Formal Asymmetric Enone Aminohydroxylation: Organocatalytic Onepot Synthesis of 4,5-Disubstituted Oxazolidinones

David Cruz Cruz, Pedro A. Sánchez-Murcia and Karl Anker Jørgensen*

[*] Center for Catalysis

Department of Chemistry, Aarhus University

DK-8000 Aarhus C, Denmark

Fax (45) 89196199, e-mail: kaj@chem.au.dk

Supporting Information

1.	General methods	S2
2.	Synthesis of the non-commercial enones 1d-h	S2
3.	Organocatalytic asymmetric formal <i>trans</i> -aminohydroxylation of α , β -unsaturated ketones	S4
4.	Derivatization of oxazolidin-2-ones 4a-4i	S7
5.	Copies of NMR spectra	S11

1. General methods

NMR spectra were acquired on a Varian AS 400 spectrometer, running at 400 MHz for ¹H and 100 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR, CDCl₃, 77.0 ppm for ¹³C NMR). The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal. ¹³C NMR spectra were acquired on a broad band decoupled mode. Mass spectra were recorded on micromass LCT spectrometer using electrospray (ES⁺) ionization techniques. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or KMnO₄ dip. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The melting points (mp) were measured in a Büchi Melting Point B-540 apparatus and the data were not normalized. The enantiomeric excess (*ee*) of the products was determined by chiral stationary phase HPLC (Chiralpack IB column). Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (SiO₂ 60, 230-400 mesh, Fluka) was used.

2. Synthesis of the non-commercial enones 1d-h

To access to the noncommercial enones **1d-h** a methylenation reaction of the precursor aldehyde was carried out using the commercial Wittig reagent 1-(triphenylphosphoranylidene)acetone **B** (Scheme S1)

Scheme S1

General procedure.

To a solution of the commercial aldehyde **A** (2.00 mmol, 1.0 equiv) in CH_2Cl_2 (10 mL) the ylide **B** (955 mg, 3 mmol, 1.5 equiv) was added in one portion. The mixture was stirred at rt. After stirring for 12 h, the mixture was concentrated *in vacuo* and directly purified by FC on silica gel.

1d E-5-Cyclohexylpent-3-en-2-one

Following the general procedure and starting from cyclohexylacetaldehyde was isolated by FC on silica gel (pentane:AcOEt 20:1-10:1) in 75% yield as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ ppm 6.72 (td, *J* = 7.6, 16 Hz, 1H), 5.98 (td, *J* = 1.2, 16 Hz,

1H), 2.18 (s, 3H), 2.07-2.03 (m, 2H), 1.65-1.56 (m, 5H), 1.43-1.31 (m, 1H), 1.22-1.02 (m, 3H), 0.91-0.82 (m, 2H). 13 C-NMR (100 MHz, CDCl₃) δ ppm 198.5, 147.3, 132.2, 40.4, 37.3, 33.1, 26.8, 26.3, 26.1. HRMS calc. for C₁₁H₁₉O⁺ 167.1430 [M+H]⁺, found 167.1429.

1e E-6-(Benzyloxycarbonyl)amino-hex-3-en-2-one

1f E-6-Phenylhex-3-en-2-one

Following the general procedure and starting from 3-phenylpropionaldehyde was isolated by FC on silica gel (pentane:AcOEt 5:1) in 79% yield as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.32-7.29 (m, 2H), 7.24-7.18 (m, 3H), 6.83 (td, *J* = 6.8, 16 Hz, 1H), 6.10 (td, *J* = 1.6, 16 Hz, 1H), 2.79 (t, *J* = 6.8, 2H), 2.58-2.52 (m, 2H),

2.23 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 198.6, 147.1, 140.6, 131.7, 128.5, 128.3, 126.2, 34.4, 34.1, 26.9. HRMS calc. for C₁₂H₁₄ONa⁺ 197.0937 [M+Na]⁺, found 197.0937.

1g E-6-(4-Methoxyphenyl)hex-3-en-2-one

Following the general procedure and starting from 3-(4-methoxyphenyl)propionaldehyde was isolated by FC on silica gel (pentane:AcOEt 6:1) in 65% yield as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ ppm 6.96 AA'BB'system (4H), 6.82-6.77 (m, 1H), 6.08 (td, *J* = 1.6, 16 Hz, 1H), 3.79 (s, 3H), 2.73 (t, *J* =

7.2 Hz, 2H), 2.54-2.48 (m, 2H), 2.23 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 198.5, 158.0, 147.2, 132.7, 131.6, 129.2, 113.9, 55.2, 34.4, 33.5, 26.8. HRMS calc. for C₁₃H₁₆O₂Na⁺ 227.1042 [M+Na]⁺, found 227.1046.

1h E-6-(3-Chlorophenyl)hex-3-en-2-one

Following the general procedure and starting from 3-(3-chlorophenyl)propionaldehyde was isolated by FC on silica gel (pentane:AcOEt 5:1) in 61% yield as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.25-7.18 (m, 3H), 7.07-7.04 (m, 1H), 6.79 (td, *J* = 6.8, 16 Hz, 1H), 6.09 (td, *J* = 1.6, 16 Hz, 1H), 2.79 (t, *J* = 7.2 Hz, 2H), 2.57-2.51 (m, 2H), 2.24 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 198.4, 146.3, 142.6, 134.2, 131.8, 129.8, 128.4, 126.5, 126.4, 34.0, 33.7, 27.0. HRMS calc. for C₁₂H₁₄ClO⁺ 209.0728 [M+H⁺], found 209.0730.

3. Organocatalytic asymmetric formal *trans*-aminohydroxylation of α , β -unsaturated ketones

General procedure.

A normal glass vial equipped with a magnetic stirring bar was charged with the catalyst **2b** (6.47 mg, 0.02 mmol, 10 mol%) *R*-mandelic acid (4.53 mg, 0.03 mmol, 15 mol%) and CHCl₃ (0.35 mL). After 10 min stirring at rt, the enone **1** (0.20 mmol, 1.0 equiv) was added and the mixture stirred for another 10 min at rt. Then BocNHOTs (68.96 mg, 0.24 mmol, 1.2 equiv) and NaHCO₃ (33.6 mg, 0.40 mmol, 2.0 equiv) was added at one time. After stirring 24 h at 50 °C, NaI (60 mg, 0.40 mmol, 2.0 equiv) and acetone (2 mL) was added and stirred 48 h at 60 °C. The crude reaction was concentrated *in vacuo* and purified by FC on silica gel. Only the major diastereomer was characterized.

4a (4R,5S)-5-Acetyl-4-butyloxazolidin-2-one (Table 1, entry 1).

Following the general procedure **4a** was isolated by FC on silica gel (Et₂O) as a colorless oil in 64% global yield (dr >20:1; only one diasteromer is observed by ¹H-NMR in the crude) and 98% ee (HPLC analysis on a Chiralpak IB column after derivatization 90/10 hexane/i-PrOH, flow rate 1.00 mL/min, λ = 220 nm τ_{maior} = 5.85

min, $\tau_{minor} = 6.83$ min). ¹H-NMR (400 MHz, CDCl₃) δ ppm 6.50 (bs, 1H), 4.41 (d, J = 5.1 Hz, 1H), 3.83 (dt, J = 5.7, 5.1 Hz, 1H), 2.35 (s, 3H), 1.75-1.49 (m, 2H), 1.42-1.28 (m, 4H), 0.92 (t, J = 6.4 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 206.1, 158.2, 84.1, 55.2, 35.6, 27.0, 26.4, 22.2, 13.8. HRMS calc. for C₉H₁₅NO₃ 185.1052; found 185.1052. [α]_D²⁰: +8.0 (c=0.93, CHCl₃).

4b (4R,5S)-5-Acetyl-4-methyloxazolidin-2-one (Table , entry 2).

Following the general procedure **4b** was isolated by FC on silica gel (Et₂O:AcOEt 2:1) as a white solid in 78% global yield (dr >20:1; only one diasteromer is observed by ¹H-NMR in the crude) and 99% ee (HPLC analysis on a Chiralpak IB column after derivatization 90/10 hexane/i-PrOH, flow rate 1.00 mL/min, $\lambda = 220$ nm $\tau_{major} = 7.61$ min, $\tau_{minor} = 10.34$ min) mp:

107-109 °C. ¹H-NMR (400 MHz, CDCl₃) δ ppm 5.31 (bs, 1H), 4.35 (d, J = 5.8 Hz, 1H), 3.95 (p, J = 6.2 Hz, 1H),

2.33 (s, 3H), 1.40 (d, J = 6.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 205.6, 157.9, 85.5, 51.0, 26.4, 21.6. HRMS calc. for C₆H₉NO₃ 143.0582; found 143.0582. [α]_D²⁰: -21.6 (c=1.12, CHCl₃).

4c (4R,5S)-5-Acetyl-4-isopropyloxazolidin-2-one (Table 1, entry 3).

Following the general procedure **4c** was isolated by FC on silica gel (Et₂O) as a white solid in 51% global yield (dr >20:1; only one diasteromer is observed by ¹H-NMR in the crude) and 98% ee (HPLC analysis on a Chiralpak IB column after derivatization 90/10 hexane/i-PrOH, flow rate 1.00 mL/min, λ = 220 nm τ_{major} = 5.80 min, τ_{minor} = 7.11 min). mp: 76 °C ¹H-NMR (400 MHz, CDCl₃) δ ppm 5.86 (bs, 1H), 4.47 (d, *J* = 4.3 Hz, 1H), 3.62 (t, *J* = 5.2 Hz, 1H),

2.32 (s, 3H), 1.81 (hex, J = 6.5 Hz 1H), 0.99-0.94 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 206.8, 158.6, 82.1, 60.5, 32.7, 26.3, 17.7, 17.1. HRMS calc. for C₈H₁₃NO₃ 171.0895; found 171.0895. [α]_D²⁰: -8.6 (c=1.16, CHCl₃).

4d (4R,5S)-5-Acetyl-4-cyclohexylmethyloxazolidin-2-one (Table 1, entry 4).

Following the general procedure **4d** was isolated by FC on silica gel (Et₂O) as a white solid in 81% global yield (dr >20:1; only one diasteromer is observed by ¹H-NMR in =O the crude) and 97% ee (HPLC analysis on a Chiralpak IB column after derivatization 95/5 hexane/i-PrOH, flow rate 1.00 mL/min, λ = 220 nm τ_{major} = 6.98 min, τ_{minor} =

8.12 min). mp: 71-73 °C ¹H-NMR (400 MHz, CDCl₃) δ ppm 6.62 (bs, 1H), 4.36 (d, *J* = 5.2 Hz, 1H), 3.91 (ddd, *J* = 0.8, 5.2, 13.6 Hz, 1H), 2.32 (s, 3H), 1.82-1.62 (m, 5H), 1.41-1.10 (m, 4H), 1.53 (dd, *J* = 0.8, 7.2, 2H) 0.98-0.874 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 206.0, 158.3, 84.5, 52.9, 43.7, 34.0, 33.4, 32.6, 26.5, 26.2, 25.9, 25.8. HRMS calc. for C₁₂H₁₉NO₃Na⁺ 248.1257 [M+Na]⁺; found 248.1261. [α]_D²⁰: -12.2 (c=1.65, CHCl₃).

4e (4R,5S)-4-(2´-Benzyloxycarbonyl-aminoethanyl)-5-acyloxazolidin-2-one (Table 1, entry 5).

Following the general procedure **4e** was isolated by FC on silica gel (AcOEt:Et₂O 2:1) as a colorless oil in 56% global yield (dr >20:1; only one diasteromer is observed by ¹H-NMR in the crude) and 94% ee (HPLC analysis on a Chiralpak IB column after derivatization 80/20 hexane/i-PrOH, flow rate 1.00 mL/min, λ = 220 nm τ_{major} = 13.31 min, τ_{minor} = 15.45 min). ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.29-

7.25 (m, 5H), 6.29 (bs, 1H), 5.02 (dd, J = 12.4, 15.2 Hz, 2H), 4.28 (d, J = 5.6 Hz, 1H), 3.76-3.72 (m, 1H), 3.50-3.39 (m, 1H), 3.16-3.08 (m, 1H), 2.27 (s, 3H), 1.83-1.75 (m, 1H), 1.72-1.64 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 206.3, 157.4, 157.1, 136.1, 128.5, 128.2, 128.0, 83.7, 67.0, 52.6, 37.0, 36.4, 26.5. HRMS calc. for C₁₅H₁₈N₂O₅ 306.1216; found 306.1216. [α]_D²⁰: +25.7 (c=1.9, CHCl₃).

4f (4R,5S)-5-Acetyl-4-phenethyl-oxazolidin-2-one (Table 1, entry 6).

Following the general procedure **4f** was isolated by FC on silica gel (Et₂O) as a colorless oil in 73% global yield (dr >20:1; only one diasteromer is observed by ¹H-NMR in the crude) and 98% ee (HPLC analysis on a Chiralpak IB column after derivatization 90/10 hexane/i-PrOH, flow rate 1.00 mL/min, λ = 220 nm τ_{major} = 8.43 min, τ_{minor} = 12.46 min). mp: 69-70 °C ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.27-

7.11 (m, 5H), 5.27 (bs, 1H), 4.35 (d, *J* = 5.6 Hz, 1H), 3.81-3.77 (m, 1H), 2.71-2.60 (m, 2H), 2.27 (s, 3H), 2.05-1.85 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 205.8, 158.2, 139.9, 128.7, 128.3, 126.5, 84.1, 54.8, 37.5, 31.4, 26.5. HRMS calc. for C₁₃H₁₅NO₃Na⁺ 256.0944 [M+Na]⁺; found 256.0947. [α]_D²⁰: +30.7 (c=0.9, CHCl₃).

4g (4R,5S)-5-Acetyl-4-[2-(4-methoxyphenyl)-ethyl]-oxazolidin-2-one (Table 1, entry 7).

Following the general procedure **4g** was isolated by FC on silica gel (Et₂O) as a colorless oil in 93% global yield (dr >20:1; only one diasteromer is observed by ¹H-NMR in the crude) and 98% ee (HPLC analysis on a Chiralpak IB column after derivatization 90/10 hexane/i-PrOH, flow rate 1.00 mL/min, $\lambda = 220 \text{ nm } \tau_{\text{major}} = 10.48 \text{ min}, \tau_{\text{minor}} = 17.32 \text{ min}$). ¹H-NMR (400 MHz, CDCl₃) δ

ppm 6.96 AA'BB' (4H), 6.12 (bs, 1H), 4.42 (d, J = 5.2 Hz, 1H), 3.85-3.80 (m, 1H), 3.78 (s, 3H) 2.66 (t, J = 7.6 2H), 2.32 (s, 3H), 2.06-1.87 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 205.9, 158.2, 157.9, 131.7, 129.3, 114.1, 84.1, 55.2, 54.7, 37.7, 30.6, 26.5. HRMS calc. for C₁₄H₁₇NO₄Na⁺ 286.1050 [M+Na]⁺; found 286.1053. [α]_D²⁰: +33.6 (c=2.37, CHCl₃).

4h (4R,5S)-5-Acetyl-4-[2-(3-chlorophenyl)-ethyl]-oxazolidin-2-one (Table 1, entry 8).

Following the general procedure **4h** was isolated by FC on silica gel (Et₂O) as a colorless oil in 53% global yield (dr 17:1; determinated by integration of one set of ¹H-NMR signal: δ_{major} 4.38 ppm, δ_{minor} 4.63) and 99% ee (HPLC analysis on a Chiralpak IB column after derivatization 90/10 hexane/i-PrOH, flow rate 1.00 mL/min, λ = 220 nm τ_{major} = 8.85 min, τ_{minor} = 12.51 min). mp: 62-63 °C

¹H-NMR (400 MHz, CDCl₃) δ ppm 7.17-7.12 (m, 3H), 7.02-6.99 (m, 1H), 5.84 (bs, 1H), 4.37 (d, *J* = 5.2 Hz, 1H), 3.79 (ddd, *J* = 0.8, 5.2, 12.4, 1H), 2.63 (t, *J* = 7.6 2H), 2.28 (s, 3H), 2.02-1.84 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 205.8, 158.1, 141.9, 134.4, 129.9, 128.5, 126.7, 126.5, 84.0, 54.6, 37.3, 31.0, 26.5. HRMS calc. for C₁₃H₁₄CINO₃Na⁺ 290.0554 [M+Na]⁺; found 290.0557. [α]_D²⁰: +25.7 (c=0.76, CHCl₃).

4i (4R,5S)-4-Methyl-5-propionyl-oxazolidin-2-one (Table 1, entry 9).

Following the general procedure **4b** was isolated by FC on silica gel (Et₂O) as a white solid in 57% global yield (dr 15:1; determinated by integration of one set of ¹H-NMR signal: δ_{major} 4.36 ppm, δ_{minor} 4.68) and 99% ee (HPLC analysis on a Chiralpak IC column

after derivatization 95/5 hexane/i-PrOH, flow rate 1.00 mL/min, $\lambda = 220$ nm $\tau_{major} = 15.08$ min, $\tau_{minor} = 14.00$ min) mp: 89 °C. ¹H-NMR (400 MHz, CDCl₃) δ ppm 5.58 (bs, 1H), 4.37 (d, J = 5.8 Hz, 1H), 3.93 (m, 1H), 2.68 (q, J = 7.2 Hz, 2H), 1.39 (d, J = 6.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 208.3, 157.9, 85.3, 51.2, 32.2, 21.6, 6.7. HRMS calc. for C₇H₁₁NO₃ 157.0739; found 157.0739. [α]_D²⁰: -21.4 (c=0.56, CHCl₃).

4. Derivatization of oxazolidin-2-ones 4a-4i

General procedure: A normal glass vial equipped with magnetic stirring bar was charged with the corresponding oxazolidin-2-one **4** (0.10 mmol, 1.0 equiv), 2,2-dimethyl-1,3-propanediol (31.25 mg, 0.30 mmol, 3.0 equiv), triethylorthoformate (29.64 mg, 0.20 mmol, 2.0 equiv), TsOH·H₂O (0.95 mg, 5.00 μ mol, 50.0 mequiv) and toluene (0.5 mL). After stirring 24 h at rt (60 °C for **4i**) the crude reaction was directly added to a short-pad of silica gel (Et₂O) to remove side products, then the solvent was removed and was added 4-chlorobenzoyl chloride (26.25 mg, 0.15 mmol, 1.5 equiv), Et₃N (15.17 mg, 0.15 mmol, 1.5 equiv), DMAP (3.66 mg, 0.03 mmol, 0.3 equiv) and CH₂Cl₂ (0.5 mL). After 1 h stirring at rt, the product was directly purified by FC on silica gel.

5a (4R,5S)-4-Butyl-3-(4-chlorobenzoyl)-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-oxazolidin-2-one

Following the general procedure **5a** was isolated by FC on silica gel (pentane:AcOEt 8:1) as a white solid in 60% global yield. mp: 83-85 °C. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.45 AA´BB´ system (4H), 4.87 (ddd, *J* = 2.4, 3.6, 8.4 Hz, 1H), 4.06 (d, *J* = 2.4 Hz, 1H), 3.71 (dd, *J* = 11.6, 21.2 Hz, 2H), 3.44-3.38 (m, 2H), 1.96-1.78 (m, 2H), 1.51 (s, 3H), 1.43-1.32 (m, 4H), 1.18 (s, 3H) 0.93 (t, *J* = 7.2 Hz, 3H), 0.77 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 168.2, 153.2, 138.0, 132.0, 130.0, 128.1, 97.6, 82.2, 70.3, 70.2, 55.4, 32.6, 30.2, 26.2, 23.3, 22.3, 22.2, 14.3, 13.9. HRMS calc. for C₂₁H₂₈ClNO₅Na⁺ 432.1548 [M+Na]⁺; found 432.1555. [α]_p²⁰: -58.1 (c=0.9, CHCl₃).

5b (4R,5S)-3-(4-Chlorobenzoyl)-4-methyl-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-oxazolidin-2-one

Following the general procedure **5b** was isolated by FC on silica gel (pentane:AcOEt 5:1) as a white solid in 76% global yield. mp: 142-144 °C. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.45 AA'BB' system (4H), 4.93 (dq, *J* = 3.6, 6.8 Hz, 1H), 3.99 (d, *J* = 3.6 Hz, 1H), 3.71 (dd, *J* =

11.6, 18 Hz, 2H), 3.41 (ddd, J = 2.4, 4.4, 11.6 Hz, 2H), 1.54 (d, J = 6.8 Hz, 3H), 1.51 (s, 3H), 1.17 (s, 3H), 0.77 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 168.3, 152.9, 138.2, 132.0, 130.1, 128.2, 97.6, 84.1, 70.3, 70.2, 51.8, 30.2, 23.3, 22.2, 19.9, 14.4. HRMS calc. for C₁₈H₂₂ClNO₅Na⁺ 390.1079 [M+Na]⁺; found 390.1111. [α]_D²⁰: -68.4 (c=1.31, CHCl₃).

5c (4R,5S)-3-(4-Chlorobenzoyl)-4-isopropyl-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-oxazolidin-2-one

Following the general procedure **5c** was isolated by FC on silica gel (pentane:AcOEt 7:1) as a white solid in 34% global yield. mp: 149-151 °C. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.45 AA´BB´ system (4H), 4.84 (dd, *J* = 2.4, 4.4 Hz, 1H), 4.10 (d, *J* = 2.4 Hz, 1H), 3.70 (dd, *J* = 11.6, 21.6 Hz, 2H), 3.44-3.38 (m, 2H), 2.39 (dhex, *J* = 4.4, 6.4 Hz, 1H), 1.50 (s, 3H), 1.19 (s, 3H), 0.99 (d, *J* = 6.4 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 3H) 0.76 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 168.4, 153.6, 138.0, 132.1, 130.1, 128.1, 97.7, 78.9, 70.4, 70.3, 59.6, 30.2, 29.8, 23.3, 22.2, 18.0, 16.0, 14.2. HRMS calc. for C₂₀H₂₆ClNO₅Na⁺ 418.1392 [M+Na]⁺; found 418.1398. [α]_D²⁰: -58.0 (c=0.89, CHCl₃).

5d (4R,5S)-3-(4-Chlorobenzoyl)-4-cyclohexylmethyl-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-oxazolidin-2-one

Following the general procedure **5d** was isolated by FC on silica gel (pentane:AcOEt 10:1) as a white solid in 35% global yield. mp: 148-150 °C. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.43 AA´BB´ system (4H), 4.96 (ddd, *J* = 2.0, 3.6, 10.4 Hz, 1H), 4.05 (d, *J* = 2.0 Hz, 1H), 3.71 (dd, *J* = 11.6, 26.0 Hz, 2H), 3.43-3.37 (m, 2H), 1.95-1.84 (m, 2H), 1.75-1.54 (m, 5H) 1.51 (s, 3H), 1.42-1.12 (m, 4H), 1.18 (s, 3H), 1.07-0.96 (m, 2H), 0.77 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 167.0, 152.2, 136.9, 131.1, 129.0, 127.1, 96.6, 81.8, 69.4, 69.2, 52.6, 39.9, 33.0, 32.6, 31.1, 29.2, 25.4, 25.2, 24.9, 22.3, 21.2, 13.3. HRMS calc. for C₂₄H₃₂CINO₅Na⁺ 472.1861 [M+Na]⁺; found 472.1874. [α]_D²⁰: -50.8 (c=1.37, CHCl₃).

5e (4*R*,5*S*)-{2-[3-(4-Chlorobenzoyl)-2-oxo-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-oxazolidin-4-yl]-ethyl}- carbamic acid benzyl ester

Following the general procedure **5e** was isolated by FC on silica gel (pentane:AcOEt 2:1) as a colorless oil in 81% global yield. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.37 AA'BB' system (4H), 7.28-7.23 (m, 5H), 5.27 (bs, 1H), 5.03 (s, 2H), 4.91 (ddd, *J* = 2.4, 6.0, 8.0 Hz, 1H), 4.04 (d, *J* = 2.4 Hz, 1H), 3.63 (dd, *J* = 12.0, 23.6 Hz, 2H), 3.41-3.30 (m, 3H), 3.22-3.14 (m, 1H), 2.13-2.03 (m, 1H), 1.95-1.87 (m, 1H), 1.43 (s, 3H), 1.06 (s, 3H), 0.68 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 168.7, 156.3, 152.8, 138.3, 136.6, 131.6, 130.1, 128.5, 128.2, 128.1, 97.7, 82.6, 70.3, 70.2, 66.6, 60.3, 53.2, 37.2, 34.0, 30.2, 23.2, 22.2, 14.3. HRMS calc. for

C₂₇H₃₁ClN₂O₇Na⁺ 553.1712 [M+Na]⁺; found 553.1730. [α]_D²⁰: -22.7 (c=1.05, CHCl₃).

5f (4R,5S)-3-(4-Chlorobenzoyl)-4-phenethyl-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-oxazolidin-2-one

Following the general procedure **5f** was isolated by FC on silica gel (pentane:AcOEt 6:1) as a colorless oil in 31% global yield. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.42 AA'BB' system (4H), 7.31-7.18 (m, 5H) 4.94 (ddd, *J* = 2.8, 3.6, 8.8 Hz, 1H), 4.16 (d, *J* = 2.8 Hz, 1H), 3.71 (dd, *J* = 11.2, 23.6 Hz, 2H), 3.43-3.37 (m, 2H), 2.81-2.66 (m, 2H), 2.37-2.29 (m, 1H), 2.18-2.09 (m, 1H), 1.53 (s, 3H), 1.10 (s, 3H), 0.76 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 168.2, 153.0, 140.3, 138.1, 131.9, 130.0, 128.5, 128.3, 128.1, 126.2, 97.6, 82.2, 70.3, 55.1, 34.3, 30.9, 30.5, 30.2, 23.3, 22.2, 14.3. HRMS calc. for C₂₅H₂₈ClNO₅Na⁺ 480.1548 [M+Na]⁺; found 480.1571. [α]_D²⁰: -32.7 (c=0.4, CHCl₃).

5g (4*R*,5*S*)-3-(4-Chlorobenzoyl)-4-[2-(4-methoxy-phenyl)-ethyl]-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-oxazolidin-2-one

Following the general procedure **5g** was isolated by FC on silica gel (pentane:AcOEt 4:1) as a colorless oil in 67% global yield. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.42 AA'BB' system (4H), 6.98 AA'BB' system (4H), 4.92 (ddd, *J* = 2.4, 3.2, 8.8 Hz, 1H), 4.15 (d, *J* = 2.4 Hz, 1H), 3.78 (s, 3H), 3.74 (dd, *J* = 11.2, 23.6 Hz, 2H), 3.43-3.37 (m, 2H), 2.76-2.61 (m, 2H), 2.33-2.25 (m, 1H), 2.15-2.06 (m, 1H), 1.52 (s, 3H), 1.10 (s, 3H), 0.76 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 168.2, 158.0, 153.0, 138.1, 132.3, 131.9, 130.0, 129.3, 128.1, 113.9, 97.6, 82.2, 70.3, 55.2, 55.1, 34.4, 30.2, 29.6, 23.3, 22.2, 14.4. HRMS calc. for C₂₆H₃₀ClNO₆Na⁺ 510.1654 [M+Na]⁺; found 510.1668. [α]_D²⁰: -32.5

(c=1.94, CHCl₃).

5h (4*R*,5*S*)-3-(4-Chlorobenzoyl)-4-[2-(3-chloro-phenyl)-ethyl]-5-(2,5,5-trimethyl-[1,3]dioxan-2-yl)oxazolidin-2-one

Following the general procedure **5h** was isolated by FC on silica gel (pentane:AcOEt 5:1) as a colorless oil in 74% global yield. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.42 AA'BB' system (4H), 7.25-7.12 (m, 4H), 4.89 (ddd, *J* = 2.4, 3.2, 9.2 Hz, 1H), 4.12 (d, *J* = 2.4 Hz, 1H), 3.71 (dd, *J* = 11.6, 28.0 Hz, 2H), 3.40 (ddd, *J* = 2.4, 11.6, 26.0 Hz, 2H), 2.82-2.62 (m, 2H), 2.39-2.31 (m, 1H), 2.14-2.06 (m, 1H), 1.53 (s, 3H), 1.06 (s, 3H), 0.76 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 167.2, 152.0, 141.2, 137.1, 133.1, 130.8, 129.0, 128.7, 127.8, 127.2, 125.5, 124.4, 96.6, 81.2, 69.3, 69.2, 53.9, 32.9, 29.2, 29.1, 22.1, 21.2, 13.4. HRMS calc. for C₂₅H₂₇Cl₂NO₆Na⁺ 514.1158 [M+Na]⁺; found 514.1170. [α]_D²⁰: -

24.0 (c=0.85, CHCl₃).

5i (4R,5S)- 3-(4-Chlorobenzoyl)-5-(2-ethyl-5,5-dimethyl-[1,3]dioxan-2-yl)-4-methyl-oxazolidin-2-one

Following the general procedure **5i** was isolated by FC on silica gel (pentane:AcOEt 6:1) as a white solid in 37% global yield. mp: 149-150 °C. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.45 AA'BB' system (4H), 4.91 (dq, *J* = 3.6, 6.4 Hz, 1H), 4.06 (d, *J* = 3.6 Hz, 1H), 3.61 (dd, *J* = 11.6, 33.6 Hz, 2H), 3.32 (d, *J* = 11.6 Hz, 2H), 2.21 (qd, *J* = 7.2, 14.8, Hz, 1H), 1.70 (qd, *J* = 7.6, 14.8 Hz, 1H), 1.48 (d, *J* = 6.4 Hz, 3H), 1.11 (s, 3H), 0.86 (t, *J* = 6.4 Hz, 3H) 0.70 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm 168.3, 152.9, 138.1, 132.0, 130.1, 128.2, 99.2, 80.4, 70.0, 69.9, 51.8, 29.8, 23.5, 22.3, 19.9, 18.6, 7.4. HRMS calc. for C₁₉H₂₄ClNO₅K⁺ 420.0975 [M+K]⁺; found 420.0978. [α]_D²⁰: -58.5 (c=0.49, CHCl₃).

1d: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

1e: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

1f: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

1g: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

1h: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

4b: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

4c: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

4e: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

4f: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

4g: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

4h: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

4i: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5a: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5b: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5c: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5d: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5e: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5f: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

 ~ 1.30 ~ 1.37 ~ 1.37 ~ 1.37 ~ 1.35 ~ 1.35 ~ 1.35 ~ 1.35 ~ 1.35 ~ 1.35 4.94 4.93 4.91 4.91 4.91 -1.10 -0.76 5500 $<_{4.15}^{4.15}$ - 5000 4500 \int 4000 J ر ک ſ -3500 -3000 -2500 -2000 -1500 -1000 - 500 -0 2.14J 2.14 F90:1 5.51 2.20J 2.25 3.00H 2:05<u>-</u> 2:03-<u>1</u> 1.03-₫ 1.09<u>–</u> 0.48<u>–</u> 3.13J 3.15<u>–</u> -500 7.5 3.5 2.5 1.5 7.0 4.0 f1 (ppm) 2.0 1.0 6.5 6.0 5.5 5.0 4.5 3.0 - 8500 - 168.22 - 158.03 - 138.06 2 132.31 131.92 131.92 130.04 129.26 128.13 -34.45< 30.18> 29.58 $<_{55.11}^{55.25}$ ~ 23.29 - 14.36 8000 7500 7000 6500 6000 5500 - 5000 4500 4000 3500 3000 - 2500 2000 1500 1000 500 0 -500 -1000 т 10 170 160 150 140 130 110 100 80 70 60 50 40 30 20 120 90 f1 (ppm)

5g: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5h: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5i: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

