C₁₄H₂₁NO 219.1623, found 219.1624; Other physical measurements were previously reported in the literature.

Ο

N-hexyl-4-methoxybenzamide (3fb)

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 3/1 to 0/1); 71% yield; mp 63-64 °C; IR (KBr, v/cm^{-1}) 3325, 2916, 2855, 1628, 1535,

1505, 1644, 1250, 1188, 1103, 1034, 849, 764, 610; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 7.72 (d, *J* = 9.0 Hz, 2H, *aromatic*), 6.92 (m, 2H, *aromatic*), 5.96 (br s, 1H, N*H*), 3.84 (s, 3H, *CH*₃O), 3.43 (dt, *J* = 5.8, 7.1 Hz, 2H, NHC*H*₂), 1.63-1.56 (m, 2H, NHCH₂C*H*₂), 1.41-1.32 (m, 6H, *methylene*), 0.90 (t, *J* = 6.9 Hz, 3H, *CH*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 167.0, 162.1, 128.6, 127.3, 113.7, 55.4, 40.1, 31.5, 29.7, 26.7, 22.5, 14.0; MS (EI) *m/z* (relative intensity) 235 ([M⁺], 10), 135 (100); HRMS (EI+) *m/z* calcd. for C₁₄H₂₁NO₂ 235.1572, found 235.1582.

N-hexylcinnamamide (3gb)^{S-5}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 3/1 to 0/1); white solid; ¹H NMR

O N H

(300 MHz, CDCl₃, 35 °C) δ 7.62 (d, *J* = 15.6 Hz, 1H, PhC*H*=CH), 7.49-7.46 (m, 2H, *aromatic*), 7.35-7.28 (m, 3H, *aromatic*), 6.42 (d, *J* = 15.6 Hz, 1H, PhCH=C*H*), 5.85 (br s, 1H, N*H*), 3.38 (dt, *J* = 5.9, 7.1 Hz, 2H, NHC*H*₂), 1.62-1.52 (m, 2H, NHCH₂C*H*₂), 1.38-1.30 (m, 6H, *methylene*), 0.88 (t, *J* = 6.9 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 165.0, 140.7, 135.0, 129.5, 128.7, 127.7, 121.0, 39.8, 31.5, 29.6, 26.6, 22.5, 13.5; MS (EI) *m/z* (relative intensity) 231 ([M⁺], 24), 190 (75), 131 (100), 121 (75), 77 (37); HRMS (EI) *m/z* calcd. for C₁₅H₂₁NO 231.1623, found 231.1630; Other physical measurements were previously reported in the literature.

N-hexyl-3-phenylpropanamide (3hb)^{S-6}

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 3/1); white solid; ¹H NMR (300

MHz, CDCl₃, 35 °C) δ 7.3-7.1 (m, 5H, *Ph*), 5.52 (bs, 1H, CON*H*), 3.18 (dt, *J* = 7.1, 5.9 Hz, 2H, NHC*H*₂), 2.95 (t, *J* = 9.0 Hz, 2H, PhCH₂C*H*₂), 2.45 (t, *J* = 9.0 Hz, 2H, PhC*H*₂CH₂), 1.5-1.2 (m, 8H, *methylene*), 0.87 (t, *J* = 6.8 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, DMSO-*d*₆, 35 °C) δ 172.0, 140.8, 128.3, 128.2, 126.0, 39.4, 38.3, 31.7, 31.3, 29.4, 26.4, 22.4, 13.8; MS (EI) *m/z* 233 [M⁺]; HRMS (EI) *m/z* calcd for C₁₅H₂₃NO 233.1780, found 233.1792; Other physical measurements were previously reported in the literature.

N-hexylhexanamide (3ib)

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); colorless oil; IR (CHCl₃,

 v/cm^{-1}) 3449, 3310, 3086, 2994, 2936, 2862, 1667, 1628, 1551, 1520, 1466, 1373, 1250; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 5.44 (br s, 1H , N*H*), 3.24 (dt, *J* = 5.8, 7.1 Hz, 2H, NHC*H*₂), 2.15 (t, J = 5.0 Hz, 2H, COC*H*₂), 1.8-1.2 (m, 14H, *methylene*), 1.0-0.8 (m, 6H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 173.1, 39.3, 36.6, 31.4, 31.4, 29.5, 26.5, 25.4, 22.4, 22.3, 13.8, 13.8; MS (ESI) *m/z* (relative intensity) 200 ([M+H⁺], 100), 157 (11); HRMS (ESI) *m/z* calcd. for C₁₂H₂₆NO 200.2014, found 200.2005.

N-Hexyldodecanamide (3jb)

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1 to 0/1); white solid; mp 55-56 °C; IR (CHCl₃, v/cm^{-1}) 3449, 3333, 2924, 2855, 1666, 1519,

1416, 1373, 1219; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 5.39 (br s, 1H, N*H*), 3.24 (q, *J* = 6.4 Hz, 2H, NHC*H*₂), 2.15 (t, *J* = 7.4 Hz, 2H, COC*H*₂), 1.68-1.43 (m, 4H, *methylene*), 1.40-1.16 (m, 22H, *methylene*), 0.98-0.80 (m, 6H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 173.0, 39.5, 36.9, 31.9, 31.5, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 26.6, 25.8, 22.6, 22.5, 14.0, 13.9; MS (EI) *m*/*z* (relative intensity) 283 ([M⁺], 19), 240 (32), 183 (18), 143 (100), 86 (30); HRMS (EI) *m*/*z* calcd. for C₁₈H₃₇NO 283.2875, found 283.2893.

N-hexylcyclohexanecarboxamide (3kb)

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); white solid; mp 69-70 °C; IR

(CHCl₃, ν /cm⁻¹) 3449, 3325, 3001, 2924, 2862, 1659, 1643, 1543, 1520, 1450, 1373, 1311, 1257; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 5.38 (br s, 1H, N*H*), 3.23 (dt, *J* = 5.8, 7.0 Hz, 2H, NHC*H*₂), 2.05 (tt, *J* = 11.4, 3.4 Hz, 1H, C*H*), 1.90-1.05 (m, 18H, *methylene*), 0.88 (t, *J* = 6.8 Hz, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 175.9, 45.5, 39.2, 31.4, 29.7, 29.6, 29.6, 26.5, 25.7, 22.4, 13.9; MS (EI) *m*/*z* (relative intensity) 211.2 ([M⁺], 52), 83 (100); HRMS (EI) *m*/*z* calcd. for C₁₃H₂₅NO 211.1936, found 211.1909.

N^1 -benzyl- N^4 -hexylsuccinamide (3lb)

Purified by reprecipitation from CHCl₃ solution to EtOAc; white solid; mp 166-167

°C; IR (KBr, ν/cm^{-1}) 3302, 3086, 2924, 2855, 1636, 1551, 1427, 1343, 1211, 1080, 1026. 733, 694; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 7.4-7.2 (m, 5H, *aromatic*), 6.33 (bs, 1H, N*H*), 5.90 (bs, 1H, N*H*), 4.42 (d, *J* = 5.7 Hz, 2H, PhC*H*₂NH), 3.20 (td, *J* = 7.2, 5.8 Hz, 2H, NHC*H*₂CH₂), 2.6-2.5 (m, 4H, CO *CH*₂*CH*₂CO), 1.5-1.2 (m, 8H, *methylene*), 0.88 (t, *J* = 6.9 Hz, 3H, *CH*₃); ¹³C NMR (75 MHz, DMSO-*d*₆, 35 °C) δ 171.3, 171.0, 139.5, 128.1, 127.0, 126.5, 42.0, 38.4, 30.9, 30.8, 30.8, 29.0, 26.0, 21.9, 13.8; MS (EI) *m/z* 290 [M⁺]; HRMS (EI) *m/z* calcd for C₁₇H₂₆N₂O₂ 290.1994, found 290.1977.

tert-butyl 2-(hexylamino)-2-oxoethylcarbamate (3mb)

Purified by flash column chromatography (silica

gel, Hexane/EtOAc = 4/1); colorless liquid; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 6.14 (br s, 1H, N*H*), 5.17 (br s, 1H, N*H*), 3.76 (d, *J* = 6.0 Hz, 2H, NHC*H*₂CO), 3.26 (dt, *J* = 6.0, 7.0 Hz, 2H, NHC*H*₂CH₂), 1.5-1.3 (m, 11H, NHCH₂C*H*₂ and C(C*H*₃)₃), 1.4-1.2 (m, 6H, *methylene*), 0.88 (t, *J* = 6.4 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 169.3, 156.1, 80.0, 44.3, 39.4, 31.4, 29.4, 28.2, 26.4, 22.4, 13.9; MS (EI) *m/z* (relative intensity) 258 ([M⁺], 1), 30 (100); Other physical measurements were previously reported in the literature.

benzyl

2-(hexylamino)-2-oxoethylcarbamate (**3nb**)^{S-7}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 2/1 to 1/1); white solid; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 7.38-7.27 (m, 5H, *aromatic*), 5.89 (br s, 1H, N*H*), 5.34 (br s, 1H, N*H*), 5.13 (s, 2H, NHC*H*₂CO), 3.83 (d, *J* = 5.7 Hz, 2H, PhC*H*₂O), 3.29-3.21 (dt, *J* = 6.4, 6.8 Hz, 2H, NHC*H*₂CH₂), 1.54-1.40 (m, 2H, NHCH₂C*H*₂), 1.38-1.19 (m, 6H, *methylene*), 0.88 (t, *J* = 6.6 Hz, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 168.8, 156.6, 136.0, 128.5, 128.2, 128.0, 67.1, 44.6, 39.5, 31.4, 29.3, 26.4, 22.5, 14.0; MS (EI) *m/z* (relative intensity) 292.1 ([M⁺], 11), 185 (17), 91 (100), 43 (44); HRMS (EI) *m/z* calcd. for C₁₆H₂₄N₂O₃ 292.1787, found 292.1798; Other physical measurements were previously reported in the literature.

N-hexyl-4-hydroxybutanamide (3ob)^{S-8}

Purified by flush column chromatography (silica gel,

Hexane/EtOAc = 4/1 to EtOAc/MeOH = 99/1); white solid; IR (CHCl₃, ν/cm^{-1}) 3433, 3309, 3102, 3001, 2932, 2862, 1659, 1628, 1566, 1512, 1451, 1250, 1057; ¹H NMR

(400 MHz, CDCl₃, 35 °C) δ 6.51 (bs, 1H, N*H*), 4.09 (bs, 1H, O*H*), 3.65 (t, *J* = 5.8 Hz, 2H, C*H*₂OH), 3.21 (td, *J* = 7.1, 5.8 Hz, 2H, NHC*H*₂), 2.34 (t, *J* = 7.0 Hz, 2H, C*H*₂CO), 1.85 (tt, *J* = 7.0, 5.8 Hz, 2H, C*H*₂CH₂CO), 1.5-1.4 (m, 2H, NHCH₂C*H*₂), 1.4-1.2 (m, 6H, *methylene*), 0.88 (t, *J* = 6.9 Hz, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 35 °C) δ 173.6, 61.8, 39.6, 33.7, 31.3, 29.3, 28.3, 26.5, 22.4, 13.8; MS (EI) *m/z* 187 [M⁺]; HRMS (EI) *m/z* calcd for C₁₀H₂₁NO₂ 187.1572, found 187.1562; Other physical measurements were previously reported in the literature.

N-hexyl-4-hydroxyhexanamide (3pb)

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 4/1 to EtOAc/MeOH = 99/1); white

solid; mp 34-35 °C; IR (CHCl₃, ν/cm^{-1}) 3441, 3318, 2932, 2862, 1659, 1643, 1528, 1458, 1234, 787; ¹H NMR (400 MHz, CDCl₃, 35 °C) δ 6.01 (bs, 1H, N*H*), 3.56 (tt, *J* = 9.0, 3.0 Hz, 1H, C*H*OH), 3.23 (td, *J* = 7.1, 4.9 Hz, 2H, NHC*H*₂), 3.04 (bs, 1H, O*H*), 2.4-2.3 (m, 2H, C*H*₂CO), 1.9-1.8 (m, 1H, C*H*₂CHOH), 1.7-1.6 (m, 1H, C*H*₂CHOH), 1.6-1.4 (m, 4H, *methylene*), 1.4-1.2 (m, 6H, *methylene*), 0.94 (t, *J* = 7.4 Hz, 3H, CHCH₂C*H*₃), 0.88 (t, *J* = 7.0 Hz, 3H, NH(CH₂)₅C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 35 °C) δ 173.9, 72.4, 39.5, 33.0, 32.2, 31.3, 30.1, 29.3, 26.5, 22.4, 13.8, 9.8; MS (EI) *m/z* 215 [M⁺]; HRMS (EI) *m/z* calcd for C₁₂H₂₅NO₂ 215.1885, found 215.1889.

N-hexyl-5-hydroxypentanamide (3qb)

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 4/1 to EtOAc/MeOH = HO HO

99/1); white solid; mp 37-38 °C; IR (CHCl₃, ν /cm⁻¹) 3449, 3325, 2947, 2932, 2862, 1667, 1636, 1528, 1458, 1373, 1234, 1057; ¹H NMR (400 MHz, CDCl₃, 35 °C) δ 5.84 (bs, 1H, N*H*), 3.64 (t, *J* = 6.2 Hz, 2H, C*H*₂OH), 3.22 (td, *J* = 7.1, 5.3 Hz, 2H, NHC*H*₂), 2.64 (bs, 1H, O*H*), 2.23 (t, *J* = 7.2 Hz, 2H, C*H*₂CO), 1.73 (tt, *J* = 7.5, 7.2 Hz, 2H, C*H*₂CH₂CO), 1.59 (tt, *J* = 7.5, 6.2 Hz, 2H, C*H*₂CH₂OH), 1.5-1.4 (m, 2H, NHCH₂C*H*₂), 1.4-1.2 (m, 6H, *methylene*), 0.87 (t, *J* = 6.9 Hz, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 35 °C) δ 173.4, 61.4, 39.3, 35.8, 31.7, 31.2, 29.2, 26.4, 22.3, 21.9, 13.7; MS (EI) *m/z* 201 [M⁺]; HRMS (EI) *m/z* calcd for C₁₁H₂₃NO₂ 201.1729, found 201.1723.

N-hexyl-6-hydroxyhexanamide (3rb)

Purified by flush column chromatography (silica

gel, Hexane/EtOAc = 2/1); white solid; mp 47-48 °C; IR (CHCl₃, ν /cm⁻¹) 3618, 3449, 3333, 3001, 2932, 2862, 1667, 1520, 1466, 1373, 1234, 1049; ¹H NMR (300 MHz,

CDCl₃, 35 °C) δ 6.43 (bs, 1H, N*H*), 3.60 (t, *J* = 6.5 Hz, 2H, C*H*₂OH), 3.49 (bs, 1H, O*H*), 3.20 (td, *J* = 6.9, 6.2 Hz, 2H, NHC*H*₂), 2.18 (t, *J* = 7.6 Hz, 2H, C*H*₂CO), 1.7-1.2 (m, 14H, *methylene*), 0.89 (t, *J* = 6.8 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 173.1, 62.1, 39.4, 36.5, 32.2, 31.3, 29.4, 26.5, 25.3, 25.3, 22.4, 13.8; MS (EI) *m/z* 215 [M⁺]; HRMS (EI) *m/z* calcd for C₁₂H₂₅NO₂ 215.1885, found 215.1857.

N-benzyl-4-chlorobenzamide (3ca)^{S-9}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 3/1 to 0/1); white solid; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 7.72 (d, *J* = 8.3 Hz, 2H, *aromatic*),

CI N H

7.42-7.27 (m, 7H, *aromatic*), 6.42 (br s, 1H, N*H*), 4.62 (d, J = 5.7 Hz, 2H, CH₂); HRMS (EI) m/z calcd. for C₁₄H₁₂NOCl 245.0607, found 245.0621; Other physical measurements were previously reported in the literature.

4-chloro-N-cyclohexylbenzamide (3cc)^{S-1}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); white solid; ¹H NMR (300 MHz, o

CDCl₃, 35 °C) δ 7.68 (d, 2H, *J* = 8.5 Hz, *aromatic*), 7.38 (d, *J* = 8.5 Hz, 2H, *aromatic*), 5.97 (br s, 1H, N*H*), 4.02-3.88 (m, 1H, NHC*H*), 2.07-1.96 (m, 2H, *cyclohexyl*), 1.81-1.60 (m, 3H, *cyclohexyl*), 1.50-1.34 (m, 2H, *cyclohexyl*), 1.31-1.13 (m, 3H, *cyclohexyl*); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 165.5, 137.4, 133.5, 128.7, 128.3, 48.8, 33.2, 25.5, 24.9; MS (EI) *m/z* (relative intensity) 237 ([M⁺], 34), 139 (100), 111 (35); HRMS (EI) *m/z* calcd. for C₁₃H₁₆NOCl 237.0920, found 237.0910; Other physical measurements were previously reported in the literature.

N-(4-chlorobenzoyl)piperidine (3cd)^{S-10}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); white solid; ¹H NMR (300 MHz, CDCl₃,

35 °C) δ 7.4-7.3 (m, 4H, *aromatic*), 3.62 (br s, 2H, *piperidyl*), 3.39 (br s, 2H, *piperidyl*), 1.7-1.5 (m, 6H, *piperidyl*); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 169.0, 135.2, 134.7, 128.5, 128.2, 48.6, 43.0, 26.3, 25.4, 24.3; MS (EI) *m/z* (relative intensity) 222 ([M⁺],100), 139 (88), 111(27); HRMS (EI) *m/z* calcd. for C₁₂H₁₄NOCl 222.0686, found 222.0680; Other physical measurements were previously reported in the literature.

N-benzyl-4-chloro-N-methylbenzamide (3ce)

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 4/1); white solid; mp 70-71 °C; IR (KBr, Cl v/cm^{-1}) 3055, 2916, 1636, 1597, 1451, 1404, 1288, 1080.

1011, 849, 741; ¹H NMR (300 MHz, CDCl₃, 35 °C) δ 7.4-7.0 (m, 9H, *aromatic*), 4.73 and 4.50 (br s, 2H, CH₂Ph), 3.02 and 2.86 (br s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 35 °C) δ 171.1, 170.2, 136.6, 136.2, 135.5, 134.4, 128.5, 128.3, 128.0, 127.5, 126.4, 54.9, 50.7, 36.8, 33.2; MS (EI) *m*/*z* (relative intensity) 258 ([M⁺], 47), 139 (100); HRMS (EI) *m*/*z* calcd. for C₁₅H₁₄NOCl 259.0764, found 259.0735.

4-chloro-N-phenylbenzamide (3cf)^{S-11}

Purified by flash column chromatography (silica gel, Hexane/EtOAc = 6/1); white solid; ¹H NMR (300 MHz,

О

DMSO- d_6 , 35 °C) δ 10.26 (br s, 1H, N*H*), 7.99 (d, J = 8.3 Hz, 2H, *aromatic*), 7.76 (d, J = 7.8 Hz, 2H, *aromatic*), 7.60 (d, J = 8.3 Hz, 2H, *aromatic*), 7.36 (t, J = 7.5 Hz, 2H, *aromatic*), 7.11 (t, J = 7.5 Hz, 2H, *aromatic*); ¹³C NMR (100 MHz, DMSO- d_6 , 30 °C) δ 164.3, 138.8, 136.3, 133.5, 129.5, 128.5, 128.3, 123.7, 120.3; MS (EI) *m/z* (relative intensity) 231 ([M⁺], 28), 139 (100), 111 (32); HRMS (EI) *m/z* calcd. for C₁₃H₁₀NOCl 231.0451, found 231.0480; Other physical measurements were previously reported in the literature.

N-(2-hydroxyethyl)-4-chlorobenzamide (3cg)^{S-12}

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 4/1 to EtOAc/MeOH = 99/1); white solid; IR (KBr, ν /cm⁻¹) 3295, 3078, 2963, 2916, 2870, 1636, 1597,

1559, 1443, 1381, 1312, 1273, 1211, 1080, 1011, 895, 849, 756, 664; ¹H NMR (300 MHz, DMSO- d_6 , 35 °C) δ 8.46 (bs, 1H, N*H*), 7.87 (d, *J* = 8.5 Hz, 2H, *aromatic*), 7.52 (d, *J* = 8.5 Hz, 2H, *aromatic*), 4.68 (t, *J* = 5.5 Hz, 1H, O*H*), 3.52 (td, *J* = 5.5, 5.9 Hz, 2H, CH₂OH), 3.33 (t, *J* = 5.9 Hz, 2H, NHCH₂); ¹³C NMR (75 MHz, DMSO- d_6 , 35 °C) δ 165.2, 135.7, 133.2, 129.0, 128.1, 59.6, 42.1; MS (EI) *m*/*z* 199 [M⁺]; HRMS (EI) *m*/*z* calcd for C₉H₁₀CINO₂ 199.0400, found 199.0392.

(S)-tert-butyl-1-(benzylamino)-1-oxo-3-phenylpropan -2-ylcarbamate; (S)-Boc-Phe-NHBn (3sa)^{S-13}

Purified by recrystallization from EtOAc-hexane and flush column chromatography (silica gel, Hexane/EtOAc

= 8/1 to 1/1); white solid; ¹H NMR (400 MHz, CDCl₃, 21 °C) δ 7.3-7.0 (m, 10H, *aromatic*), 6.42 (br s, 1H, N*H*), 5.22 (br s, 1H, N*H*), 4.39 (br s, 2H, NHC*H*₂Ph), 4.30 (td, J = 15.5, 6.9 Hz, 1H, NHC*H*), 3.05 (d, J = 6.9 Hz, 2H, CHC*H*₂Ph), 1.36 (s, 9H, C(C*H*₃)₃); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 171.1, 155.3, 137.7, 136.7, 129.3, 128.6, 128.5, 127.6, 127.3, 126.8, 80.0, 55.9, 43.3, 38.7, 28.2; MS (ESI) *m/z* (relative intensity) 255 (100), 299 (73), 377 ([M+Na⁺], 30); HRMS (ESI) *m/z* calcd. for C₂₁H₂₆N₂O₃Na 377.1841, found 377.1842; [α]₅₈₉²² +4.9 (*c* 1.05 in CH₂Cl₂); Other physical measurements were previously reported in the literature. The enantiomeric excess (%ee) was determined to be 97% by HPLC using CHIRALPAK OD-3R column (38% MeCN/ H₂O, 0.8 mL/min, 254 nm): t_R (minor, 27.8 min), t_R (major, 29.8 min).

(S)-tert-butyl-1-(benzylamino)-1-oxopropan-2-ylcarbamate; (S)-Boc-Ala-NHBn (3ta)^{S-14}

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 10/1 to 1/1); white solid; ¹H NMR (400 MHz, CDCl₃, 35 °C) δ 7.3-7.2 (m, 5H, *aromatic*),

6.42 (br s, 1H, N*H*), 4.91 (br s, 1H, N*H*), 4.45 (d, J = 5.6 Hz, 2H, NHC*H*₂Ph), 4.16 (td, J = 7.0, 7.0 Hz, 1H, C*H*), 1.42 (s, 9H, C(C*H*₃)₃), 1.38 (d, J = 7.0 Hz, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 172.6, 155.5, 138.1, 128.6, 127.5, 127.3, 80.0, 50.0, 43.3, 28.2, 18.4; MS (FAB) *m/z* 279 [M+H⁺]; HRMS (EI) *m/z* calcd for C₁₅H₂₂N₂O₃ 278.1630, found 218.1628; [α]₅₈₉²³ –20.0 (*c* 0.99 in CH₂Cl₂); Other physical measurements were previously reported in the literature. The enantiomeric excess (%ee) was determined to be 98% by HPLC using CHIRALPAK OD-3R column (30% MeCN/H₂O, 0.2 mL/min, 254 nm): t_R (minor, 69.5 min), t_R (major, 74.5 min).

(*S*)-*tert*-butyl-1-(benzylamino)-1-oxo-3-methylbutan-2 -vlcarbamate; (*S*)-Boc-Val-NHBn (3ua)

Purified by flush column chromatography (silica gel,

Hexane/EtOAc = 10/1 to 1/1); white solid; mp 125-126 °C; IR (KBr, ν/cm^{-1}) 3325, 3721, 2963, 2932, 2870, 1690, 1643, 1535, 1458, 1366, 1296, 1250, 1180. 1018, 926, 741, 694; ¹H NMR (400 MHz, CDCl₃, 35 °C) δ 7.4-7.3 (m, 5H, *aromatic*), 6.20 (br s, 1H, N*H*), 4.98 (br s, 1H, N*H*), 4.46 (d, *J* = 7.6 Hz, 2H, C*H*₂Ph), 3.89 (dd, *J* = 8.0, 11.6 Hz, 1H, NHC*H*), 2.19 (qd, *J* = 8.9, 8.0 Hz, 1H, (CH₃)₂C*H*), 1.43 (s, 9H, C(C*H*₃)₃), 0.97 (d, *J* = 8.9 Hz, 3H, C*H*₃), 0.93 (d, *J* = 8.9 Hz, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃, 21 °C) δ 171.7, 156.0, 138.1, 128.5, 127.6, 127.3, 60.0, 43.3, 30.9, 28.2, 19.3, 17.9; MS (ESI) *m/z* (relative intensity) 207 (25), 251 (65), 270 (100), 329 ([M+Na⁺], 70); HRMS

(ESI) *m*/*z* calcd. for C₁₇H₂₆N₂O₃Na 329.1841, found 329.1838; $[\alpha]_{589}^{23}$ –10.12 (*c* 1.03 in CH₂Cl₂). The enantiomeric excess (%ee) was determined to be 99% by HPLC using CHIRALPAK OD-3 column (1% *i*-PrOH/ Hexane, 1.0 mL/min, 254 nm): t_R (minor, 33.9 min), t_R (major, 38.7 min).

(S)-*tert*-butyl-1-(benzylamino)-1-oxo-4-methylpentan -2-ylcarbamate; (S)-Boc-Leu-NHBn (3va)^{S-15}

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 8/1 to 2/1); white solid; ¹H NMR (400 MHz, CDCl₃, 35 °C) δ 7.2 (m, 5H, *aromatic*), 6.58 (s,

1H, N*H*CH₂), 4.93 (d, J = 8.0 Hz, 1H, N*H*CH), 4.34 (d, J = 5.7 Hz, 2H, NHC*H*₂), 4.06 (s, 1H, NHC*H*), 1.7-1.6 (m, 2H, CHC*H*₂), 1.5-1.4 (m, 1H, CH₃C*H*CH₃), 1.33 (s, 9H, ^{*t*}*Bu*), 0.86 (d, J = 6.4 Hz, 3H, CHC*H*₃), 0.85 (d, J = 6.4 Hz, 3H, CHC*H*₃); MS (ESI) *m/z* (relative intensity) 321 ([M+H]⁺, 18), 265 (86), 222 (20), 212(4); HRMS (ESI) *m/z* calcd for C₁₈H₂₉N₂O₃ 321.2178, found 321.2178; [α]₅₈₉²⁴ –27.6 (*c* 1.03 in CH₂Cl₂); Other physical measurements were previously reported in the literature. The enantiomeric excess (%ee) was determined to be 98% by HPLC using CHIRALPAK OD-3 column (2% *i*-PrOH/ Hexane, 1.0 mL/min, 254 nm): t_R (minor, 13.3 min), t_R (major, 19.3 min).

(S)-*tert*-butyl-2-(benzylcarbamoyl)pyrrolidine-1-carbox ylate; (S)-Boc-Pro-NHBn (3wa)^{S-16}

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 10/1 to 1/1); white solid; ¹H NMR (400 MHz, DMSO- d_6 , 21 °C) δ 8.40 and 8.35 (t, J = 5.8 Hz, 1H,

CON*H*), 7.4-7.2 (m, 5H, *aromatic*), 4.33 and 4.32 (dd, J = 14.6, 5.8 Hz, 1H, NHC*H*HPh), 4.21 and 4.19 (dd, J = 14.6, 5.8 Hz, 1H, NHCH*H*Ph), 4.15-4.05 (m, 1H, α-C*H*-Pro), 3.44-3.35 (m, 1H, δ-C*H*H-Pro), 3.33-3.24 (m, 1H, δ-C*HH*-Pro), 2.18-2.04 (m, 1H, β-C*H*H-Pro), 1.9-1.7 (m, 3H, β-CH*H*-Pro, γ-C*H*₂-Pro), 1.41 and 1.28 (s, 9H, C(C*H*₃)₃), rotamers; ¹³C NMR (100 MHz, DMSO-*d*₆, 21 °C) δ 172.4, 172.2, 153.6, 153.3, 139.6, 128.3, 128.1, 127.2, 126.8, 126.7, 126.5, 78.5, 78.4, 46.6, 46.4, 42.0, 41.7, 40.7, 31.1, 30.0, 28.1, 27.9, 23.9, 23.1, rotamers; MS (ESI) *m/z* (relative intensity) 205 (100), 327 ([M+Na⁺], 47); HRMS (ESI) *m/z* calcd. for C₁₇H₂₄N₂O₃Na 327.1685, found 327.1692; [α]₅₈₉²⁴ -76.2 (*c* 1.00 in CH₂Cl₂); Other physical measurements were previously reported in the literature. The enantiomeric excess (%ee) was determined

to be 99% by HPLC using SUMICHIRAL OA-4700 column (5% *i*-PrOH/ Hexane, 1.0 mL/min, 254 nm): t_R (minor, 11.2 min), t_R (major, 15.9 min).

(S)-*tert*-butyl-1-(benzylamino)-4-(methylthio)-1-oxob utan-2-ylcarbamate; (S)-Boc-Met-NHBn (3xa)

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 5/1 to 2/1); white solid; ¹H NMR (400

MHz, CDCl₃, 35 °C) δ 7.2 (m, 5H, *aromatic*), 6.77 (s, 1H, NHCH₂), 5.31 (d, *J* = 6.0 Hz, 1H, NHCH), 4.34 (m, 2H, NHCH₂), 4.23 (d, *J* = 4.6 Hz, 1H, NHCH), 2.5-2.4 (m, 2H, SCH₂), 2.03 (dt, *J* = 13.9, 7.0 Hz, 1H, CHCH₂), 1.98 (s, 3H, SCH₃), 1.85 (dt, *J* = 13.9, 7.0 Hz, 1H, CHCH₂), 1.32 (s, 9H, ^{*t*}Bu); MS (ESI) *m/z* (relative intensity) 339 ([M+H]⁺, 100), 283 (91), 239 (43), 212 (34); HRMS (ESI) *m/z* calcd for C₁₇H₂₇N₂O₃S 339.1742, found 339.1729; [α]₅₈₉²⁴ –9.2 (*c* 1.09 in CH₂Cl₂); Other physical measurements were previously reported in the literature. The enantiomeric excess (%ee) was determined to be 99% by HPLC using CHIRALPAK OD-3 column (3% *i*-PrOH/ Hexane, 1.0 mL/min, 254 nm): t_R (minor, 17.9 min), t_R (major, 24.0 min).

(S)-tert-butyl-5-(benzylamino)-4-(tert-butoxycarbonyl amino)-5-oxopentanoate; (S)-Boc-Glu(Ot-Bu)-NHBn (3ya)^{S-17}

Purified by flush column chromatography (silica gel, $\dot{COO^{t}Bu}$ Hexane/EtOAc = 85/15 to 1/1); white solid; ¹H NMR (400 MHz, CDCl₃, 35 °C) δ 7.3 (m, 5H, *aromatic*), 6.58 (s, 1H, NHCH₂), 5.27 (d, *J* = 6.0 Hz, 1H, NHCH), 4.44 (d, *J* = 5.8 Hz, 2H, CHCH₂), 4.2-4.1 (m, 1H, NHCH), 2.41 (dt, *J* = 16.7, 7.0 Hz, 1H, CH₂COO'Bu), 2.29 (dt, *J* = 16.7, 7.0 Hz, 1H, CH₂COO'Bu), 2.10 (ddt, *J* = 14.2, 8.3, 7.0 Hz, 1H, CHCH₂CH₂), 1.92 (ddt, *J* = 14.2, 8.3, 7.0 Hz, 1H, CHCH₂CH₂), 1.92 (ddt, *J* = 14.2, 8.3, 7.0 Hz, 1H, CHCH₂CH₂), 1.44 (s, 9H, NHCOO'Bu), 1.41 (s, 9H, CH₂COO'*Bu*); MS (ESI) *m/z* (relative intensity) 393 ([M+H]⁺, 100), 337 (20), 281 (12), 212 (9); HRMS (ESI) *m/z* calcd for C₂₁H₃₂N₂O₅Na 415.2209, found 415.2226; [α]₅₈₉²⁴ –9.2 (*c* 1.09 in CH₂Cl₂); Other physical measurements were previously reported in the literature. The enantiomeric excess (%ee) was determined to be 99% by HPLC using SUMICHIRAL OA-4700 column (5% *i*-PrOH/ Hexane, 1.0 mL/min, 254 nm): t_R (minor, 3.3 min), t_R (major, 6.0 min).

(S)-tert-butyl-2-(2-(tert-butoxycarbonylamino)-3-p henylpropanamido)acetate; (S)-Boc-Phe-Gly-Ot-Bu (3sh)^{S-18}

Purified by flush column chromatography (silica gel, Hexane/EtOAc = 10/1 to 3/1); white solid; ¹H NMR (400 MHz, DMSO-*d*₆, 21 °C) δ 8.31 (t, *J* = 5.6 Hz, 1H, CON*H*CH₂), 7.36-7.14 (m, 5H, *aromatic*), 6.94 and 6.49 (d, *J* = 9.0 Hz, 1H, *t*-BuOCON*H*), 4.18 and 4.11 (ddd, *J* = 11.2, 9.0, 4.0 Hz, 1H, C*H*), 3.79 (dd, *J* = 17.2, 5.6 Hz, 1H, NHC*H*H), 3.70 (dd, *J* = 17.2, 5.6 Hz, 1H, NHC*H*H), 3.70 (dd, *J* = 14.0, 11.2 Hz, 1H, NHC*HH*), 3.00 (dd, *J* = 14.0, 4.0 Hz, 1H, C*H*HPh), 2.72 (dd, *J* = 14.0, 11.2 Hz, 1H, CH*H*Ph), 1.41, (s, 9H, C(C*H*₃)₃), 1.28 and 1.19 (s, 9H, C(C*H*₃)₃), rotamers; ¹³C NMR (100 MHz, DMSO-*d*₆, 21 °C) δ 172.2, 168.8, 155.2, 138.2, 129.3, 129.1, 127.9, 126.1, 80.5, 77.9, 57.0, 55.5, 41.4, 38.1, 37.4, 28.1, 27.6, rotamers; MS (ESI) *m*/*z* calcd. for C₂₀H₃₀N₂O₅Na 401.2052, found 401.2059; [α]₅₈₉²¹ –10.7 (*c* 0.98 in MeOH); Other physical measurements were previously reported in the literature. The enantiomeric excess (%ee) was determined to be 96% by HPLC using CHIRALPAK AD-3 column (2% *i*-PrOH/ Hexane, 1.0 mL/min, 254 nm): t_R (majnor, 82.1 min), t_R (minor, 88.0 min).

(S)-tert-butyl

2-((S)-2-((tert-butoxycarbonyl)amino)-3-phenylpro panamido)propanoate; (S)-Boc-Phe-Ala-Ot-Bu (3si)

Purified by flush column chromatography (silica gel,

Hexane/EtOAc = 10/1 to 4/1); white solid; mp 101-102 °C; IR (KBr, v/cm⁻¹) 3302, 2978, 2932, 1736, 1659, 1535, 1451, 1381, 1250, 1157, 1049, 849; ¹H NMR (400 MHz, CDCl₃, 30 °C) δ 7.31-7.19 (m, 5H, *aromatic*), 6.39 and 6.20 (d, *J* = 8.0 Hz, 1H, N*H*), 4.97 (br, 1H, N*H*), 4.40-4.33 (m, 2H, NHC*H*), 3.12-3.11 (m, 2H, PhC*H*₂), 1.44 (s, 9H, C(C*H*₃)₃), 1.41 (s, 9H, C(C*H*₃)₃), 1.31 and 1.21 (d, *J* = 7.2 Hz, C*H*₃), rotamers; ¹³C NMR (100 MHz, CDCl₃, 30 °C) δ 171.7, 171.6, 170.6, 170.4, 155.3, 136.8, 136.6, 129.4, 129.3, 128.6, 126.9, 81.9, 80.1, 55.6, 48.7, 48.5, 38.9, 38.5, 28.2, 28.0, 27.9, 18.5, 18.3, rotamers; MS (ESI) *m*/*z* (relative intensity) 807 (100), 415 ([M+Na⁺], 67), 393 ([M+H⁺], 32); HRMS (ESI) *m*/*z* calcd. for C₂₁H₃₂N₂O₅Na 415.2209, found 415.2199; [α]₅₈₉²⁹ –10.01 (*c* 1.00 in MeOH).

4. References for the Supplementary Information

- S-1 Ohshima, T.; Iwasaki, T.; Maegawa, Y.; Yoshiyama, A.; Mashima, K.; J. Am. Chem. Soc. 2008, 130, 2944.
- S-2 Picq, D.; Mahdi, L. B.; Soulard, K.; Sillion, B. Polymer 1999, 40, 5219.
- S-3 Ishihara, K.; Yano, T. Org. Lett. 2004, 6, 1983.
- S-4 Han, C.; Lee, J. P.; Lobkovsky, E.; Porco, J. A., Jr. J. Am. Chem. Soc. 2005, 127, 10039.
- S-5 Nomura, R.; Wada, T.; Yamada, Y.; Matsuda, H.; Chem. Lett. 1986, 1901.
- S-6 Degani, I.; Dughera, S.; Fochi, R.; Serra, E. Synthesis 1999, 7, 1200.
- S-7 Zhang, L.; Su, S.; Wu, H.; Wang, S.; *Tetrahedron* 2009, 65, 10022.
- S-8 Cabre, J.; Palomo, A. L.; Synthesis 1984, 413.
- S-9 Boyd, R. N.; Rittner, R. C.; J. Am. Chem. Soc. 1960, 82, 2032.
- S-10 Roleira, F. M. F.; Borges, F.; Andrade, L. C. R.; Paixao, J. A.; Almeida, M. J. M.; Carvalho, R. A.; Tavares da Silva, E. J.; *J. Fluorine Chem.* **2009**, *130*, 169.
- S-11 Suzuki, K.; Adachi, S.; Daikoku, S.; Kobayashi, M.; Kanie, O.; Tobe, A.; Hasegawa, Y.; Shioiri, Y.; Org. Biomol. Chem. 2009, 7, 4726.
- S-12 Confalone, P. N.; Woodward, R. B.; J. Am. Chem. Soc. 1983, 105, 902.
- S-13 Maki, T.; Ishihara, K.; Yamamoto, H.; Org. Lett. 2006, 8, 1431.
- S-14 Tor, Y.; Libman, J.; Shanzer, A.; Felder, C. E.; Lifson, S. J. Am. Chem. Soc. 1992, 114, 6653.
- S-15 Gryko, D.; Lipinski, R.; Eur. J. Org. Chem. 2006, 3864.
- S-16 Kondo, H.; Taguchi, M.; Jinbo, Y.; Inoue, Y.; Kotera, Y.; Sakamoto, F. U. S. Patent 7,703,739, 1991.
- S-17 Bavikar, S. N.; Salunke, D. B.; Hazra, B. G.; Pore, V. S.; Vandana, S.; Thierry, J.; Dodd, R. H. *Tetrahedron Lett.* **2010**, *51*, 3815.
- S-18 Declerck, V.; Nun, P.; Martinez, J.; Lamaty, F. Angew. Chem. 2009, 121, 9482.