Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Johnston et al.

Supporting Information-II

Chiral Proton Catalysis of Secondary Nitroalkane Additions to Azomethine: Synthesis of a Potent GlyT1 Inhibitor

Tyler A. Davis, Michael W. Danneman and Jeffrey N. Johnston*

Department of Chemistry & Vanderbilt Institute of Chemical Biology Vanderbilt University 2301 Vanderbilt Place, Nashville, TN 37235-1822

	S-II-X
Figure 1. ¹ H NMR (400 MHz, CDCl ₃) of S1	2
Figure 2. 13 C NMR (125 MHz, CDCl ₃) of S1	
Figure 3. ¹ H NMR (400 MHz , CDCl ₃) of 1	4
Figure 4. ¹³ C DEPT-135 NMR (150 MHz, CDCl ₃) of 1	5
Figure 5. ¹ H NMR (500 MHz, CDCl ₃) of 9	6
Figure 6. ¹³ C NMR (125 MHz, CDCl ₃) of 9	7
Figure 7. ¹ H NMR (400 MHz, CDCl ₃) of 10	8
Figure 8. ¹³ C NMR (125 MHz, CDCl ₃) of 10	9
Figure 9. ¹ H NMR (400 MHz, CDCl ₃) of 11	
Figure 10. ¹³ C NMR (125 MHz, CDCl ₃) of 11	
Figure 11. ¹ H NMR (500 MHz, CDCl ₃) of 12	
Figure 12. ¹³ C NMR (100 MHz, CDCl ₃) of 12	
Figure 13. ¹ H NMR (400 MHz, CDCl ₃) of 13	14
Figure 14. ¹³ C DEPT-135 NMR (100 MHz, CDCl ₃) of 13	15
Figure 15. ¹ H NMR (400 MHz, CDCl ₃) of 16	
Figure 16. ¹³ C DEPT-135 NMR (100 MHz, CDCl ₃) of 16	17

Johnston et al. **Figure 1.** ¹H NMR (400 MHz, CDCl₃) of **S1**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Johnston et al. **Figure 2.** ¹³C NMR (125 MHz, CDCl₃) of **S1**

TD SOLVEN NS DS SWH FIDRES AQ RG DE TE DE TE D1 1 D11 TD0 PL1 SF01 NAME EXPNC PROCN 200 Hz MH sec LSe 180 3 Ñ 160 140 120 100 80 60 40 20 ppm

Johnston et al. Figure 3. ¹H NMR (400 MHz, CDCl₃) of 1

Johnston et al. Figure 5. ¹H NMR (500 MHz, CDCl₃) of 9

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Johnston et al. Figure 6. ¹³C NMR (125 MHz, CDCl₃) of 9

Supporting Information-II

Johnston et al. **Figure 7.** ¹H NMR (400 MHz, CDCl₃) of **10**

Johnston et al. Figure 8. ¹³C NMR (125 MHz, CDCl₃) of 10

Johnston et al. **Figure 9.** ¹H NMR (400 MHz, CDCl₃) of **11**

Johnston et al. **Figure 10.** ¹³C NMR (125 MHz, CDCl₃) of **11**

Johnston et al. **Figure 11.** ¹H NMR (500 MHz, CDCl₃) of **12**

Johnston et al. **Figure 12.** ¹³C NMR (100 MHz, CDCl₃) of **12**

TD NSCLVEN NSCLVEN SCLVEN SCLV PL1 PL1 SF01 NAME EXPNO PROCI 7.63110352 200 dB MHz ≈ <u>6</u> 6 6 6 8 sec МH S Hz 180 160 12 , В 140 120 100 80 60 40 20 ppm

Supporting Information-II

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Johnston et al. Figure 13. ¹H NMR (400 MHz, CDCl₃) of 13

Johnston et al. **Figure 14.** ¹³C DEPT-135 NMR (100 MHz, CDCl₃) of **13**

Johnston et al. Figure 15. ¹H NMR (400 MHz, CDCl₃) of 16

