Supporting Information

Assembly of a Luminescent Core-Shell Nanocluster Featuring a Ag₃₄S₂₆ Shell and a W₆O₂₁^{6–} Polyoxoanion Core

Kun Zhou,^a Chao Qin,^a Hai-Bin Li,^a Li-Kai Yan,^a Xin-Long Wang,^{*a} Guo-Gang Shan,^a Zhong-Min Su,^{*a} Chuang Xu,^b Xiu-Li Wang^b

15

10

5

^a Institute of Functional Material Chemistry, Key Lab of Polyoxometalate, Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, People's Republic of China. E-mail: <u>zmsu@nenu.edu.cn</u>; <u>wangxl824@nenu.edu.cn</u> Fax: +860431-85684009; Tel:

+860431-85099108

20 ^b Faculty of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121000, Liaoning, People's Republic of China

Table of contents

30

35

1. Synthetic procedures	
2. Crystallographic studies	
3. Physical Measurements	

1. Synthetic procedures

General comments: AgS'Bu was prepared by using Et_3N as organic solvent and reacted with equivalent amounts of AgNO₃ with ¹⁰ HS'Bu according to the literature.¹ In addition, $(nBu_4N)_2[W_6O_{19}]$ was synthesized according to the literature.² Other reagents and solvents for synthesis were obtained from commercial sources and used without further purification.

15

30

35

40

45

5

²⁰ [Ag₃₄(S^tBu)₂₆(W₆O₂₁)(CF₃COO)](CF₃COO)·Et₃N·20CH₃OH (1)

AgS^tBu (0.0828 g, 0.420 mmol) was dissolved in methanol (15 mL) under stir. CF₃COOH (0.2 mL) and Et₃N (0.6 mL) were in turn added to the above solution with stir, and then (*n*Bu₄N)₂[W₆O₁₉] (0.0172 g, 0.0090 mmol) was finally added to the mixture after several minutes. The gray-violet suspension was stirred at room temperature for 55h and then was filtered. The filtrate was evaporated slowly in air at room temperature. Complex **1** deposited as bulk light yellow crystals. Yield: ca. 32% (based on W). ²⁵ Elemental analysis (%) calcd for C₁₃₄H₃₂₉F₆S₂₆O₄₅N₁Ag₃₄W₆: C, 19.18; H, 3.95; N, 0.17; Ag, 43.70; W, 13.14. Found: C, 19.26; H, 3.84; N, 0.20; Ag, 43.62; W, 13.23.

5

2. Crystallographic studies

Single-crystal X-ray diffraction data for 1 was recorded on a Bruker Apex CCD II area-detector diffractometer with graphitemonochromated Mo-Ka radiation ($\lambda = 0.71073$ Å) at 296(2) K. Absorption corrections were applied using multi-scan technique and performed by using the SADABS program. The structure of complex 1 was solved by direct methods and refined on F^2 by 15 full-matrix least squares methods using the SHELXTL package.³

20

30

35

40

45

50

Crystal data for 1: $C_{134}H_{329}F_6S_{26}O_{45}N_1Ag_{34}W_6$; *P*-42₁*c*; *a* = 37.905(3) Å, *b* = 37.905(3) Å, *c* = 35.309(3) Å; *V* = 50732(7) Å³; *Z* = 8; 255563 reflns measured, 44663 unique ($R_{int} = 0.1894$); final $R_I = 0.0649$, $wR_2 = 0.1394$ for 19835 observed reflections [$I > 2\sigma$ 25 (I)]. CCDC-871786 (1) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif for 1.

S3

3. Physical Measurements

The FT-IR spectra were recorded from KBr pellets in the range of 4000–400 cm⁻¹ on a Mattson Alpha-Centauri spectrometer. ⁵ PXRD patterns were recorded on a Siemens D 5005 diffractometer with Cu-K α (λ = 1.5418 Å) radiation in the range of 3-50°C. TGA was performed on a Perkin-Elmer TGA analyzer heated from room temperature to 900°C under nitrogen gas with a heating rate of 10°C/min. The UV-vis-NIR absorption spectroscopy was measured with a U-3010 Spectrophotometer. Luminescence was measured on an F-7000 FL Spectrophotometer. NMR data were recorded on a Bruker AV spectrometer (500 MHz). Elemental analyses (C, H, and N) were performed on a Perkin-Elmer 2400 CHN elemental analyzer. Ag and W were analyzed on a ¹⁰ PLASMA-SPEC(I) ICP atomic emission spectrometer. A CHI 440 Electrochemical Quartz Crystal Microbalance was used for the electrochemical experiments. A conventional three-electrode cell was used at room temperature. The compounds bulk-modified carbon-paste electrodes (CPEs) were used as the working electrode. An SCE and a platinum wire were used as reference and auxiliary electrodes, respectively.

Fig. S1 The experimental and simulated X-ray powder diffraction patterns of 1.

15

Fig. S2 (a) Theoretical calculation model of $W_6O_{19}^{2-}$. (b) Theoretical calculation model of $W_6O_{21}^{6-}$.

W ₆ O ₁₉ ²⁻		W ₆ O ₂₁ ⁶⁻			
Atom	No	Natural Charge/ e	Atom	No	Natural Charge/ e
W	1	-0.88059	W	1	1.42240
W	2	1.54221	W	2	1.39977
W	3	1.54221	W	3	1.33068
W	4	1.54221	W	4	1.35412
W	5	1.54221	W	5	1.41779
W	6	1.54221	W	6	1.40033
0	7	-0.61840	0	7	-0.70585
0	8	-0.61840	0	8	-0.75469
0	9	-0.61840	0	9	-0.72276
0	10	-0.61840	0	10	-0.65667
0	11	-0.61840	0	11	-0.71290
0	12	-0.61840	0	12	-0.65409
0	13	-0.61840	0	13	-0.68878
0	14	-0.61840	0	14	-0.66378
0	15	-0.61840	0	15	-0.65908
0	16	-0.61840	0	16	-0.79168
0	17	-0.61840	0	17	-0.71260
0	18	-0.61840	0	18	-0.65759
0	19	-0.61840	0	19	-0.61949
0	20	-0.49197	0	20	-0.67699
0	21	-0.49197	0	21	-0.71050
0	22	-0.49197	0	22	-0.63720
0	23	-0.49197	0	23	-0.71362
0	24	-0.49197	0	24	-0.67696
0	25	-0.49197	0	25	-0.63346
			0	26	-0.69814
			0	27	-0.57824

Table S1 The theoretical calculation charge density of $W_6O_{19}^{2-}$ and $W_6O_{21}^{6-}$.

10

S6

Fig. S5 (a) TEM image of 1. (b) Single cluster unit of 1. Color legend: green, Ag; yellow, S; gray, C; white, H; red, O; blue, W.

Fig. S6 Excitation and emission spectra of 1 in the solid state.

Fig. S7 (a) Excitation (blue trace) and emission (red trace) spectra of 1 in EtOH solution. (b) Excitation (blue trace) and emission (red trace) spectra of 1 in EtOH solution after being stored for about five months.

Fig. S8 Electronic absorption spectrum (blue trace) of 1 in EtOH solution and electronic absorption spectrum(red trace) of 1 in EtOH solution after being stored for about five months.

Fig. S9 Excitation and emission spectra of ligand AgS'Bu in EtOH solution.

Electrochemistry

Preparation of compound 1, AgS'Bu and $(nBu_4N)_2[W_6O_{19}]$ bulk-modified CPEs: The compound 1 bulk-modified CPE (1-¹⁰ CPE) was fabricated by mixing 0.10 g graphite powder and 0.010 g compound 1 in an agate mortar for approximately 30 min to achieve an uniform mixture; then a drop of paraffin oil was added and stirred with a glass rod.² The homogenized mixture was packed into a 3 mm inner diameter glass tube and the tube surface was wiped with weighing paper. The electrical contact was established with the copper wire through the back of the electrode. In a similar manner, AgS'Bu and $(nBu_4N)_2[W_6O_{19}]$ bulkmodified CPEs were prepared by similar process without compound 1.

15

5

20

25

30

Fig. S11 The IR spectrum of 1.

Fig. S12 TG curve of 1.

Reference:

15

5

10 1 G. Li, Z. Lei and Q. M. Wang, J. Am. Chem. Soc., 2010, 132, 17678-17679.

2 W. G. Klemperer, Inorg. Synth., 1990, 27, 80-81.

3 (a) G. M. Sheldrick, SHELX-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.

4 X. L. Wang, Z. H. Kang, E. B. Wang and C. W. Hu, Mater. Lett., 2002, 56, 393-396.