Electronic Supporting Information for

Macroporous 'bubble' graphene film *via* template-directed ordered-assembly for high rate supercapacitors

Cheng-Meng Chen^{*^a}, Qiang Zhang^b, Chun-Hsien Huang^c, Xiao-Chen Zhao^d, Bing-Sen Zhang^e, Qing-Qiang Kong^a, Mao-Zhang Wang^a, Yong-Gang Yang^a, Rong Cai^a, Dang Sheng Su^{*^e}

^a Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China

^b Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.

^c Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan

^d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.

^e Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.

E-mail: <u>ccm@sxicc.ac.cn</u>; <u>dssu@imr.ac.cn</u>

Experimental:

Synthesis of PMMA latex spheres. Monodisperse PMMA latex spheres were prepared by the emulsifier-free emulsion polymerization. Polymerization of methyl methacrylate (MMA) monomer was carried out in a three-necked bottom flask using potassium persulfate ($K_2S_2O_8$, KPS) as the initiator. Typically, 1000 ml of deionized water was stirred at approximately 350 rpm at 75 °C and purged with Ar. After stabilization of the temperature at an elevated level, the 400 ml of methyl methacrylate and 10.0 g of KPS was added subsequently and the reaction was allowed to proceed for 2 h, producing colloidal PMMA latex spheres. PMMA latex spheres were harvested by centrifugation and washing with deionized water once and then with ethanol twice. The as-prepared PMMA spheres were re-dispersed in deionized water to obtain an aqueous suspension (200 mg/mL) for further application.

Hard template route for macroporous graphene film. Graphite oxide (GO) was prepared by a modified Hummers' method, followed by ultrasonication (100 W, 45 min) in deionized water to get the graphene oxide hydrosol (3 mg/mL). The graphene oxide hydrosol (20 mL) was mixed with PMMA sphere suspension (1 mL) and sonicated for 30 min to get a homogeneous colloidal suspension, which was then vacuum filtrated on a millipore filter to realize the sandwich type assembly of PMMA sphere and graphene oxide sheets. The above composite film was peeled off from the filter and air dried at 80 °C overnight, and the weight ratio of graphene oxide and PMMA spheres in the film was deduced to be 3:10. The composite membranes were annealed to 800 °C (heating rate 5 °C/min) and dwelled for 30 min in a tubular furnace. The graphene oxide within the membrane was thermally reduced into graphene, while the PMMA spheres templates were removed simultaneously, so as to get the MGFs. A control sample was prepared by a similar procedure but with no PMMA template introduced, so as to resulting in a compact graphene film (CGF).

Textural characterization. The morphology of the samples were characterized using a Hitachi S4800 scanning electron microscope (SEM) operated at 2.0 kV and a Philips CM200 LaB₆ transmission electron microscope (TEM) operated at 200.0 kV. Nitrogen adsorption–desorption measurements were performed at -196 $^{\circ}$ C with a Micromeritics ASAP2010 instrument. Prior to the measurements, the samples were degassed at 110 °C for 1 h and at 250 °C for 3 h. The specific surface areas were calculated with BET equation and the average pore diameters were estimated with desorption branches based on BJH model. The as-obtained GO, PMMA, and GO/PMMA samples were further characterized using thermal gravimetric analysis (TGA) system (STA 409PC luxx, Netzsch, Germany).

Electrochemical measurements. The electrochemical properties of MGF and CGF were measured in an aqueous system (electrolyte: 6.0 M KOH). A three-electrode system was employed in the measurements, whereas MGF/CGF served as the working electrode, a platinum foil electrode as counter electrode and a saturated hydrogen electrode (SHE) served reference electrode. Cyclic voltammogram (CV) curves (scan rates varying from 3 to 1000 mV/s), the Galvanostatic charge-discharge (GC) measurement, and electrochemical impedance spectroscopy (EIS) profiles were measured with a VSP BioLogic electrochemistry workstation. The electrochemical capacitances were obtained both from CV curves. The Nyquist plot was fitted by EC-Lab software.

The specific capacitance of a single electrode (C_{elec}) was calculated from the CV curves based on the equation,

$C_{elec} = idt/dv$

where *i* is the instant current in Amperes per gram of active material and dv/dt is the scanning rate in Volts per second.

The specific capacitance of the cell (C_{cell}) was calculated from GC profiles based on the following equation,

$$C_{cell} = (I \triangle t) / \triangle U$$

where I is the discharge current in Amperes per gram of active material, $\triangle t$ is the discharge time in second, and $\triangle U$ is the voltage window from the end of the IR_{drop} to the end of the discharge process in Volts.

Fig. S1 N_2 physic sorption isotherm (Inset shows the DFT pore size distribution) of MGF.

Fig. S2 Digital photo of a compact graphene film (CGF) fabricated by a routine filtration method.

Fig. S3 (a) TG curves of GO, GO/PMMA composite and bare PMMA template; (b) Pore size distribution of MGF by Hg penetration analysis

Fig. S4 SEM image of the cross-section of a CGF

Fig. S5 CV evolution of MGF at different scan rates from 3 to 1000 mV/s

Fig. S6 CV evolution of CGF at different scan rates from 3 to 50 mV/s

Fig. S7 (a) Real part of complex capacitance as a function of AC frequency by EIS. (b) GC curves at current density of 1 and 3 A/g of MGF and CGF.