Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Supplementary data

Stimuli-Responsive Peroxidase Mimicking at a Smart Graphene Interface

Meng Liu, Huimin Zhao, * Shuo Chen, Hongtao Yu, and Xie Quan*

Experimental Details

Materials

Graphite powder (<300 mesh) was obtained from Beijing Chemical Reagents Company. 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD) were obtained from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). 2,2'-azino-bis (3-ethylbenzothiozoline-6-sulfonic acid) diammonium salt (ABTS) was purchased from J&K Scientific Ltd. Horseradish peroxidase (HRP) ($\geq 250 \text{ U/mg}$) was purchased from Amresco (USA). Other reagents such as KMnO₄, NaOH, concentrated H_2SO_4 , concentrated HCl, H_2O_2 (30%), HAuCl₄, were all analytical-grade and purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. DNA oligomers (5'-Cy3-GCAGACACATCCAGCGATAGCCAGGACAA-3'; ssDNA-1: 5'-GCAGACACATCCAGCGATAGCCAGGACAA-3' and ssDNA-2: 5'-TTGTCCTGGCTATC GCTGGATGTGTCTGC-3') were purchased from Takara Biotechnology Co. (Dalian, China). All DNA oligomers were purified by high-performance liquid chromatography (HPLC). Ultrapure water obtained from a Millipore water purification system (resistivity > 18.0 M Ω cm⁻¹, Laikie Instrument Co., Ltd, Shanghai, China) was used throughout the experiments. All glassware was first cleaned with a mixture of HCl and HNO₃ (ratio of HCl/HNO₃ = 3:1 in volume) and thoroughly rinsed with ultrapure water. Phosphate buffer solution (PBS, 20 mM) with various pH values was prepared by mixing the stock solution of Na₂HPO₄ and NaH₂PO₄.

Instruments

FL measurements were performed using a Hitachi F-4500 spectrofluorimeter with a scan rate at 1200 nm/min. The photomultiplier tube (PMT) voltage was 700 V. The slits for excitation and

emission were set at 5 nm/10 nm. UV-visible absorption spectra were recorded on a Jasco V-550 spectrometer. X-ray photoelectron spectroscopy (XPS) analysis was carried out on VG ESCALAB MK2 X-ray photoelectron spectrometer using a nonmonochromatized Al Kα X-ray source (1486.6 eV). The Raman spectra were recorded on a Renishaw Micro-Raman system 2000 spectrometer with He-Ne laser excitation (wavelength 623.8 nm).

Preparation of Au-NPs/graphene Hybrids, Free Au-NPs and graphene

Graphene Oxide (GO) was prepared according to a modified Hummers method reported by us previously.^[1] An environment-friendly hydrothermal route was used to prepare Au-NPs/graphene hybrid, free Au-NPs and graphene. For the preparation of Au-NPs/graphene hybrid, 8 mL GO aqueous solution (0.5 mg/mL), 0.3 mL HAuCl₄·3H₂O (10 mM) and 4 mL NaOH solution (0.1 M) were first mixed and diluted to 100 mL. The final concentration of GO in the precursor was 40 μ g/mL. Subsequently, the mixture was sonicated for 5 h at room temperature. Then, the resulting solution was transferred to a Teflon-lined autoclave for hydrothermal reaction at 180 °C for 12 h. The product was then cooled naturally to room temperature. Synthesis of Au-NPs/graphene hybrids with different sizes of Au-NPs was similar to the above procedures, only use various concentrations of Au precursor in the initial solution. Free Au-NPs or graphene was prepared through the same steps as the synthesis of Au-NPs/graphene without the addition of GO or Au precursor in the reaction solution.

Sample Preparation for TEM and XPS

TEM samples were prepared by dropping the samples onto copper grids and dried naturally. XPS samples were prepared by depositing the samples on Al_2O_3 substrate.

Preparation of dsDNA

For the preparation of dsDNA, 3.4 μ M unmodified ssDNA-1 and its perfectly complementary target ssDNA-2 were mixed in 20 mM PBS buffer (pH 7.4, containing 100 mM NaCl and 5 mM KCl). Then the mixture was heated to 95 °C for 5 min in a water bath and subsequently cooled naturally to room temperature (25 °C). The obtained dsDNA were stored at 4 °C.

Fluorescent Assay for DNA Binding

In a typical experiment, 5 μ g/mL Au-NPs/graphene and 500 nM DNA (Cy3-labeled ssDNA or dsDNA) were added to 20 mM PBS buffer (pH 7.4) for time-dependent fluorescence measurement at $\lambda_{ex}/\lambda_{em} = 540/568$ nm. The final volume of the solution was fixed at 500 μ L. The control

experiment was carried out under the same condition without the addition of Au-NPs/graphene. All experiments were performed at 25°C.

Catalytic Activity Inhibition Assay

In a typical experiment, 10 μ g/mL Au-NPs/graphene was firstly mixed with different concentrations of ssDNA-1 or dsDNA in 10 mM PBS buffer (pH 7.4). After 30 min reaction, the solution was transferred to a quartz cell containing 20 mM PBS buffer (pH 4.0) at 25 °C. Subsequently, 30 mM H₂O₂ and 0.75 mM TMB were added to initiate the reaction for 15 min. UV-vis spectra were then recorded.

Catalytic Activity Recoverability Assay

In a typical experiment, 10 μ g/mL Au-NPs/graphene was firstly mixed with ssDNA-1 in 10 mM PBS buffer (pH 7.4) for 30 min. Then different concentrations of ssDNA-2 were added and heated to 95 °C for 5 min. After cooled to room temperature (25 °C), the solution was transferred to a quartz cell containing 20 mM PBS buffer (pH 4.0) at 25 °C. Subsequently, 30 mM H₂O₂ and 0.75 mM TMB were added to initiate the reaction for 15 min. UV-vis spectra were then recorded.

Supplementary Data

Fig. S1. TEM images of Au-NPs in situ grown on graphene sheets under different magnifications. Particle size distribution was estimated by measuring the size of Au-NPs on graphene sheet. The initial concentration of $HAuCl_4$ in the sample a), b) and c) was 0.03 mM, 0.1 mM and 0.4 mM, respectively.

Fig. S2. TEM image and size distribution of as-prepared Au-NPs in the absence of GO. The initial concentration of $HAuCl_4$ in the sample was 0.6 mM.

Fig. S3. Dependence of the diameter of Au-NPs *in situ* grown on graphene sheets on the initial concentration of Au precursor.

Fig. S4. a) XPS spectra and b) high-resolution C1s spectra of GO and as-prepared Au-NPs/graphene hybrid. The peaks correspond to (1) C=C/C-C in aromatic rings, (2) C-O, (3) C=O and (4) COOH groups, respectively.

Fig. S5. Raman spectra of graphene and Au-NPs/graphene hybrids.

Fig. S6. Au-NPs/graphene hybrids mediate the oxidation of a) TMB, b) ABTS and c) OPD in the presence of H_2O_2 in phosphate buffer (pH 4.0) at 25 °C. d) The time-dependent absorbance changes at 652 nm in the absence (black) or presence (red) of the peroxidase mimic in phosphate buffer (20 mM, pH 4.0) containing 63 mM H_2O_2 , 0.75 mM TMB and 5 µg/mL catalyst.

Fig. S7. a) pH- and b) temperature-dependent catalytic activity of Au-NPs/graphene hybrids or HRP. Experiments are carried out in 20 mM phosphate buffer using 5 μ g/mL Au-NPs/graphene or 1.4 ng/mL HRP at pH 4.0, 25 °C (unless otherwise stated). H₂O₂ concentration was 63 mM for Au-NPs/graphene and 7.56 mM for HRP, TMB concentration was 0.75 mM for Au-NPs/graphene and 0.28 mM for HRP. The maximum point was set as 100%.

Fig. S8. Time-dependent absorbance changes at 652 nm in the presence of Au-NPs/graphene hybrid with various Au content. Experiments were carried out in 20 mM phosphate buffer (pH 4.0) containing 8 μ g/mL Au-NPs/graphene, 63 mM H₂O₂ and 0.75 mM TMB at 25 °C.

Fig. S9. a), b) The time-dependent absorbance changes at 652 nm in the presence of different concentrations of H_2O_2 or TMB. c), d), e), f) Steady-state kinetic assay of Au-NPs/graphene hybrids or HRP. Experiments are carried out in 20 mM phosphate buffer (pH 4.0) using 5 µg/mL Au-NPs/graphene a)-d) or 1.4 ng/mL HRP e), f) at 25 °C. a), c), e) TMB concentration is fixed at 0.75 mM (Au-NPs/graphene) or 0.28 mM (HRP) and the H_2O_2 concentration is varied. b), d), f) H_2O_2 concentration is fixed at 63 mM (for Au-NPs/graphene) or 7.56 mM (for HRP) and the TMB concentration is varied. g), h) Double-reciprocal plots of the catalytic activity of Au-NPs/graphene hybrids.

Tub. ST comparison of the Kinetic Falaneters between Ku Wissgraphene and The			
	Substrate	$K_{m}(mM)$	$v_{\rm max} (10^{-8} {\rm M/s})$
Au-NPs/graphene	H_2O_2	140.52	17.3±1.0
Au-NPs/graphene	TMB	0.14	7.1±0.1
HRP	H_2O_2	3.42	14.1±0.5
HRP	TMB	0.069	5.8±0.3

Tab. S1 Comparison of the Kinetic Parameters between Au-NPs/graphene and HRP^[a]

^[a]The apparent kinetic parameters were calculated based on Michaelis-Menten function: $v = v_{max}$ [S] / (K_m + [S]),

where K_m is the Michaelis constant; ν_{max} is the maximal reaction velocity and [S] is the substrate concentration.

Fig. S10. Comparison of the catalytic activity of Au-NPs/graphene with HRP during the storage. Experiments are carried out in 20 mM phosphate buffer using 5 μ g/mL Au-NPs/graphene or 1.4 ng/mL HRP at pH 4.0, 25 °C. H₂O₂ concentration was 63 mM for Au-NPs/graphene and 7.56 mM for HRP, TMB concentration was 0.75 mM for Au-NPs/graphene and 0.28 mM for HRP. The maximum point was set as 100%.

Fig. S11. Time-dependent fluorescence changes of Au-NPs/graphene/Cy3-labeled ssDNA (red line) and Au-NPs/graphene/Cy3-labeled dsDNA (black line) in PBS buffer solution (20 mM, pH 7.4). Au-NPs/graphene concentration was fixed at 5 μ g/mL, $\lambda_{ex}/\lambda_{em} = 540$ nm/568 nm.

Fig. S12. Au-NPs/graphene hybrids mediate the oxidation of TMB in the presence of different concentrations of a) ssDNA-1 or b) dsDNA. Details are described in the Experimental section.

Fig. S13. Plots of absorbance changes as a function of ssDNA-2 concentrations.

Reference

[1] M. Liu, Q. Zhang, H. M. Zhao, S. Chen, H. T. Yu, Y. B. Zhang and X. Quan, *Chem. Commun.*, 2011, 47, 4084-4.86.