Selective One-pot Synthesis of Symmetrical and Unsymmetrical Di- and Triarylamines with a Ligandless Copper Catalytic System

Anis Tlili^[a], Florian Monnier^{* [a]}, Marc Taillefer^[a]*

 ^{III} CNRS, UMR 5253, Institut Charles Gerhardt Montpellier AM₂N Architectures Moléculaires et Matériaux Nanostructurés, Ecole Nationale Supérieure de Chimie de Montpellier
8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France Fax: (+33)467144319
E-mail: marc.taillefer@enscm.fr, florian.monnier@enscm.fr

Supporting Information

General Experimental Procedures

All reactions were carried out in 35 mL Schlenk tubes or in Carousel "reaction stations RR98030" Radley tubes, under a pure and dry nitrogen atmosphere. DMF was distilled and was stored on 4 Å activated molecular sieves under a nitrogen atmosphere. Other solvents were distilled and stored under a nitrogen atmosphere. Lithium amide 95% (Alfa Aesar), Cesium carbonate 99% metals basis (Alfa Aesar), Potassium phosphate, anhydrous, 97% (Alfa Aesar), CuI 99.999% metals basis (Aldrich) and all other solid materials were stored in the presence of P₄O₁₀ in a bench-top desiccator under vacuum at room temperature and weighed in the air without further purification. Aryl iodide and aryl bromides were purchased from commercial sources. If solids, they were recrystallized in an appropriate solvent.^[1] If liquids, they were distilled under vacuum and stored under an atmosphere of nitrogen. Column chromatography was performed with SDS 60 A C.C silica gel (35-70 um). Thin layer chromatography was carried out using Merck silica gel 60 F₂₅₄ plates. All products were characterized by their NMR, GC/MS spectra. NMR spectra were recorded at 20°C on a Bruker AC 400 MHz or on a DRX-250 spectrometer working respectively at 400 MHz for ¹H, at 100 MHz for ¹³C. Chemical shifts are reported in ppm/TMS for ¹H and {¹H}¹³C (δ 77.00 for CDCl₃ signal). The first-order peak patterns are indicated as s (singulet), d (doublet), t (triplet), q (quadruplet). Complex non-first-order signals are indicated as m (multiplet). Gas chromatography - mass spectra (GC/MS) were recorded on an Agilent Technologies 6890 N instrument with an Agilent 5973 N mass detector (EI) and a HP5-MS 30 m x 0.25 mm capillary apolar column (Stationary phase: 5 % diphenyldimethylpolysiloxane film, 0.25 μm). GC/MS method: Initial temperature: 45°C; Initial time: 2 min; Ramp: 2°C/min until 50°C then 10 °C/min; Final temperature: 250°C; Final time: 10 min. HRMS were recorded on a JEOL JMS-DX300 spectrometer (3 keV, xenon) in a *m*-nitrobenzylalcohol matrix. Melting points were obtained on a Büchi B-540 melting point apparatus and are uncorrected.

General Procedure for synthesis of biarylamines 1-10 (1 mmol scale) : (Conditions A, Scheme 2).

Protocol A: After standard cycles of evacuation and back-filling with dry and pure nitrogen, an oven-dried Radley tube (Carousel "reaction stations RR98030") or a Schlenk tube equipped with a magnetic stirring bar was charged with CuI (0.1 mmol), LiNH₂ (2 mmol), K₃PO₄(1 mmol) and the aryl halide (1 mmol). The tube was evacuated, back-filled with nitrogen. Then anhydrous and degassed DMF (2.0 mL) was added under a stream of nitrogen by syringe at room temperature. The tube was sealed under a positive pressure of nitrogen, stirred and heated to 130 °C for 24 h. After cooling to room temperature, 10 ml of dichloromethane and 130 µL of 1,3-dimethoxybenzene (internal standard) were added. The filtrate is washed twice with water. Gathered aqueous phases were extracted with dichloromethane five times. Organic layers were gathered, dried over Na₂SO₄, filtered and concentrated in vacuum to yield the crude product (a small sample of the crude was analyzed by gas chromatography). The obtained crude was purified by silica gel chromatography using heptanes as eluent. All products are known compounds (except products **2**, **5** and **10**) and characterized by comparison of their NMR data with published information. The GC yields were determined by obtaining the correction factors using authentic samples of the expected products.

Experimental procedures and characterization data

Diphenylamine 1¹

Experimental procedure

Following the general procedure **Protocol A**, iodobenzene (112 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 90% yield desired product as a white solid (eluent: ethyl acetate/heptane =20/80).

Identification

Mp: 52-54 °C

¹H NMR (400 MHz, CDCl₃): δ 7.17-7.21 (m, 4H, H_{3,5,9,11}), 6.98-7.01 (m, 2H, H_{2,6,8,12}), 6.83-6.87 (m, 2H, H_{4,10}), 5.61 (1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 143.1 (C_{1,7}), 129.3 (C_{3,5,9,11}), 121.0 (C_{4,10}), 117.8 (C_{2,6,8,12}). GC/MS: rt = 17.90 min, M/Z = 169. HRMS calculated for C₁₂H₁₂N (M+H) 170.0970. Found: 170.0976

• bis(4-(trifluoromethyl)phenyl)amine 2

Experimental procedure

Following the general procedure **Protocol A**, 4-Iodobenzotrifluoride (147 μ L, 1.0 mmol) was coupled with LiNH₂, in the presence of 0.5 mmol of DMEDA to afford 74% yield desired product as a white solid (eluent : ethyl acetate/heptane =20/80).

Identification

Mp: 56-58 °C ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.48 (d, J = 8.4 Hz, 4H, H_{3,5,9,11}), 7.08-7.10 (d, J = 8.4 Hz, 4H, H_{3,5,9,11}), 6.04 (br s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 152.2 (C_{1,7}), 126.8 (q, J = 3.6 Hz,C_{13,14}), 119.0 (C_{4,10}), 117.4 (C_{2,3,5,6,9,11,12}). GC/MS: rt = 17.80 min, M/Z = 305. HRMS calculated for C₁₄H₁₀F₆N (M+H) 306.0717. Found: 306.0717

• bis(4-fluorophenyl)amine 3²

Experimental procedure

Following the general procedure **Protocol A**, 4-Fluoroiodobenzene (115 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 82% yield desired product as a white solid (eluent: ethyl acetate/heptane =20/80).

Identification

Mp: 38-40 °C ¹**H NMR (400 MHz, CDCl₃):** δ 6.93-6.95 (m, 8H, H_{2,3,5,6,8,9,11,12}), 5.44 (br s, 1H, NH). ¹³**C NMR (100 MHz, CDCl₃):** δ 157.8 (d, J_{C-F} = 239.7 Hz, C_{4,10}), 139.7 (C_{1,7}), 119.4 (d, J_{C-F} = 7.6 Hz ,C_{2,6,8,12}), 115.9 (d, J_{C-F} = 22.4 Hz, C_{3,5,9,11}). **GC/MS:** rt = 18.12 min, M/Z = 205. **HRMS** calculated for C₁₂H₉F₂N (M+H) 206.781. Found: 206.0782

• bis(4-chlorophenyl)amine 4²

Experimental procedure

Following the general procedure **Protocol A**, 4-Chloroiodobenzene (239 mg, 1.0 mmol) was coupled with LiNH₂ to afford 65% yield desired product as a white solid (eluent: ethyl acetate/heptane =20/80).

Identification

Mp: 77-79 °C ¹**H NMR (400 MHz, CDCl₃):** δ 7.23-7.20 (d, J = 8.8 Hz, 4H, H_{3,5,9,11}), 6.95-6.97 (d, J = 8.8 Hz, 4H, H_{2,6,8,12}), 5.53(br s, 1H, NH). ¹³**C NMR (100 MHz, CDCl₃):** δ 145.7 (C_{1,7}), 129.46 (C_{3,5,9,11}), 128.5 (C_{4,10}), 125.2 (C_{2,6,8,12}). **GC/MS:** rt = 20.50 min, M/Z = 237. **HRMS** calculated for C₁₂H₉Cl₂N (M+H) 238.0190. Found: 238.0215.

• bis(3-bromophenyl)amine 5

Experimental procedure

Following the general procedure **Protocol A**, 3-Bromoiodobenzene (127 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 76% yield desired product as a brown oil (eluent: ethyl acetate/heptane =20/80).

Identification

¹H NMR (400 MHz, CDCl₃): δ 7.12-7.13 (m, 2H, H_{6,8}), 7.05-7.07 (d, J = 7.6 Hz, 2H, H_{4,10}), 7.00-7.02 (m, 2H, H_{5,9}), 6.90-6.92 (m, 2H, H_{2,12}), 5.64 (br s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 142.0 (C_{1,7}), 130.9 (C_{5,9}), 124.6 (C_{4,10}), 123.2 (C_{3,11}), 120.8 (C_{6,8}), 116.7 (C_{2,12}). GC/MS: rt = 22.01 min, M/Z = 324. HRMS calculated for C₁₂H₉Br₂N (M+H) 325.9180 Found: 325.9173

• bis(3-methoxyphenyl)amine 6³

Experimental procedure

Following the general procedure **Protocol A**, 3-Iodoanisole (132 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 87% yield desired product as a brown oil (eluent: ethyl acetate/heptane=10/90).

¹H NMR (400 MHz, CDCl₃): δ 7.07-7.11 (t, J = 8.0 Hz, 2H, H_{5,9}), 6.57-6.58 (m, 4H, H_{2,6,10,12}), 6.40-6.43 (ddd, J = 0.8, 2.4, 8.0 Hz, 2H, H_{6,8}), 5.63 (br s, 1H, NH), 3.70 (s, 6H, H_{13,14}). . ¹³C NMR (100 MHz, CDCl₃): δ 160.5 (C_{3,11}), 144.1 (C_{1,7}), 130.1 (C_{5,9}), 110.4 (C_{4,10}), 106.4 (C_{4,8}), 103.7 (C_{2,12}), 20.4 (C_{13,14}). GC/MS: rt = 21.86 min, M/Z = 229.

HRMS calculated for $C_{14}H_{16}O_2N$ (M+H) 230.1181 Found: 230.1182

• di-p-tolylamine 7³

Experimental procedure

Following the general procedure **Protocol A**, 4-iodotoluene (218 mg, 1.0 mmol) was coupled with LiNH₂ to afford 93% yield desired product as a white solid (eluent: ethyl acetate/heptane =20/80).

Identification

Mp: 79-81 °C

¹H NMR (400 MHz, CDCl₃): δ 6.98-7.00 (d, J = 8 Hz, 4H, H_{2,6,8,12}), 6.86-6.88 (d, J = 8 Hz, 4H, H_{3,5,9,11}), 5.43(br s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 144.0 (C_{1,7}), 130.0 (C_{3,5,9,11}), 128.4 (C_{4,10}), 118.2 (C_{2,6,8,12}). GC/MS: rt = 20.25 min, M/Z = 197. HRMS calculated for C₁₄H₁₆N (M+H) 198.1283 Found: 198.1288

• di-*m*-tolylamine 8³

Experimental procedure

Following the general procedure **Protocol A**, 3-Iodotoluene (128μ L, 1.0 mmol) was coupled with LiNH₂ to afford 94% yield desired product as a yellow oil (eluent: ethyl acetate/heptane =20/80).

Identification

¹H NMR (400 MHz, CDCl₃): δ 7.05-7.09 (dd, J = 8.8, 1.2 Hz, 2H, H_{5,9}), 6.80-6.81 (m, 4H, H_{2,6,10,12}), 6.66-6.68 (d, J = 8.8 Hz, 2H, H_{4,10}), 5.53 (br s, 1H, NH), 2.23 (s, 6H, H_{13,14}). ¹³C NMR (100 MHz, CDCl₃): δ 142.5 (C_{1,7}), 138.6 (C_{3,11}), 128.4 (C_{5,9}), 120.7 (C_{4,10})117.9 (C_{4,8}), 114.0 (C_{2,12}), 20.4 (C_{13,14}). GC/MS: rt = 20.62 min, M/Z = 197. HRMS calculated for C₁₄H₁₆N (M+H) 198.1283 Found: 198.1275

• bis(3,5-dimethylphenyl)amine 9³

Experimental procedure

Following the general procedure **Protocol A**, 3,5-Iodo-*m*-xylene (128μ L, 1.0 mmol) was coupled with LiNH₂ to afford 77% yield desired product as a brown oil (eluent: ethyl acetate/heptane=10/90).

Identification

¹H NMR (400 MHz, CDCl₃): δ 6.62 (m, 4H, H_{2,6,8,12}), 6.50 (m, 2H, H_{4,10}), 5.55(br s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 143.2 (C_{1,7}), 138.9 (C_{3,5,9,11}), 122.7 (C_{4,10}), 115.7 (C_{2,6,8,12}), 21.4(C_{2,6,8,12}). GC/MS: rt = 21.34 min, M/Z = 225. HRMS calculated for C₁₆H₂₀N (M+H) 226.1596. Found: 226.1595.

• bis(6-methylpyridin-2-yl)amine 10

Experimental procedure

Following the general procedure **Protocol A**, 2-bromo-6-methylpyridine (128μ L, 1.0 mmol) was coupled with LiNH₂ to afford 64% yield desired product as a yellow solid (eluent: ethyl acetate/heptane=20/80).

Identification

Mp: 82-84 °C

¹H NMR (400 MHz, CDCl₃): δ 7.39-7.43 (t, J = 8.0 Hz, 2H, H_{4,8}), 7.28-7.30 (d, J = 8.0 Hz, 6H, H_{3,9}), 7.10 (br s, 1H, NH), 6.62-6.63 (d, J = 8.0 Hz, 2H, H_{5,7}), 2.39 (s, 6H, H_{16,17}). ¹³C NMR (100 MHz, CDCl₃): δ 156.7 (C_{2,10}), 153.3 (C_{1,6}), 138.0 (C_{4,8}), 115.5 (C_{3,9}), 108.2 (C_{5,7}), 24.2 (C_{16,17}). GC/MS: rt = 17.98 min, M/Z = 200. HRMS calculated for C₁₂H₁₄N₃ (M+H) 200.1188. Found: 200.1176

General Procedure for synthesis of symmetrical triarylamines 11-18 (1 mmol scale): (Conditions B, Scheme 2).

Protocol B: After standard cycles of evacuation and back-filling with dry and pure nitrogen, an oven-dried Radley tube (Carousel "reaction stations RR98030") or a Schlenk tube equipped with a magnetic stirring bar was charged with CuI (0.1 mmol), LiNH₂ (0.5 mmol), K_3PO_4 (3 mmol) and the aryl halide (1 mmol). The tube was evacuated, back-filled with nitrogen. Then anhydrous and degassed DMF (2.0 mL) was added under a stream of nitrogen by syringe at room temperature. The tube was sealed under a positive pressure of nitrogen, stirred and heated to 130 °C for 24 h. After cooling to room temperature, 10 ml of dichloromethane and 130 μ L of 1,3-dimethoxybenzene (internal standard) were added. The filtrate is washed twice with water. Gathered aqueous phases were extracted with dichloromethane five times. Organic layers were gathered, dried over Na₂SO₄, filtered and concentrated in vacuum to yield the crude product (a small sample of the crude was analyzed by gas chromatography). The obtained crude was purified by silica gel chromatography using heptanes as eluent heptanes. All products are known compounds (except products **13**, **14**, **15**, **16**, **17 and 18**) and characterized by comparison of their NMR data with published information. The GC yields were determined by obtaining the correction factors using authentic samples of the expected products.

• Triphenylamine 11⁴

Experimental procedure

Following the general procedure **Protocol B**, iodobenzene (112 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 79% yield desired product as a white solid (eluent: ethyl acetate/heptane =10/90).

Mp: 126-128 °C ¹H NMR (400 MHz, CDCl₃): δ 7.14-7.18 (t, J = 8.3 Hz, 6H, H_{3,5,9,11,15,17}), 6.98-7.01 (d, J = 8.3 Hz, 6H, H_{2,6,8,12,14,18}), 6.90-6.94 (t, J = 8.3, Hz, 3H, H_{4,10,16}). ¹³C NMR (100 MHz, CDCl₃): δ 148.0 (C_{1,7,13}), 129.3 (C_{3,5,9,11,15,17}), 124.3 (C_{2,6,8,12,14,18}), 122.9 (C_{4,10,16}). GC/MS: rt = 22.00 min, M/Z = 245. HRMS calculated for C₁₈H₁₅N (M+H) 245.1204. Found: 245.1208

• tris(4-(trifluoromethyl)phenyl)amine 12³

Experimental procedure

Following the general procedure **Protocol A**, 4-Iodobenzotrifluoride (147 μ L, 1.0 mmol) was coupled with LiNH₂, in the presence of 0.5 mmol of DMEDA, to afford 86% yield desired product as a white solid (eluent : ethyl acetate/heptane =20/80).

Identification

• tris(4-fluorophenyl)amine 13⁶

Experimental procedure

Following the general procedure **Protocol B**, 4-Fluoroiodobenzene (115 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 83% yield desired product as a white solid (eluent: ethyl acetate/heptane =10/90).

Identification

Mp : 122-124 °C ¹**H NMR** (400 **MHz**, **CDCl₃**): δ 6.84-6.92 (m, 12H, H_{2,3,5,6,8,9,11,12,14,15,17,18}). ¹³**C NMR** (100 **MHz**, **CDCl₃**): δ 158.8 (d, $J_{C-F} = 238.3$ Hz, C_{4,10,16}), 144.0 (d, $J_{C-F} = 3.0$ Hz C_{1,7,13}), 125.2(d, $J_{C-F} = 7.8$ Hz, C_{2,6,8,12,14,18}), 116.1 (d, $J_{C-F} = 23$ Hz C_{3,55,9,11,15,17}). **GC/MS**: rt = 21.69 min, M/Z = 299. **HRMS** calculated for C₁₈H₁₃NCl₃ (M+H) 300.0922. Found: 300.0918.

• tris(4-chlorophenyl)amine 14

Experimental procedure

Following the general procedure **Protocol B**, 4-Cloroiodobenzene (239 mg, 1.0 mmol) was coupled with $LiNH_2$ to afford 98% yield desired product as a white solid (eluent : heptane).

Identification

Mp: 147-149 °C ¹H NMR (400 MHz, CDCl₃): δ 7.19-7.22 (d, 6H, J = 8.8 Hz, H_{3,5,9,11,15,17}), 6.96-6.98 (d, J = 8.8 Hz, 6H, H_{2,6,8,12,15,17}). ¹³C NMR (100 MHz, CDCl₃): δ 145.7 (C_{1,7,13}), 129.6 (C_{2,6,8,12,15,17}), 128.4(C_{4,10,16}), 125.3 (C_{3,5,9,11,15,17}). GC/MS: rt = 28.78 min, M/Z = 347. HRMS calculated for C₁₈H₁₃NCl₃ (M+H) 348.0114. Found: 348.0104.

• tri-p-tolylamine 15

Experimental procedure

Following the general procedure **Protocol B**, 4-Iodotoluene (239 mg, 1.0 mmol) was coupled with LiNH₂ to afford 78% yield desired product as a white solid (eluent : ethyl acetate/heptane =20/80).

Identification

Mp: 112-114 °C ¹H NMR (400 MHz, CDCl₃): δ 6.94-6.99 (m, 6H, H_{3,5,9,11,15,17}), 6.96-6.98 (m, 6H, H_{2,6,8,12,15,17}). ¹³C NMR (100 MHz, CDCl₃): δ 141.1 (C_{1,7,13}), 131.8 (C_{2,6,8,12,15,17}), 129.8(C_{4,10,16}), 12.7 (C_{3,559,11,15,17}). GC/MS: rt = 24.67 min, M/Z = 287. HRMS calculated for C₂₁H₂₂N (M+H) 288.1752. Found: 288.1741.

• tris(3-methoxyphenyl)amine 16

Experimental procedure

Following the general procedure **Protocol B**, 3-Iodoanisole (132 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 84% yield desired product as a brown oil (eluent : ethyl acetate/heptane = 50/50).

Identification

¹**H** NMR (400 MHz, CDCl₃): δ 7.05-7.09 (t, J = 8.0 Hz, 3H, H_{5.9,15}), 6.59-6.61 (dd, J = 8, 1.5 Hz, 3H, H_{4,10,16}), 6.56-6.57 (t, J = 2.2 Hz, 3H, H_{6,8,14}), 6.48-6.51 (dd, J = 8, 2.2, Hz, 3H, H_{2,12,18}).

¹³C NMR (100 MHz, CDCl₃): δ 160.9 (C_{3,11,17}), 149.1 (C_{1,7,13}), 130.0 (C_{6,8,14}), 117.2 (C_{5,9,15}), 110.5 (C_{4,10,16}). 108.6 (C_{2,12,18}). GC/MS: rt = 28.21 min, M/Z = 335. HRMS calculated for C₂₁H₂₁NO₃ (M+H) 336.1586. Found: 336.1587.

• Tri(pyridin-2-yl)amine 17

Experimental procedure

Following the general procedure **Protocol B**, 2-Bromopyridine (96 μ L, 1.0 mmol) was coupled with LiNH₂ to afford 99% yield desired product as a yellow solid (eluent: ethyl acetate/heptane =50/50).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Identification

Mp : 139-131 °C ¹H NMR (400 MHz, CDCl₃): δ 8.31 (br s, 3H, H_{5,7,15}), 7.54-7.59 (m, 3H, H_{3,9,13}), 7.00-7.03 (m, 3H, H_{4,8,14}), 6.94-6.97 (m, 3H, H_{2,10,12}). ¹³C NMR (100 MHz, CDCl₃): δ 157.4 (C_{1,6,11}), 129.3 (C_{5,7,15}), 119.4 (C_{3,9,13}), 117.8 (C_{2,10,12}). GC/MS: rt = 24.04 min, M/Z = 247. HRMS calculated for C₁₅H₁₂N₄ (M+H) 249.1140. Found: 249.1154

• tris(6-methylpyridin-2-yl)amine 18

Experimental procedure

Following the general procedure **Protocol A** (2 mmol of K_3PO_4 were used), 2-bromo-6-methylpyridine (96 µL, 1.0 mmol) was coupled with LiNH₂ to afford 94% yield desired product as a yellow oil (eluent: ethyl acetate/heptane =20/80 to 80/20).

Identification

¹H NMR (400 MHz, CDCl₃): δ 7.37-7.41 (t, , *J* = 8.0 Hz, 3H, H_{4,8,13}), 6.75-6.77 (d, , *J* = 8.0 Hz, 6H, H_{3,5,7,9,12,14}), 2.33 (s, 9H, H_{16,17,18}). ¹³C NMR (100 MHz, CDCl₃): δ 157.5 (C_{2,10,15}), 157.0 (C_{1,6,11}), 137.5 (C_{4,8,13}), 118.3 (C_{3,9,13}), 116.5 (C_{5,7,12}), 24.4 (C_{16,17,18}). GC/MS: rt = 17.98 min, M/Z = 289. HRMS calculated for C₁₈H₁₉N₄ (M+H) 291.1610. Found: 291.1606

General Procedure for synthesis of unsymmetrical diarylamines 19-30 (1 mmol scale) : (Scheme 3).

Protocol C: After standard cycles of evacuation and back-filling with dry and pure nitrogen, an oven-dried Radley tube (Carousel "reaction stations RR98030") or a Schlenk tube equipped with a magnetic stirring bar was charged with CuI (0.1 mmol), LiNH₂ (2 mmol), K₃PO₄ (1 mmol) and the first aryl halide RC₆H₄I (1 mmol). The tube was evacuated, back-filled with nitrogen. Then anhydrous and degassed DMF (2.0 mL) was added under a stream of nitrogen by syringe at room temperature. The tube was sealed under a positive pressure of nitrogen, stirred and heated to 130 °C. Then after 6 h at 130 °C, the second aryl halide R'C₆H₄X (0.7 mmol) was added under a stream of nitrogen and the

reaction was heated for an additional 18h at 130°C. After cooling to room temperature, 10 ml of dichloromethane and 130 μ L of 1,3-dimethoxybenzene (internal standard) were added. The filtrate is washed twice with water. Gathered aqueous phases were extracted with dichloromethane five times. Organic layers were gathered, dried over Na₂SO₄, filtered and concentrated in vacuum to yield the crude product (a small sample of the crude was analyzed by gas chromatography). The obtained crude was purified by silica gel chromatography using heptanes as eluent. All products are known compounds (except products **19**, **20**, **23**, **24**, **26**, **29** and **30**) and characterized by comparison of their NMR data with published information. The GC yields were determined by obtaining the correction factors using authentic samples of the expected products.

• 4-methyl-N-(4-(trifluoromethyl)phenyl)aniline 19

Following the general procedure **Protocol C**, 4-Iodotoluene (218 mg, 1.0 mmol) was coupled with LiNH₂ and 4-trifluoromethylidobenzene (103μ L, 0.7 mmol) to afford 74% yield desired product as a white solid (eluent : ethyl acetate/heptane =20/80).

Identification

Mp: 76-78 °C

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.45 (d, J = 8.2 Hz, 2H, H_{2,6}), 7.15-7.13 (d, J = 8.2 Hz, 2H, H_{3,5}), 7.04-7.07 (d, J = 8.5 Hz, 2H, H_{8,12}), 6.95-6.97 (d, J = 8.5 Hz, 2H, H_{9,11}), 5.82 (1H, NH), 2.33 (s, 3H, H₁₃). ¹³C NMR (100 MHz, CDCl₃): δ 146.2 (C₁), 138.3 (C₇), 133.0 (C₁₀), 130.0 (C_{9,11}), 129.8 (C_{3,5}), 126.7 (q, J = 3.4 Hz,C₁₄), 121.2 (C₄), 120.9 (C_{2,6}), 114.8 (C_{8,12}), 21.0 (C₁₃). GC/MS: rt = 19.70 min, M/Z = 251. HRMS calculated for C₁₄H₁₃F₃N (M+H) 252.1000. Found: 252.1019.

• 3-bromo-N-phenylaniline 20

Following the general procedure **Protocol C**, Iodobenzene (112 μ L, 1.0 mmol) was coupled with LiNH₂ and 3-Bromo-Iodobenzene (89 μ L, 0.7 mmol) to afford 87% yield desired product as a colorless oil (eluent : ethyl acetate/heptane =20/80).

Identification

¹**H NMR (400 MHz, CDCl₃):** δ 7.20-7.24 (m, 1H, H_{8,12}), 7.17 (br s, 1H, H₆), 6.99-7.02 (m, 3H, H_{9,11,5}), 6.92-6.94 (d, J = 7.5 Hz, 1H, H₄), 6.83-6.87 (t, J = 7.6 Hz 2H, H_{2,10}), 5.63 (1H, NH).

¹³C NMR (100 MHz, CDCl₃): δ 144.9 (C₇), 143.1 (C₁), 129.5 (C₅), 129.4 (C_{9,11}), 123.1 (C₃), 122.2 (C₄), 121.1 (C₁₀), 119.0 (C₆), 117.8 (C_{8,12}), 115.6 (C₂). GC/MS: rt = 21.65 min, M/Z = 247. HRMS calculated for C₁₂H₁₃BrN (M+H) 248.0075. Found: 248.0058.

• 4-(phenylamino)benzonitrile 21⁴

Following the general procedure **Protocol C**, Iodobenzene (112 μ L, 1.0 mmol) was coupled with LiNH₂ and 4-Iodobenzonitrile (160.3 mg, 0.7 mmol) to afford 81% yield desired product as a white solid (eluent : ethyl acetate/heptane =20/80).

Identification

Mp : 98-100 °C

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.42 (d, J = 8.5 Hz, 2H, H_{3,5}), 7.27-7.31 (t, J = 8.5 Hz, 2H, H_{8,12}), 7.09-7.11 (d, J = 8.5 Hz, 2H, H_{9,11}), 7.01-7.06 (t, J = 8.5 Hz, 1H, H₁₀), 6.89-6.91 (d, J = 8.5 Hz, 2H, H_{2,6}), 5.98 (1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 148.0 (C₁), 139.3 (C₇), 133.8 (C_{3,5}), 129.7 (C_{9,11}), 124.1 (C₁₀), 121.3 (C_{8,12}), 119.8 (C₄), 115.0 (C_{2,6}), 101.7 (C₁₃). GC/MS: rt = 23.70 min, M/Z = 194. HRMS calculated for C₁₃H₁₁N₂ (M+H) 195.0922. Found: 195.0921

• 1-(4-(phenylamino)phenyl)ethanone 22¹

Following the general procedure **Protocol C**, iodobenzene (112 μ L, 1.0 mmol) was coupled with LiNH₂ and 4-Iodoacetophenone (172.2 mg, 0.7 mmol) to afford 63% yield desired product as a white solid (eluent: ethyl acetate/heptane =20/80).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Mp : 104-106 °C ¹**H NMR** (400 **MHz**, **CDCl**₃): δ 7.79-7.81 (d, J = 8.8 Hz, 2H, H_{3,5}), 7.26-7.30 (m, 2H, H_{2,6}), 7.14-7.13 (m, 2H, H_{8,12}), 7.00-7.04 (t, J = 8.0 Hz, 1H, H₁₀), 6.92-6.94 (d, J = 8.0 Hz, 2H, H_{9,11}), 6.01 (1H, NH), 2.46 (s, 3H, H₁₄). ¹³**C NMR** (100 **MHz**, **CDCl**₃): δ 191.2 (C₁₃), 147.6 (C₁), 140.5 (C₇), 130.6 (C_{3,5}), 130.2 (C₄), 129.7 (C_{9,11}), 123.6 (C₁₀), 120.7 (C_{8,12}), 114.7 (C_{2,6}), 30.2 (C₁₄). **GC/MS:** rt = 24.07 min, M/Z = 212. **HRMS** calculated for C₁₄H₁₄NO (M+H) 212.1075. Found: 212.1081.

• 4-fluoro-N-(p-tolyl)aniline 23

Following the general procedure **Protocol C**, 4-Iodotoluene (218 mg, 1.0 mmol) was coupled with $LiNH_2$ and 4-Fluoroiodobenzene (160.3 mg, 0.7 mmol) to afford 44% yield desired product as a colorless oil (eluent : ethyl acetate/heptane =20/80).

Identification

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.45 (d, J = 8.2 Hz, 2H, H_{2,6}), 7.15-7.13 (d, J = 8.2 Hz, 2H, H_{3,5}), 7.04-7.07 (d, J = 8.5 Hz, 2H, H_{8,12}), 6.95-6.97 (d, J = 8.5 Hz, 2H, H_{9,11}), 5.82 (1H, NH), 2.33 (s, 3H, H₁₃). ¹³C NMR (100 MHz, CDCl₃): δ 146.2 (C₁), 138.3 (C₇), 133.0 (C₁₀), 130.0 (C_{9,11}), 129.8 (C_{3,5}), 121.2 (C₄), 120.9 (C_{2,6}), 114.8 (C_{8,12}), 21.0 (C₁₃). GC/MS: rt = 19.70 min, M/Z = 201. HRMS calculated for C₁₃H₁₃FN (M+H) 202.1032. Found: 202.1040.

• 3-methoxy-N-(4-(Fluoro)phenyl)aniline 24

Following the general procedure **Protocol C**, 4-Fluoroiodobenzene (115 μ L, 1.0 mmol) was coupled with LiNH₂ and 3-Iodoanisole (92.4 μ L, 0.7 mmol) to afford 81% yield desired product as a yellow solid (eluent : ethyl acetate/heptane =20/80).

Identification

Mp : 58-60 °C

¹³ ¹H NMR (400 MHz, CDCl₃): δ 7.05-7.09 (t, J = 8.2 Hz, 1H, H₆), 6.97-7.01 (m, 2H, OME H_{8,12}), 6.91-6.93 (m, 2H, H_{9,11}), 6.46-6.49 (ddd, J = 0.7, 2.0, 8.0 Hz, 1H, H₅), 6.44-6.55 (t, J = 2.0 Hz, 1H, H₄), 6.37-6.39 (ddd, J = 0.7, 2.5, 8.0 Hz, 1H, H₅) 5.51 (1H, NH), 3.70 (s, 3H, H₁₃).

¹³C NMR (100 MHz, CDCl₃): δ 160.7 (C₃), 159.4 (C₁₀), 145.4 (C₁), 138.7 (C₇), 130.1 (C₅), 121.2 (d, $J_{C-F} = 7.9$ Hz, C_{8,12}), 115.9 (d, $J_{C-F} = 22.4$ Hz, C_{9,11}), 109.2 (C₄), 105.6 (C₆), 102.4 (C₂), 55.4 (C₁₃). GC/MS: rt = 19.20 min, M/Z = 217.

HRMS calculated for C₁₃H₁₃NOF (M+H) 218.0981. Found: 218.0999

• 4-(p-tolylamino)benzonitrile 25⁵

Following the general procedure **Protocol C**, 4-Iodotoluene (218 mg, 1.0 mmol) was coupled with LiNH₂ and 4-Iodobenzonitrile (160.3 mg, 0.7 mmol) to afford 61% yield desired product as a yelow solid (eluent : ethyl acetate/heptane =20/80).

Identification

Mp : 102-104 °C ¹**H NMR** (400 MHz, CDCl₃): δ 7.37-7.39 (d, J = 7.5 Hz, 2H, H_{2,6}), 7.08-7.11 (d, J = 7.8 Hz, 2H, H_{8,12}), 6.98-7.00 (d, J = 7.8 Hz, 2H, H_{9,11}), 6.81-6.83 (d, J = 7.5 Hz, 2H, H_{2,6}), 5.89 (1H, NH), 2.28 (s, 3H, H₁₃). ¹³**C NMR** (100 MHz, CDCl₃): δ 148 7 (C₁), 137 2 (C₂), 134 1 (C₁₀), 133 8 (C_{2,6}), 130 2

¹³C NMR (100 MHz, CDCl₃): δ 148.7 (C₁), 137.2 (C₇), 134.1 (C₁₀), 133.8 (C_{3,5}), 130.2 (C_{9,11}), 122.1 (C_{2,6}), 121.2 (C₄), 120.0 (C₁₄), 114.4 (C_{8,12}), 100.0 (C₄), 21.7 (C₄).

GC/MS: rt = 23.10 min, M/Z = 208. HRMS calculated for $C_{14}H_{13}N_2$ (M+H) 209.1079. Found: 209.1076.

• 3-methoxy-N-(4-(trifluoromethyl)phenyl)aniline 26

Following the general procedure **Protocol C**, 3-Iodoanisole (132 μ L, 1.0 mmol) was coupled with LiNH₂ and 4-trifluoromethylidobenzene (103 μ L, 0.7 mmol)to afford 72% yield desired product as a yellow solid (eluent : ethyl acetate/heptane =20/80).

Identification:

Mp : 68-70°C ¹**H NMR** (400 MHz, CDCl₃): δ 7.38-7.40 (d, J = 8.5 Hz, 1H, H₉), 7.11-7.17 (m, 2H, H_{2,6}), 6.97-7.00 (d, J = 8.5 Hz, 1H, H₁₂), 6.60-6.64 (m, 2H, H_{3,5}), 6.57-6.58 (m, 1H, H₁₀), 6.40-6.43 (m, 1H, H₈) 5.84 (1H, NH), 3.70 (s, 3H, H₁₃). ¹³**C NMR** (100 MHz, CDCl₃): δ 160.7 (C₁₁), 144.2 (C₁), 142.5 (C₇), 130.1 (C₉), 127.0 (C₄), 126.7 (q, J = 3.7 Hz,C₁₄), 115.8 (C_{3,5}), 110.6 (C₁₀), 106.5 (C_{2,6}), 105.6 (C₈), 103.8 (C₁₂), 55.2 (C₁₃). **GC/MS:** rt = 22.85 min, M/Z = 267. **HRMS** calculated for C₁₄H₁₃F₃NO (M+H) 268.0871. Found: 268.0875.

• N-(4-fluorophenyl)-3-methoxyaniline 24

Following the general procedure **Protocol C**, 3-Iodoanisole (132 μ L, 1.0 mmol) was coupled with LiNH₂ and 4-Fluoroiodobenzene (80.5 μ L, 0.7 mmol) to afford 92% yield desired product as a yellow solid (eluent : ethyl acetate/heptane =20/80).

Identification: (¹H and ¹³C NMR spectra are the same as those for the product **24**)

• 4-(p-tolylamino)benzonitrile 25

Following the general procedure **Protocol C**, 4-Iodobenzonitrile (229 mg, 1.0 mmol) was coupled with LiNH₂ and 4-Iodotoluene (152.6 mg, 0.7 mmol) to afford 61% yield desired product as a yelow solid (eluent : ethyl acetate/heptane =20/80).

Identification (¹H and ¹³C NMR spectra are the same as those for the product **25**)

• 3-methoxy-N-(4-(trifluoromethyl)phenyl)aniline 26

Following the general procedure **Protocol C**, 4-trifluoromethyliodobenzene (147 μ L, 0.7 mmol) was coupled with LiNH₂ and 3-Iodoanisole (92.4 μ L, 1.0 mmol) to afford 77% yield desired product as a yellow solid (eluent : ethyl acetate/heptane =20/80).

<u>Identification</u> (¹H and ¹³C NMR spectra are the same as those for the product **26**)

• N-(p-tolyl)pyridin-2-amine 27⁵

Following the general procedure **Protocol C**, 4-Iodotoluene (218 mg, 1.0 mmol) was coupled with LiNH₂ and 2-Bromopyridine (67μ L, 0.7 mmol) to afford 83% yield desired product as a white solid (eluent : ethyl acetate/heptane =20/80).

Identification

Mp : 110-112°C

¹H NMR (400 MHz, CDCl₃): δ 8.11 (brs, 1H, H₁₁), 7.37-7.41 (t, J = 5.2, Hz, 1H, H₁₀), 7.12-7.14 (d, J = 8.3 Hz, 2H, H_{2,6}), 7.06-7.08 (d, J = 8.3 Hz, 2H, H_{3,5}), 6.94-6.98 (d, J =7.4, 1H, H₈), 6.61-6.64 (t, J = 5.2 Hz, 2H, H_{9,11}), 6.37 (1H, NH), 2.27 (s, 3H, C₁₃). ¹³C NMR (100 MHz, CDCl₃): δ 157.5 (C₇), 148.4 (C₁₁), 137.6 (C₁₁), 137.5 (C₁), 132.8 (C₁), 129.8 (C_{3,5}), 121.2 (C_{2,6}), 114.7 (C₁₀), 107.7 (C₈). GC/MS: rt = 18.90 min, M/Z = 184. HRMS calculated for C₁₂H₁₃N₂ (M+H) 185.1079. Found: 185.1095.

• N-phenylpyridin-2-amine 28⁶

Following the general procedure **Protocol C**, iodobenzene (112 μ L, 1.0 mmol) was coupled with LiNH₂ and 2-Bromopyridine (67 μ L, 0.7 mmol) to afford 98% yield desired product as a white solid (eluent: ethyl acetate/heptane =20/80).

Identification

Mp: 106-108 °C

¹H NMR (400 MHz, CDCl₃): δ 8.13-8.14 (m, 1H, H₁₁), 7.40-7.44 (m, 1H, H₉), 7.25-7.26 (m, 1H, H₈), 6.95-7.00 (m, 2H, H_{2,6}), 6.79-6.81 (d, J = 8.4 Hz, 1H, H₉), 6.65-6.68 (m, 1H, H₁₀), 6.49 (1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 156.2 (C₇), 148.7 (C₁₁), 140.6 (C₁), 138.0 (C₉), 129.2 (C_{3,5}), 123.0 (C₄), 120.3 (C_{2,6}), 115.2 (C₁₀), 108.2 (C8). GC/MS: rt = 18.80 min, M/Z = 169. HRMS calculated for C₁₁H₁₁N₂ (M+H) 171.0922. Found: 171.0947.

• N-(4-fluorophenyl)pyridin-2-amine 29

Following the general procedure **Protocol C**, 4-Fluoroiodobenzne (115 μ L, 1.0 mmol) was coupled with LiNH₂ and 2-Bromopyridine (67 μ L, 0.7 mmol) to afford 99% yield desired product as a white solid (eluent : ethyl acetate/heptane =20/80).

Mp : 102-104 °C ¹**H NMR** (400 MHz, CDCl₃): δ 8.10-8.112 (m, 1H, H₁₁), 7.38-7.34 (m, 1H,H₉), 7.21-7.25 (m, 2H, H_{3,5}), 6.94-6.98 (m, 2H, H_{2,6}), 6.64-6.67 (m, 2H, H_{9,11}), 6.34 (1H, NH). ¹³**C NMR** (100 MHz, CDCl₃): δ 160.1 (C₄), 159.7 (C₇), 148.4 (C₁₁), 137.7 (C₉), 136.3 (C₁), 122.8 (d, J_{C-F} = 8.9 Hz, C_{2,6}), 115.9 (d, J_{C-F} = 22.9 Hz, C_{3,5}), 115.0 (C₁₀), 107.9 (C8). **GC/MS:** rt = 19.70 min, M/Z = 188. **HRMS** calculated for C₁₁H₁₀N₂F (M+H) 189.0828. Found: 189.0849.

• N-(4-(trifluoromethyl)phenyl)pyridin-2-amine 30

Following the general procedure **Protocol C**, 1-iodo-4-(trifluoromethyl)benzene (148 μ L, 1.0 mmol) was coupled with LiNH₂ and 2-Bromopyridine (67 μ L, 0.7 mmol) to afford 94% yield desired product as a yelow oil (eluent : ethyl acetate/heptane =20/80).

Identification

¹**H NMR (400 MHz, CDCl₃):** δ 8.25 (m, 1H, H₁₁), 7.46-7.57 (m, 5H, H_{2,3,5,6,9}), 6.82-6.89 (m, 2H, H_{8,10}), 6.75 (1H, NH). ¹³**C NMR (100 MHz, CDCl₃):** δ 154.6 (C₇), 148.2 (C₁₁), 145.9 (C₁), 139.4 (C₄), 137.9 (C_{3,5}), 126.4 (q, J_{C-F} = 3.6 Hz, C₁₂), 118.1 (C_{2,6}), 116.2 (C₁₀), 109.8 (C8). **GC/MS:** rt = 19.80 min, M/Z = 238. **HRMS** calculated for C₁₂H₁₀F₃N₂ (M+H) 239.0718. Found: 239.0732.

General Procedure for synthesis of triarylamine 31-34 (1 mmol scale) : Protocol D (Scheme 4).

Protocol D: After standard cycles of evacuation and back-filling with dry and pure nitrogen, an oven-dried Radley tube (Carousel "reaction stations RR98030") or a Schlenk tube equipped with a magnetic stirring bar was charged with CuI (0.1 mmol), LiNH₂ (2 mmol), K₃PO₄ (2 mmol) and the aryl halide R-C₆H₄-I (1 mmol). The tube was evacuated, back-filled with nitrogen. Then anhydrous and degassed DMF (2.0 mL) was added under a stream of nitrogen by syringe at room temperature. The tube was sealed under a positive pressure of nitrogen, stirred and heated to 130 °C. Then after 6 h at 130 °C, R'-C₆H₄-Br (0.7 mmol) was added under a stream of nitrogen and the reaction was heated for an additional 18h at 130°C. After cooling to room temperature, 10 ml of dichloromethane and 130 μ L of 1,3-dimethoxybenzene (internal standard) were added. The filtrate is washed twice with water. Gathered aqueous phases were extracted with dichloromethane five times. Organic layers were gathered, dried over Na₂SO₄, filtered and concentrated in vacuum to yield the crude product (a small sample of the crude was analyzed by gas chromatography).The obtained crude was purified by silica gel chromatography using heptanes as eluent.

• N-(pyridin-2-yl)-N-(p-tolyl)pyridin-2-amine 31

Experimental procedure

Following the general procedure **Protocol D**, 4-Iodotoluene (218 mg, 1.0 mmol) was coupled with LiNH₂ and 2-Bromopyridine (67μ L, 0.7 mmol) to afford 96% yield desired product as a white solid (eluent: heptanes to heptanes/ethyl acetate : 80/20).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

• N-(4-fluorophenyl)-N-(pyridin-2-yl)pyridin-2-amine 32

Experimental procedure

Following the general procedure **Protocol B**, 4-Fluoroiodobenzene (115 μ L, 1.0 mmol) was coupled with LiNH₂ and 2-Bromopyridine (67 μ L, 0.7 mmol) to afford 98% yield desired product as a white solid (eluent : heptane).

Identification

Mp: 120-122°C

¹**H NMR (400 MHz, CDCl₃):** 8.23-8,24 (m, 2H, H_{5,7}), 7.46-7.50 (m, 2H, H_{3,9}), 7.09-7.12 (m, 2H, H_{13,15}), 7.00-7.02 (m, 2H, H_{5,7}), 6-90-6.92 (m, 2H, H_{2,10}), 6.83-6.86 (m, 2H, H_{12,16}).

¹³C NMR (100 MHz, CDCl₃): 160.7 (C_{1,6}), 159.3 (C₁₁), 148.4 (C_{5,7}), 137.5 (C_{3,9}), 129.2 (d, J = 8.5 Hz, C_{13,15}), 118.1 (C_{4,8}), 116.7 (C_{2,10}), 115.9 (d, J = 8.5 Hz, C_{12,16}). 107.9 (C8).GC/MS: rt = 20.30 min, M/Z = 265. HRMS calculated for C₁₆H₁₃N₃F (M+H) 266.1094. Found: 266.1096.

• N-(4-Chlorophenyl)-N-(pyridin-2-yl)pyridin-2-amine 33

Experimental procedure

Following the general procedure **Protocol B**, 4-Chloroiodobenzene (239 mg, 1.0 mmol) was coupled with $LiNH_2$ and 2-Bromopyridine (67µL, 0.7 mmol) to afford 82% yield desired product as a white solid (eluent : heptane).

Identification

Mp: 132-134°C

¹H NMR (400 MHz, CDCl₃): 8.28-8,29 (m, 2H, H_{5,7}), 7.49-7.54 (m, 2H, H_{3,9}), 7.26-7.29 (d, J = 8.7 Hz ,2H, H_{13,15}), 7.05-7.07 (m, 2H, H_{5,7}), 6.88-6.92 (m, 4H, H_{2,10,12,16}). ¹³C NMR (100 MHz, CDCl₃): 166.3 (C_{1.6}), 153.9 (C₁₁), 148.3 (C_{5,7}), 138.0 (C_{3,9}), 129.9 (C_{13,15}), 128.4 (C_{12,16}), 118.5 (C_{4,8}), 116.8 (d, C_{2,10}). GC/MS: rt = 22.40 min, M/Z = 281. HRMS calculated for C₁₆H₁₃N₃F (M+H) 282.0803. Found: 282.0803.

• N-(pyridin-2-yl)-N-(4-(trifluoromethyl)phenyl)pyridin-2-amine 34

Experimental procedure

Following the general procedure **Protocol D**, 4-trifluoromethyliodobenzene (147 μ L, 1.0 mmol) was coupled with LiNH₂ and 2-Bromopyridine (67 μ L, 0.7 mmol) to afford 93% yield desired product as a yellow oil (eluent : heptanes/ethyl acetate : 8/2).

¹H NMR (400 MHz, CDCl₃): δ 8.28-8.30(m, 2H , H_{5,7}), 7.49-7.56(m, 4H , H_{3,9,13,15}), 7.15-7.17 (d, J = 8.0 Hz, 2H , H_{12,16}), 6.92-6.96 (m, 4H , H_{2,4,8,10}). ¹³C NMR (100 MHz, CDCl₃): δ 151.7 (C_{1,6}), 148.9 (C_{5,7}), 139.8 (C₁₁), 138.0 (C_{3,9}), 127.4.6 (C₁₄), 126.6 (q, $J_{C-F} = 3.4$ Hz,C₁₇), 125.8(C_{13,15}), 119.2 (C_{12,16}), 117.7(C_{4,2,8,10}). GC/MS: rt = 20.34 min, M/Z = 315. HRMS calculated for C₁₇H₁₃N₃F₃ (M+H) 316.1062. Found: 316.56.

General Procedure for synthesis of unsymmetrical triarylamine 35 (1 mmol scale) : Protocol E (table 3).

Protocol E: After standard cycles of evacuation and back-filling with dry and pure nitrogen, an oven-dried Radley tube (Carousel "reaction stations RR98030") or a Schlenk tube equipped with a magnetic stirring bar was charged with CuI (0.1 mmol), LiNH₂ (2 mmol), K₃PO₄ (2 mmol) and the Iodobenzene (1 mmol). The tube was evacuated, back-filled with nitrogen. Then anhydrous and degassed DMF (2.0 mL) was added under a stream of nitrogen by syringe at room temperature. The tube was sealed under a positive pressure of nitrogen, stirred and heated to 130 °C. Then after 6 h at 130 °C, 4-Iodobenzonitrile (0.7 mmol) and 2-Bromopyridine (0.7 mmol) werre added under a stream of nitrogen and the reaction was heated for an additional 18h at 130°C. After cooling to room temperature, 10 ml of dichloromethane and 130 µL of 1,3-dimethoxybenzene (internal standard) were added. The filtrate is washed twice with water. Gathered aqueous phases were extracted with dichloromethane for five times. Organic layers were gathered, dried over Na₂SO₄, filtered and concentrated in vacuum to yield the crude product (a small sample of the crude was analyzed by gas chromatography).The obtained crude was purified by silica gel chromatography.

• 4-(phenyl(pyridin-2-yl)amino)benzonitrile 35

Experimental procedure

Following the general procedure **Protocol E**, Iodobenzene (112 μ L, 1.0 mmol), 2-Bromopyridine (67,2 μ L, 0.7 mmol) and 4-Iodobenzonitrile (160.3 mg, 0.7 mmol) was coupled with LiNH₂ to afford 51% yield desired product as a white solid (eluent : ethyl acetate/heptane =50/50).

Identification

Mp: 112-114°C

¹**H NMR (400 MHz, CDCl₃):** δ 8.24 (br, 1H, H₁₇), 7.47-7.49 (m, 1H, H₁₅), 7.42-7.44 (d, J = 8.8 Hz, 2H, H_{3,5}), 7.31-7.35 (t, J = 7.6 Hz, 2H, H_{9,11}), 7.18-7.21 (m, 1H, H₁₀), 7.06-7.12 (dd, J = 8.8, 16,4 Hz, 4H, H_{2,6,8,12}), 6.87-6.89 (d, J = 8.8 Hz, 1H, H₁₆), 6.71-6.73 (m, 1H, H₁₄).

¹³C NMR (100 MHz, CDCl₃): δ 158.1 (C₁₃), 150.0 (C₁), 148.6 (C₁₇), 144.9 (C₇), 138.1 (C₁₃), 133.1 (C₃₅), 130.0 (C_{9,11}), 127.6 (C_{8,12}), 126.4 (C₁₀), 123.1 (C_{2,6}), 119.5 (C₁₈), 118.5 (C₁₆), 116.2 (C₁₄), 105.0 (C₄). GC/MS: rt = 24.88 min, M/Z = 271.

HRMS calculated for C₁₈H₁₄N₃ (M+H) 272.1188. Found: 272.1195

bis(4-fluorophenyl)amine 3

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

di-p-tolylamine 7

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

tris(4-(trifluoromethyl)phenyl)amine 12

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

N-(4-fluorophenyl)-N-(pyridin-2-yl)pyridin-2-amine 32

N-(4-fluor	ophenvl)-	N-(pyrid)	in-2-v1)pv	ridin-2	amine				C	\sim	
	-11		11						-	\sim \perp	_
									BR	ŪĶĒR	Ľ
									- (\times	
									Current .	Data Parameters	
i.									EXPNO	1211	
									PROCNO	1	
i.									F2 - Acq	uisition Paramet	ters
									Time	5.20	
									INSTRUM	spect	
1	1	1 1 1							PULPROG	jmed	
			A real and	the second s					TD	65536	
			Y 34						SOLVENT Ng	CDC13 1024	
ماسران مشريد بالشا	ورائد بقلاله بالمتعادين	alaa la ahaa bilah	ويرافر ويرفقا ماهرا	والاستراقين المتعيدان	الاربيا المحمد والمرابة	الأرابينية المتعام	والاستعادية أتحريك المراجع	احاملة أس أسداد	DS	4	
				n - press					HWE	23980.814	Hz
	halo bahasangan	e , de bred, glist	وأرجع والمساحيات	(C) Interaction	Charles and public	الجريك المكرونية ا	11111111111111111	والمراطرة فالمارية	PIDRES	1.3664756	12
1.1.1.			1° 11'''						RG	23170.5	
		1 1	1 11						DW	20.850	11360
1		1 1	1 11						DE	8.00 207 c	usec V
1		1 1	1 11						CNST2	145.0000000	11
		1 1	1 11						CNST11	1.0000000	
		1 1	1 11						D1	2.00000000	39C
		1 1	1 11						DELTA	0.00001146	38C 38C
i.									TDB	1	
										CHANNEL fl	
			I 11						NUC1	13C	
1			I II						P1	9.00	usec.
1		1							PL1	-2.00	dB
			·						5F01	100.6228298	MHz
										CHANNEL f2	
1									CPDPRG2	waltz16	
									NUC2 PCPD2	11	
									PL2	-2.00	dB
		1							PL12	14.00	dB
1									SF02	400.1316005	EGH 2
									FZ - Pro	cessing paramet	ers
			1						I E G	100 612768	6/01 m
1			11						WDW	EM	Parta
		1							SSB	0	
									CB	1.00	H.2
				· · · ·	1			1 .	PC	1.40	
180	160	140	120	100	80	60	40	20 ppm			

N-(4-Chlorophenyl)-N-(pyridin-2-yl)pyridin-2-amine 33

N-(pyridin-2-yl)-N-(4-(trifluoromethyl)phenyl)pyridin-2-amine 34

4-(phenyl(pyridin-2-yl)amino)benzonitrile 35

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

- ¹ Kuwano, R.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2002, 67, 6479.
- ² Changfeng Z.; Dongpeng Y.; Xiaofei J.; Lixue Z.; Jiang C., Synlett. 2009, 19, 3198.
- ³ Surry, D. S.; Buchwald, S.L, J. Am. Chem. Soc, 2007, 129, 10354.
- ⁴ Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553.
- ⁵ Wolfe, J. P ; Buchwald, S.L. J. Org. Chem. 2000, 65, 1155.
- ⁶ Shen, Q.; Ogata, T.; Hartwig; J. F. J. Am. Chem. Soc, 2008, 130, 6586.