Electronic Supplementary Information (ESI)

Optically responsive switchable ionic liquid for internallyreferenced fluorescence monitoring and visual determination of carbon dioxide

Shubha Pandey,^a Sheila N. Baker,^b Siddharth Pandey^a and Gary A. Baker^{*a}

^a Department of Chemistry, University of Missouri–Columbia, Columbia, MO 65211, USA.Tel: +1-573-882-3691; E-mail: bakergar@missouri.edu

^b Department of Chemical Engineering, University of Missouri–Columbia, Columbia, MO 65211, USA.

Table of Contents

Figure	Page No.
Fig. S1	S2
Fig. S2	S 3
Fig. S3	S 4
Fig. S4	S5
Fig. S5	S 6
Fig. S6	S 7
Fig. S7	S 8
Fig. S8	S 9
Fig. S9	S10
Calculation of Kamlet–Taft Empirical Solvatochromic Parameters.	S 11

Fig. S1 ¹³C NMR spectra of di-*n*-propylamine (DPA) (black) and CO₂-saturated DPA (red), each dissolved in CDCl₃ at ambient conditions. * denotes the residual solvent peak.

Fig. S2 ¹H NMR spectra of DPA (black) and the CO₂-saturated DPA mixture (red), both dissolved in CDCl₃. * denotes a peak tentatively assigned to the zwitterionic form $\underline{H}N^+(n-propyl)_2COO^-$.

Fig. S3 FTIR absorbance spectra of DPA (black) and the corresponding CO₂-saturated DPA mixture (red).

Fig. S4 Structures of the fluorescent probes BPP, BPD, and BPHU.

Fig. S5 Normalized fluorescence emission spectra of BPP (10 μ M, panel A) and BPD (10 μ M, panel B) dissolved in DPA as a function of captured CO₂ under ambient conditions ($\lambda_{ex} = 337$ nm, excitation and emission slit widths are both 5 nm).

Fig. S6 Variation in the excimer-to-monomer emission intensity ratio (I_E/I_M) with wt% CO₂ within CO₂-added DPA solution for BPHU, BPP, and BPD at ambient temperature. Fits of the experimental data to a 3-parameter sigmoidal expression of the form $I_E/I_M = a/[1 + \exp\{-(wt\%CO_2 - x_0)/b\}]$ are shown by solid curves.

Fig. S7 Variation in the excimer-to-monomer ratio (I_E/I_M) for BPHU in DPA with consecutive heating/CO₂-addition cycles. Leg A involves heating of a CO₂-containing DPA mixture at 100 °C for 8 min whilst stirring at 150 rpm. B entails CO₂ addition at a flow of 50 mL min⁻¹ into 10 g of DPA for 30 min, again with stirring. The typical imprecision in I_E/I_M is less than 0.1.

Fig. S8 Normalized absorbance spectra of betaine dye 30 (Reichardt's dye) dissolved at 100 μ M in DPA as a function of conversion to the carbamate ionic liquid (CIL) at ambient temperature.

Fig. S9 $E_{\rm T}(30)$ values determined from the wavelength of maximal absorbance for Reichardt's dye dissolved in DPA as a function of CIL mole fraction in the mixture under ambient conditions (symbols). The dashed line indicates the predicted response; *i.e.*, the ideal, mole fraction-weighted response. The uncertainty in $E_{\rm T}(30)$ is better than 0.5 kcal mol⁻¹.

Calculation of Kamlet–Taft Empirical Solvatochromic Parameters.

Dipolarity/polarizability (π^*) was estimated using the following expression:

 $\pi^* = 8.649 - 0.314 \overline{v}_{DENA}$

where \bar{v}_{DENA} is the wavelength of absorbance maximum in kK (1 kK = 1000 cm⁻¹) for *N*,*N*-diethyl-4-nitroaniline (DENA). Hydrogen-bond accepting (HBA) basicity (β) was calculated based on the following expression using the wavelength of maximal absorbance (\bar{v}_{NA} in kK units) of 4-nitroaniline:

$$\beta = -0.357\overline{v}_{NA} - 1.176\pi * +11.12$$

and hydrogen-bond donating (HBD) acidity (α) was calculated from:

$$\alpha = \left[\frac{E_T(30) - 14.6(\pi^* - 0.23\delta) - 30.31}{16.5}\right]$$

where $E_{\rm T}(30)$ is obtained from the betaine dye 30 charge-transfer (CT) absorbance maximum and δ is a polarizability correction term. For non-aromatic and nonchlorinated solvents, where $\delta = 0$, a condensed form of the above equation emerges:

$$\alpha = \left[\frac{E_T(30) - 14.6\pi^* - 30.31}{16.5}\right]$$