Supporting Information: Computational Section

Geometry optimizations of the parent zwitterion (ZI) adsorbed on the Cu(111) and Ag(111) surfaces were carried out using the ADF software package [1,2], the revPBE generalized gradient density functional [3-6], and Grimme's dispersion correction (DFT-D3) [7]. The metal surfaces were modeled using a finite cluster comprised of 166 atoms, where both layers were fixed at the experimental lattice parameters of 3.614 Å and 4.086 Å for Cu and Ag, respectively [8]. The basis functions on all of the atoms consisted of a triple- ζ Slater-type basis set with polarization functions (TZP) from the ADF basis set library. The core shells for C, N, O, Cu, and Ag up to 1s, 1s, 1s, 3p, and 4p, respectfully, were frozen.

The starting geometry employed in the DFT structural optimizations consisted of the ZI lying parallel to the metal surface. The only constraints employed in the optimization was that the system maintained C(s) symmetry throughout the computation. In addition, in one set of the calculations all of the surface atoms were fixed at the experimental geometry, whereas in the other set the top layer was allowed to relax. Thus, it was in principle possible for the ZI to optimize to a standing configuration. A parallel arrangement was not enforced during the optimization. However, we cannot guarantee that the geometry obtained corresponds to a local, rather than a global minimum. Since the experimentally determined spacing between the molecules correlates well with the intermolecular spacing of a flatlying geometry, we deemed it not necessary to perform an expensive geometry optimization employing a standing configuration as a guess for the initial geometry.

The basis set superposition error (BSSE) was obtained using the Counterpoise method. The BSSE corrected binding energies of the ZI on Cu and Ag were determined to be 1.91 eV and 1.54 eV. The ZI donated a larger amount of charge to Cu than to Ag (0.14e vs. 0.02e). The stronger interaction was coupled by a shorter distance between the O and N atoms to the surface, 2.27 and 2.30 Å for Cu vs. 2.66 and 3.10 Å for Ag.

Figure Charge Density 1: Difference (CDD) isosurface plots (+/- 0.0003 au) of the ZI on a) Cu(111) and b) Ag(111). Red denotes a buildup and blue a depletion of charge upon adsorption. The plots have been scaled so that the size of the ZI is approximately the same in both. The ZI is aligned such that the O/N containing sides are on the left/right.

To clarify the nature of bonding a fragment orbital analysis [1] was performed using the distorted metal surface and the molecule as fragments. This analysis yields the composition of the molecular orbitals (MOs) in terms of occupied and unoccupied MOs of the ZI and the metal cluster. From this,

the charge density difference (CDD) plots were calculated. They indicate the rearrangement of electron density upon adsorption of the molecule to the surface. Moreover, this yielded approximate interaction diagrams [9-12] between the ZI and the substrate, see Figure 2. Charge was found to be donated from the HOMO of the ZI into the metal surface, and back donation from the surface into the LUMO of the adsorbate occurred. The larger band dispersion for Cu compared to Ag can be accounted for by the shorter metal-adsorbate distance, which gives rise to a larger overlap between the MOs of the surface and the adsorbate.

Figure 2: Schematic interaction diagram between the ZI and the a) Ag(111) and b) Cu(111) cluster model. The isosurfaces of the HOMO and LUMO (+/- 0.03 au) are displayed in red/blue and green/purple. The red/blue bands contain some LUMO/HOMO character as well as character from surface MOs. The HOMO/LUMO energies are given with respect to the Fermi-level of the a) Ag(111) and b) Cu(111) clusters.

In Figure 2 the computed HOMO and LUMO energies of the free ZI (but in the geometry of the molecule as optimized on the metal surface) is given with respect to the computed Fermi levels of the finite Ag(111) and Cu(111) cluster models (whose Fermi levels have been set to zero). The schematic interaction diagram is provided in order to illustrate the bonding interactions between the frontier orbitals of the molecule and the metal bands. Even though the Kohn Sham energies for the occupied molecular orbitals are typically in good agreement with those computed from more demanding G_0W_0 calculations, the HOMO-LUMO gap is often underestimated due to the dynamic polarization of the substrate which is not captured in DFT [13]. Despite the fact that DFT is not always able to describe the level alignment, for a comparison study such as this the results are consistent with experiment, and with the well-established trends of chemical reactivity of the metals [14].

We calculate the electric dipole of the free ZI as being 8.16 D. Upon surface adsorption, the dipole of the system changes dramatically. Table 1 and Table 2 provide the vector components of the dipole for the non-interacting ZI and surface models (with the same geometry as in the interacting system), and that of the interacting system. The magnitude of the electric dipole is given as well. The angles the dipoles make with the surface are illustrated in Figure 3.

	ZI-Cu	ZI	Cu
Dipole X	0.30	8.33	0.01
Dipole Y	1.26	1.88	-0.42
Dipole Z	0.00	0.02	0.00
Dipole Mag	1.29	8.54	0.42

Table 1: Electric dipole vector components of the ZI-Cu(111) system, as well as the non-interacting ZI, and Cu cluster in the distorted geometry of the ZI-Cu system. The values are reported in Debye.

	ZI-Ag	ZI	Ag
Dipole X	1.10	8.53	0.00
Dipole Y	1.07	0.56	-0.44
Dipole Z	0.00	0.00	0.00
Dipole Mag	1.53	8.54	0.44

Table 2: As in Table 1 but for Ag(111).

Geometry optimizations were also performed in which only the bottom layer of the metal cluster was kept fixed at the experimental value (the top was allowed to relax), and the results were compared to those where both layers of the metal slab were kept fixed. The BSSE corrected BE, amount of charge transferred to the metal cluster (along with the CDD plots) and surface-adsorbate distances were relatively independent of the model used in the calculations (see Table 3). There was a slight variation of the angle that the dipole moment made with the surface plane. However, as Figure 3 shows, the difference between the two angles remained relatively constant in the two sets of calculations, with the angle on Cu(111) being greater than that on Ag(111).

Dipole Moment of ZI on Various Metals

System	BE	Surface Charge	Dipole X	Dipole Y	Dipole Z	Dipole Mag	Dipole Angle	N Distance	O Distance
Cu-Fixed	1.91	-0.14	0.3	1.26	0.004	1.29	76.6	2.30	2.27
Cu	1.94	-0.14	0.41	1.03	0	1.11	68.3	2.74	2.30
Ag-Fixed	1.54	0.02	1.1	1.07	0	1.54	44.2	3.10	2.66
Ag	1.52	0.03	1.52	0.74	0	1.7	26	3.11	2.65

Figure 4: The charge density colored by the electrostatic potential (isovalue +/- 0.03 au) of (a) the ZI on the fixed Ag(111) surface, (b) the ZI on the fixed Cu(111) surface, (c) the free ZI molecule.

Gas phase calculations have been performed on a *N*,*N*'-diethyl derivatives 2 dimer arranged in a configuration which allowed for an H-bonding interaction. The two molecules were constrained to lie in the plane of the surface. The DFT calculations which did not employ a dispersion corrected functional showed that the C-O distance optimized to 3.660 A and the bonding energy (which must be a result of hydrogen bonding) was calculated as being 0.11eV. When the same calculation was carried out using a dispersion corrected functional the C-O bond length slightly decreased to 3.412 A and the bonding energy increased to 0.19 eV. This illustrates that for the gas phase ethyl ZI dimer the H-bonding interaction is weak, but of the same order of mangitude as the dispersion.

References:

[1] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. J. Ziegler, *J. Comput. Chem.* 2001, **22**, 931–967.

[2] E. J. Baerends, J. Autschbach, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, et al. ADF2010.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

[3] J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B, 1996, 54, 16533–16539.

[4] Y. Zhang, W. Yang, Phys. Rev. Lett., 1998, 80, 890.

- [5] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1998, 80, 891.
- [6] B. Hammer, L. B. Hansen, J. K. Norskov, Phys. Rev. B, 1999, 59, 7413–7421.
- [7] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [8] I. Suh, H. Ohta, Y. Waseda, J. Mater. Sci., 1988, 23, 757-760.
- [9] R. Hoffmann, Rev. Mod. Phys., 1988, 60, 601-628.
- [10] W. V. Glassey, R. Hoffmann, J. Phys. Chem. B, 2001, 105, 3245-3260.
- [11] P. H. T. Philipsen, E. J. Baerends, J. Phys. Chem. B, 2006, 110, 12470-12479.
- [12] W. V. Glassey, J. Phys. Chem. B, 2004, 108, 5967-5979.
- [13] J. M. Garcia-Lastra, C. Rostgaard, A. Rubio, K. S. Thygesen, Phys. Rev. B., 2009, 80, 245427.
- [14] F. P. Netzer, *Langmuir*, 1991, 7, 2544.

Coordinates:

<u>Par</u>	<u>ent Zwitterio</u>	<u>n Molecule</u>		182			
$E = \cdot$	-102.309617	55 eV					
16				Ag	-1.668100	-1.293210	2.889240
				Ag	-1.668100	-1.293210	5.778480
С	-0.041680	-0.768365	1.162528	Ag	-1.668100	-1.293210	8.667710
С	-0.193914	-3.003888	-0.002800	Ag	-1.668100	-1.293210	11.556950
С	-0.162066	-2.314438	1.227483	Ag	-1.668100	-1.293210	-11.556950
0	-0.220973	-2.804240	2.387302	Ag	-1.668100	-1.293210	-8.667710
Ν	-0.025157	-0.217282	2.373570	Ag	-1.668100	-1.293210	-5.778480
С	0.002162	-0.799554	-1.221342	Ag	-1.668100	-1.293210	-2.889240
С	0.038411	-0.058112	-0.038062	Ag	-1.668100	-1.293220	0.000000
С	-0.121087	-2.346704	-1.249487	Ag	-4.170260	-1.293210	4.333860
0	-0.143392	-2.867179	-2.396758	Ag	-4.170260	-1.293210	7.223100
Ν	0.066473	-0.280498	-2.444949	Ag	-4.170250	-1.293210	10.112330
Н	0.122710	1.033944	-0.050702	Ag	-4.170250	-1.293210	-10.112330
Η	-0.279400	-4.090350	0.009652	Ag	-4.170260	-1.293210	-7.223100
Н	0.024020	-0.978651	-3.197910	Ag	-4.170260	-1.293210	-4.333860
Η	0.152869	0.711333	-2.628839	Ag	-4.170260	-1.293220	-1.444620
Н	0.044874	0.779898	2.534120	Ag	-4.170260	-1.293220	1.444620
Η	-0.093442	-0.897814	3.141327	Ag	-6.672410	-1.293210	5.778480
				Ag	-6.672410	-1.293210	8.667700
<u>ZI o</u>	n Fixed Ag(1	<u>11)</u>		Ag	-6.672410	-1.293210	-8.667700
$E = \cdot$	-385.357282	57 eV		Ag	-6.672410	-1.293210	-5.778480

Ag	-6.672410	-1.293220	-2.889240	Ag	0.834050	-1.293230	13.001570
Ag	-6.672410	-1.293220	0.000000	Ag	0.834050	-1.293230	-13.001570
Ag	-6.672410	-1.293220	2.889240	Ag	0.834050	-1.293230	-10.112330
Ag	-9.174560	-1.293210	7.223090	Ag	0.834050	-1.293220	-7.223090
Ag	-9.174560	-1.293210	-7.223090	Ag	0.834050	-1.293220	-4.333860
Ag	-9.174560	-1.293230	-4.333850	Ag	0.834050	-1.293220	-1.444620
Ag	-9.174560	-1.293230	-1.444620	Ag	-2.502150	1.065840	4.333860
Ag	-9.174560	-1.293230	1.444620	Ag	-2.502160	1.065840	7.223100
Ag	-9.174560	-1.293230	4.333850	Ag	-2.502160	1.065840	10.112330
Ag	-11.676720	-1.293230	-5.778480	Ag	-2.502150	1.065840	13.001570
Ag	-11.676710	-1.293230	-2.889240	Ag	-2.502150	1.065840	-13.001570
Ag	-11.676710	-1.293230	0.000000	Ag	-2.502160	1.065840	-10.112330
Ag	-11.676710	-1.293230	2.889240	Ag	-2.502160	1.065840	-7.223100
Ag	-11.676720	-1.293230	5.778480	Ag	-2.502150	1.065840	-4.333860
Ag	10.842660	-1.293210	-4.333850	Ag	-2.502150	1.065830	-1.444610
Ag	10.842660	-1.293210	-1.444620	Ag	-2.502150	1.065830	1.444610
Ag	10.842660	-1.293210	1.444620	Ag	-5.004310	1.065840	5.778480
Ag	10.842660	-1.293210	4.333850	Ag	-5.004300	1.065840	8.667710
Ag	10.842660	-1.293230	7.223100	Ag	-5.004300	1.065840	11.556950
Ag	10.842660	-1.293230	-7.223100	Ag	-5.004300	1.065840	-11.556950
Ag	8.340510	-1.293210	-2.889240	Ag	-5.004300	1.065840	-8.667710
Ag	8.340510	-1.293210	0.000000	Ag	-5.004310	1.065840	-5.778480
Ag	8.340510	-1.293210	2.889240	Ag	-5.004310	1.065830	-2.889240
Ag	8.340510	-1.293230	5.778480	Ag	-5.004310	1.065830	0.000000
Ag	8.340510	-1.293230	8.667710	Ag	-5.004310	1.065830	2.889240
Ag	8.340510	-1.293230	-8.667710	Ag	-7.506460	1.065840	7.223100
Ag	8.340510	-1.293230	-5.778480	Ag	-7.506460	1.065840	10.112330
Ag	5.838360	-1.293210	-1.444620	Ag	-7.506460	1.065840	-10.112330
Ag	5.838360	-1.293210	1.444620	Ag	-7.506460	1.065840	-7.223100
Ag	5.838360	-1.293220	4.333860	Ag	-7.506460	1.065820	-4.333850
Ag	5.838360	-1.293230	7.223100	Ag	-7.506460	1.065830	-1.444620
Ag	5.838350	-1.293230	10.112330	Ag	-7.506460	1.065830	1.444620
Ag	5.838350	-1.293230	-10.112330	Ag	-7.506460	1.065820	4.333850
Ag	5.838360	-1.293230	-7.223100	Ag	-10.008620	1.065840	8.667710
Ag	5.838360	-1.293220	-4.333860	Ag	-10.008620	1.065840	-8.667710
Ag	3.336200	-1.293210	0.000000	Ag	-10.008620	1.065820	-5.778480
Ag	3.336210	-1.293220	2.889240	Ag	-10.008620	1.065820	-2.889230
Ag	3.336210	-1.293220	5.778480	Ag	-10.008610	1.065820	0.000000
Ag	3.336210	-1.293230	8.667710	Ag	-10.008620	1.065820	2.889230
Ag	3.336200	-1.293230	11.556940	Ag	-10.008620	1.065820	5.778480
Ag	3.336200	-1.293230	-11.556940	Ag	-12.510770	1.065810	-7.223090
Ag	3.336210	-1.293230	-8.667710	Ag	-12.510760	1.065820	-4.333860
Ag	3.336210	-1.293220	-5.778480	Ag	-12.510760	1.065820	-1.444620
Ag	3.336210	-1.293220	-2.889240	Ag	-12.510760	1.065820	1.444620
Ag	0.834050	-1.293220	1.444620	Ag	-12.510760	1.065820	4.333860
Ag	0.834050	-1.293220	4.333860	Ag	-12.510770	1.065810	7.223090
Ag	0.834050	-1.293220	7.223090	Ag	12.510760	1.065840	-4.333860
Ag	0.834050	-1.293230	10.112330	Ag	12.510760	1.065840	-1.444620

Ag	12.510760	1.065840	1.444620
Ag	12.510760	1.065840	4.333860
Ag	12.510760	1.065810	7.223100
Ag	12.510760	1.065810	-7.223100
Ag	10.008620	1.065840	-2.889230
Ag	10.008610	1.065840	0.000000
Ag	10.008620	1.065840	2.889230
Ag	10.008620	1.065820	5.778480
Ag	10.008620	1.065820	8.667710
Ag	10.008620	1.065820	-8.667710
Ag	10.008620	1.065820	-5.778480
Ag	7.506460	1.065840	-1.444620
Ag	7.506460	1.065840	1.444620
Ag	7.506460	1.065820	4.333860
Ag	7.506460	1.065820	7.223100
Ag	7.506460	1.065820	10.112330
Ag	7.506460	1.065820	-10.112330
Ag	7.506460	1.065820	-7.223100
Ag	7.506460	1.065820	-4.333860
Ag	5.004310	1.065840	0.000000
Ag	5.004310	1.065830	2.889240
Ag	5.004310	1.065830	5.778480
Ag	5.004300	1.065820	8.667710
Ag	5.004300	1.065820	11.556950
Ag	5.004300	1.065820	-11.556950
Ag	5.004300	1.065820	-8.667710
Ag	5.004310	1.065830	-5.778480
Ag	5.004310	1.065830	-2.889240
Ag	2.502150	1.065830	1.444620
Ag	2.502150	1.065830	4.333860
Ag	2.502160	1.065830	7.223100
Ag	2.502160	1.065820	10.112330
Ag	2.502150	1.065820	13.001570
Ag	2.502150	1.065820	-13.001570
Ag	2.502160	1.065820	-10.112330
Ag	2.502160	1.065830	-7.223100
Ag	2.502150	1.065830	-4.333860
Ag	2.502150	1.065830	-1.444620
Ag	0.000000	1.065830	2.889240
Ag	0.000000	1.065830	5.778480
Ag	0.000000	1.065820	8.667710
Ag	0.000000	1.065820	11.556960
Ag	0.000000	1.065810	14.446190
Ag	0.000000	1.065810	-14.446190
Ag	0.000000	1.065820	-11.556960
Ag	0.000000	1.065820	-8.667710
Ag	0.000000	1.065830	-5.778480
Ag	0.000000	1.065830	-2.889240

Ag	0.000000	1.065840	0.000000
С	1.007119	4.188488	1.211499
С	-1.151804	3.903061	0.000000
С	-0.480775	3.963328	1.249840
0	-1.019041	3.725118	2.387040
Ν	1.608763	4.169545	2.420703
С	1.007119	4.188488	-1.211499
С	1.706699	4.282066	0.000000
С	-0.480775	3.963328	-1.249840
0	-1.019041	3.725118	-2.387040
Ν	1.608763	4.169545	-2.420703
Н	2.797144	4.371975	0.000000
Н	-2.232456	3.759213	0.000000
Н	1.005456	3.946034	-3.213987
Н	2.613402	4.071261	-2.521383
Н	2.613402	4.071261	2.521383
Н	1.005456	3.946034	3.213987
ZI o	n relaxed Ag(111)	
E= -	402.2981400	05 eV	
182			
٨σ	-1 668100	-1 202210	2 880240
Δσ	-1 668100	-1.2 <i>9</i> 3210	5 778480
Δσ	-1.668100	-1 293210	8 667710
Δσ	-1 668100	-1.2 <i>9</i> 3210	11 556950
Δσ	-1 668100	-1 293210	-11 556950
Δσ	-1 668100	-1 293210	-8 667710
Aσ	-1 668100	-1 293210	-5 778480
Aσ	-1 668100	-1 293210	-2 889240
Aσ	-1 668100	-1 293220	0.000000
Aσ	-4 170260	-1 293210	4 333860
Aσ	-4 170260	-1 293210	7 223100
Aσ	-4 170250	-1 293210	10 112330
Ag	-4.170250	-1.293210	-10.112330
Ag	-4.170260	-1.293210	-7.223100
Ag	-4.170260	-1.293210	-4.333860
Aσ	-4 170260	-1 293220	-1 444620
Ag	-4.170260	-1.293220	1.444620
Ag	-6.672410	-1.293210	5.778480
Ag	-6.672410	-1.293210	8.667700
Ag	-6.672410	-1.293210	-8.667700
Ag	-6.672410	-1.293210	-5.778480
Ag	-6.672410	-1.293220	-2.889240
Ag	-6.672410	-1.293220	0.000000
Ag	-6.672410	-1.293220	2.889240
Ag	-9.174560	-1.293210	7.223090
Ag	-9.174560	-1.293210	-7.223090
0			

Ag	-9.174560	-1.293230	-4.333850	Ag	0.834050	-1.293220	-1.444620
Ag	-9.174560	-1.293230	-1.444620	Ag	-2.767169	1.705530	4.533961
Ag	-9.174560	-1.293230	1.444620	Ag	-2.811580	1.574825	7.543740
Ag	-9.174560	-1.293230	4.333850	Ag	-2.904538	1.626658	10.550053
Ag	-11.676720	-1.293230	-5.778480	Ag	-3.258490	0.470420	13.402980
Ag	-11.676710	-1.293230	-2.889240	Ag	-3.258490	0.470420	-13.402980
Ag	-11.676710	-1.293230	0.000000	Ag	-2.904538	1.626658	-10.550053
Ag	-11.676710	-1.293230	2.889240	Ag	-2.811580	1.574825	-7.543740
Aσ	-11.676720	-1.293230	5.778480	Ag	-2.767169	1.705530	-4.533961
Aσ	10.842660	-1.293210	-4.333850	Ag	-2.779112	1.477041	-1.526054
Aσ	10.842660	-1 293210	-1 444620	Ag	-2 779112	1 477041	1 526054
Aσ	10.842660	-1 293210	1 444620	Ag	-5 466367	1 580972	5 991053
Δσ	10.842660	-1 293210	4 333850	Aσ	-5 538232	1.600203	8 974992
Δσ	10.842660	-1 293230	7 223100	Aσ	-5 845165	0 509091	11 831731
Δσ	10.042000	-1 293230	-7 223100	Λg	-5 845165	0.509091	-11 821721
Λg	8340510	-1.293230	-7.223100	Αg	-5 538232	1 600203	-11.031731
Λg	0.340510 9240510	1 202210	0.000000	Λg	5 166267	1.000203	5 001052
Ag	0.340310	-1.293210	2 000240	Ag	-3.400307 E 4E6010	1.500972	-3.991033
Ag	0.340310	-1.295210	2.009240 E 770400	Ag	-3.430019 E 410220	1.505210 1 = 74762	-3.009460
Ag	0.340510	-1.295250	5.//040U	Ag	-5.419550	1.5/4/02	0.000000
Ag	0.340510	-1.295250	0.007710	Ag	-5.450019	1.303210	3.009400
Ag	8.340510	-1.293230		Ag		1.64/589	7.466927
Ag	8.340510	-1.293230	-5.//8480	Ag		0.508739	10.296085
Ag	5.838360	-1.293210	-1.444620	Ag	-8.486385	0.508/39	-10.296085
Ag	5.838360	-1.293210	1.444620	Ag	-8.186063	1.647589	-7.466927
Ag	5.838360	-1.293220	4.333860	Ag	-8.146837	1.564168	-4.498982
Ag	5.838360	-1.293230	7.223100	Ag	-8.104874	1.564145	-1.501973
Ag	5.838350	-1.293230	10.112330	Ag	-8.104874	1.564145	1.501973
Ag	5.838350	-1.293230	-10.112330	Ag	-8.146837	1.564168	4.498982
Ag	5.838360	-1.293230	-7.223100	Ag	-11.094167	0.462799	8.810293
Ag	5.838360	-1.293220	-4.333860	Ag	-11.094167	0.462799	-8.810293
Ag	3.336200	-1.293210	0.000000	Ag	-10.835980	1.674112	-5.961246
Ag	3.336210	-1.293220	2.889240	Ag	-10.802798	1.597111	-2.987229
Ag	3.336210	-1.293220	5.778480	Ag	-10.759749	1.575351	0.000000
Ag	3.336210	-1.293230	8.667710	Ag	-10.802798	1.597111	2.987229
Ag	3.336200	-1.293230	11.556940	Ag	-10.835980	1.674112	5.961246
Ag	3.336200	-1.293230	-11.556940	Ag	-13.665418	0.936799	-7.371839
Ag	3.336210	-1.293230	-8.667710	Ag	-13.607181	0.945188	-4.416905
Ag	3.336210	-1.293220	-5.778480	Ag	-13.611520	0.937354	-1.478381
Ag	3.336210	-1.293220	-2.889240	Ag	-13.611520	0.937354	1.478381
Ag	0.834050	-1.293220	1.444620	Ag	-13.607181	0.945188	4.416905
Ag	0.834050	-1.293220	4.333860	Ag	-13.665418	0.936799	7.371839
Ag	0.834050	-1.293220	7.223090	Ag	13.126455	0.611906	-4.694278
Ag	0.834050	-1.293230	10.112330	Ag	13.079606	0.657823	-1.618486
Ag	0.834050	-1.293230	13.001570	Ag	13.079606	0.657823	1.618486
Ag	0.834050	-1.293230	-13.001570	Ag	13.126455	0.611906	4.694278
Ag	0.834050	-1.293230	-10.112330	Ag	13.015286	0.955197	7.682954
Ag	0.834050	-1.293220	-7.223090	Ag	13.015286	0.955197	-7.682954
Ag	0.834050	-1.293220	-4.333860	Ag	10.454506	1.608530	-3.108693
-0			0 0 0				

Ag	10.461894	1.566817	0.000000
Ag	10.454506	1.608530	3.108693
Ag	10.419966	1.661177	6.164957
Ag	10.439179	1.131829	9.348518
Ag	10.439179	1.131829	-9.348518
Ag	10.419966	1.661177	-6.164957
Ag	7.831880	1.575244	-1.546631
Ag	7.831880	1.575244	1.546631
Ag	7.820772	1.580713	4.636231
Ag	7.800383	1.606643	7.725327
Ag	7.819621	1.141087	10.869226
Ag	7.819621	1.141087	-10.869226
Ag	7.800383	1.606643	-7.725327
Ag	7.820772	1.580713	-4.636231
Ag	5.171401	1.595999	0.000000
Ag	5.192703	1.552969	3.073683
Ag	5.178119	1.549117	6.145141
Ag	5.127139	1.558765	9.210354
Ag	5.136200	1.183231	12.343740
Ag	5.136200	1.183231	-12.343740
Ag	5.127139	1.558765	-9.210354
Ag	5.178119	1.549117	-6.145141
Ag	5.192703	1.552969	-3.073683
Ag	2.555436	1.468802	1.529963
Ag	2.527901	1.608188	4.597967
Ag	2.492331	1.533882	7.668470
Ag	2.427669	1.608759	10.749605
Ag	2.411104	1.225822	13.807911
Ag	2.411104	1.225822	-13.807911
Ag	2.427669	1.608759	-10.749605
Ag	2.492331	1.533882	-7.668470
Ag	2.527901	1.608188	-4.597967
Ag	2.555436	1.468802	-1.529963
Ag	-0.102837	1.421761	3.060493
Ag	-0.127638	1.541975	6.110537
Ag	-0.189784	1.528889	9.143801
Ag	-0.282759	1.671381	12.128044
Ag	-0.639683	0.508257	14.913473
Ag	-0.639683	0.508257	-14.913473
Ag	-0.282759	1.671381	-12.128044
Ag	-0.189784	1.528889	-9.143801
Ag	-0.127638	1.541975	-6.110537
Ag	-0.102837	1.421761	-3.060493
Ag	-0.090902	1.280221	0.000000
С	0.720760	4.497615	-1.210970
С	-1.440451	4.224264	0.000000
С	-0.770062	4.280515	-1.248898
0	-1.310934	4.071358	-2.389828

Ν	1.313310	4.529520	-2.423594
С	0.720760	4.497615	1.210970
С	1.423150	4.576663	0.000000
С	-0.770062	4.280515	1.248898
0	-1.310934	4.071358	2.389828
Ν	1.313310	4.529520	2.423594
Н	2.512681	4.676546	0.000000
Η	-2.523353	4.097042	0.000000
Η	0.704524	4.333098	3.219835
Η	2.317734	4.443559	2.535267
Η	2.317734	4.443559	-2.535267
Н	0.704524	4.333098	-3.219835
<u>ZI 01</u>	n Fixed Cu(11	<u>1)</u>	
E= -!	532.1446844	7 eV	
182			
Cu	8.105765	-6.381640	-1.142575
Cu	8.105765	6.381640	-1.142575
Cu	1.473780	-10.210618	-1.142575
Cu	1.473780	10.210618	-1.142575
Cu	-9.579545	3.828978	-1.142575
Cu	-9.579545	-3.828978	-1.142575
Cu	5.895106	-7.657964	-1.142573
Cu	5.895106	7.657964	-1.142573
Cu	3.684439	-8.934294	-1.142573
Cu	3.684439	8.934294	-1.142573
Cu	-9.579545	1.276329	-1.142573
Cu	-9.579545	-1.276329	-1.142573
Cu	5.895105	-5.105304	-1.142571
Cu	5.895105	5.105304	-1.142571
Cu	1.473770	-7.657963	-1.142571
Cu	1.473770	7.657963	-1.142571
Cu	-7.368876	2.552659	-1.142571
Cu	-7.368876	-2.552659	-1.142571
Cu	10.316433	5.105310	-1.142569
Cu	10.316433	-5.105310	-1.142569
Cu	3.684438	-6.381633	-1.142569
Cu	3.684438	6.381633	-1.142569
Cu	-0.736888	-11.486948	-1.142569
Cu	-0.736888	11.486948	-1.142569
Cu	-7.368876	0.000000	-1.142569
Cu	-9.579545	-6.381637	-1.142569
Cu	-9.579545	6.381637	-1.142569
Cu	3.684442	-3.828982	-1.142567
Cu	3.684442	3.828982	-1.142567
Cu	1.473774	-5.105311	-1.142567
Cu	1.473774	5.105311	-1.142567

Cu	-5.158216	1.276329	-1.142567	Cu	-11.053317	3.828978	0.941652
Cu	-5.158216	-1.276329	-1.142567	Cu	-11.053317	-3.828978	0.941652
Cu	8.105764	3.828979	-1.142566	Cu	6.631992	-8.934289	0.941654
Cu	8.105764	-3.828979	-1.142566	Cu	6.631992	8.934289	0.941654
Cu	-0.736889	-8.934287	-1.142566	Cu	4.421325	-10.210618	0.941654
Cu	-0.736889	8.934287	-1.142566	Cu	4.421325	10.210618	0.941654
Cu	-7.368876	-5.105308	-1.142566	Cu	-11.053317	1.276329	0.941654
Cu	-7.368876	5.105308	-1.142566	Cu	-11.053317	-1.276329	0.941654
Cu	10.316432	2.552650	-1.142565	Cu	6.631996	-6.381637	0.941656
Cu	10.316432	-2.552650	-1.142565	Cu	6.631996	6.381637	0.941656
Cu	-2.947556	-10.210617	-1.142565	Cu	2.210661	-8.934296	0.941656
Cu	-2.947556	10.210617	-1.142565	Cu	2.210661	8.934296	0.941656
Cu	-7.368876	-7.657967	-1.142565	Cu	-8.842658	2.552659	0.941656
Cu	-7.368876	7.657967	-1.142565	Cu	-8.842658	-2.552659	0.941656
Cu	5.895101	-2.552657	-1.142564	Cu	11.053319	6.381635	0.941658
Cu	5.895101	2.552657	-1.142564	Cu	11.053319	-6.381635	0.941658
Cu	-0.736884	-6.381636	-1.142564	Cu	4.421329	-7.657966	0.941658
Cu	-0 736884	6 381636	-1 142564	Cu	4 421329	7 657966	0 941658
Cu	-5 158216	-3 828978	-1 142564	Cu	-0.000002	-12 763272	0 941658
Cu	-5.158216	3.828978	-1.142564	Cu	-0.000002	12.763272	0.941658
Cu	8 105768	-1 276328	-1 142563	Cu	-8 842658	0.000000	0.941658
Cu	8 105768	1 276328	-1 142563	Cu	-11 053317	-6 381637	0.941658
Cu	1 473774	-2 552651	-1 142563	Cu	-11 053317	6 381637	0.941658
Cu	1.173774	2.552651	-1 142563	Cu	4 421328	-5 105306	0.941660
Cu	-2 947547	0.000000	-1 142563	Cu	4 4 2 1 3 2 8	5 105306	0.941660
Cu	-2 947552	-7 657965	-1 142563	Cu	2 210661	-6 381635	0.941660
Cu	-2 947552	7.657965	-1 142563	Cu	2.210001	6 381635	0.941660
Cu	-5 158216	-6 381637	-1 142563	Cu	-6 631989	1 276329	0.941660
Cu	-5.150210	6 381637	-1.142505	Cu	-6.631989	-1 276329	0.941660
Cu	-5.150210	-1 276321	-1.142505	Cu	8842655	5 105212	0.941000
Cu	3.684441	-1.270321 1 276321	-1.142502	Cu	8842655	-5 105312	0.941001
Cu	0 726804	2 9 2 9 0 9 0 1	1 1 1 2 5 6 2	Cu	0.042033	10 210620	0.941001
Cu	-0.730094	2 2 2 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	-1.142302	Cu	0.000003	-10.210020	0.941001
Cu	-0.730094	2 552650	-1.142502	Cu	0.000003	E 10E200	0.941001
Cu	-2.94/54/	-2.332039	-1.142502	Cu	-0.042030 0.042650	-5.105500	0.941001
Cu	-2.929930	2.540990	-1.290002	Cu	-0.042000	2.102200	0.941001
Cu Cu		0.000000	-1.142501	Cu	11.053323	3.828983	0.941662
Cu	-5.158214	-8.934288	-1.142561	Cu	11.053323		0.941662
Cu Cu	-5.158214	8.934288	-1.142561	Cu	-2.210665		0.941662
Cu C	5.895100	0.000000	-1.142560	Cu	-2.210665	11.486950	0.941662
Cu	1.4/3//8	0.000000	-1.142560	Cu	-8.842658	-/.65/96/	0.941662
Cu	-0./36889	-1.2/6329	-1.142560	Cu	-8.842658	/.65/96/	0.941662
Cu	-0.736889	1.276329	-1.142560	Cu	6.631987	3.828981	0.941663
Cu	-2.94/550	-5.105306	-1.142560	Cu	6.631987	-3.828981	0.941663
Cu	-2.947550	5.105306	-1.142560	Cu	0.000002	-7.657960	0.941663
Cu	8.842651	-7.657964	0.941652	Cu	0.000002	7.657960	0.941663
Cu	8.842651	7.657964	0.941652	Cu	-6.631989	-3.828978	0.941663
Cu	2.210666	-11.486943	0.941652	Cu	-6.631989	3.828978	0.941663
Cu	2.210666	11.486943	0.941652	Cu	2.210665	-3.828984	0.941664

Cu	2.210665	3.828984	0.941664
Cu	-4.421330	0.000000	0.941664
Cu	8.842655	2.552652	0.941665
Cu	8.842655	-2.552652	0.941665
Cu	4.421332	-2.552654	0.941665
Cu	4.421332	2.552654	0.941665
Cu	-0.000003	-5.105313	0.941665
Cu	-0.000003	5.105313	0.941665
Cu	-2.210666	-8.934289	0.941665
Cu	-2.210666	8.934289	0.941665
Cu	-4.421330	-2.552659	0.941665
Cu	-4.421330	2.552659	0.941665
Cu	-6.631989	-6.381637	0.941665
Cu	-6.631989	6.381637	0.941665
Cu	11.053313	1.276327	0.941666
Cu	11.053313	-1.276327	0.941666
Cu	-4.421325	-10.210614	0.941666
Cu	-4.421325	10.210614	0.941666
Cu	-6.631989	-8.934286	0.941666
Cu	-6.631989	8.934286	0.941666
Cu	6.631991	-1.276330	0.941667
Cu	6.631991	1.276330	0.941667
Cu	-2.210662	-6.381638	0.941667
Cu	-2.210662	6.381638	0.941667
Cu	-4.421330	-5.105308	0.941667
Cu	-4.421330	5.105308	0.941667
Cu	8.842659	0.000000	0.941668
Cu	2.210664	-1.276323	0.941668
Cu	2.210664	1.276323	0.941668
Cu	-0.000004	-2.552653	0.941668
Cu	-0.000004	2.552653	0.941668
Cu	-2.210660	-1.276329	0.941668
Cu	-2.210660	1.276329	0.941668
Cu	-4.421329	-7.657967	0.941668
Cu	-4.421329	7.657967	0.941668
Cu	4.421323	0.000000	0.941669
Cu	-2.210661	-3.828978	0.941669
Cu	-2.210661	3.828978	0.941669
Cu	0.000000	0.000000	0.941670
С	-0.580758	-1.241294	3.508926
С	-2.724497	-0.021946	3.463838
С	-2.038966	-1.278087	3.440669
0	-2.632412	-2.423270	3.213722
Ν	0.050146	-2.473619	3.246232
С	-0.584706	1.207932	3.510435
С	0.121089	-0.015198	3.515162
С	-2.043802	1.237708	3.444941
0	-2.641902	2.380454	3.225027

Ν	0.039617	2.444860	3.253823
Н	1.215800	-0.013300	3.483453
Н	-3.816963	-0.024152	3.466601
Н	-0.555998	3.234408	3.514151
Н	1.010696	2.543851	3.541272
Н	1.023074	-2.566725	3.529907
Н	-0.538964	-3.268026	3.506886
ZI or	n relaxed Cu(111)	
E= -	534.3978146	1 eV	
182			
Cu	8 1 1 0 0 0	-1 138500	6 374200
Cu	8 1 1 0 0 0 0	-1.130500	-6 374200
Cu	1 465200	-1 138500	10 210600
Cu	1.465200	-1.130500	-10 210600
Cu	-9575300	-1.130500	-3 836400
Cu	-9.575300	-1.138500	-3.030400
Cu	5 895900	-1.130300	7 649700
Cu	5 895900	-1.140000	-7 649700
Cu	3.676900	-1.140000	8 03 08 00
Cu	3.070900	-1.140000	-8 030800
Cu	0 572900	-1.140000	1 201100
Cu	-9.372000	-1.140000 1 1 4 0 8 0 0	-1.201100 1 201100
Cu	-9.372000 E 900100	-1.140000	1.201100 E 009000
Cu	5.090100	-1.149500	5.096900
Cu	5.690100	-1.149500	-3.098900
Cu	1.470700	-1.149500	7.050500
Cu	1.4/0/00	-1.149500	-7.050500
Cu	-7.360900	-1.149500	-2.551500
Cu	-7.360900	-1.149500	2.551500
Cu	10.318700	-1.133000	-5.102000
cu	10.318/00	-1.133000	5.102000
Cu	3.685300	-1.152500	6.383100
Cu	3.685300	-1.152500	-6.383100
Cu	-0.740900	-1.133000	11.48/200
Cu	-0.740900	-1.133000	-11.487200
Cu	-7.370500	-1.152500	0.000000
Cu	-9.577800	-1.133000	6.385200
Cu	-9.577800	-1.133000	-6.385200
Cu	3.681300	-1.138200	3.827500
Cu	3.681300	-1.138200	-3.827500
Cu	1.474100	-1.138200	5.101800
Cu	1.474100	-1.138200	-5.101800
Cu	-5.155400	-1.138200	-1.274300
Cu	-5.155400	-1.138200	1.274300
Cu	8.106900	-1.160800	-3.826800
Cu	8.106900	-1.160800	3.826800
Cu	-0.739300	-1.160800	8.934200

Cu	-0.739300	-1.160800	-8.934200	Cu	4.422700	0.944700	-10.209900
Cu	-7.367600	-1.160800	5.107300	Cu	-11.060000	0.944200	-1.282100
Cu	-7.367600	-1.160800	-5.107300	Cu	-11.060000	0.944200	1.282100
Cu	10.341500	-1.148000	-2.559000	Cu	6.639900	1.069900	6.369000
Cu	10.341500	-1.148000	2.559000	Cu	6.639900	1.069900	-6.369000
Cu	-2.954600	-1.148000	10.235500	Cu	2.202700	1.068300	8.925500
Cu	-2.954600	-1.148000	-10.235500	Cu	2.202700	1.068300	-8.925500
Cu	-7.387000	-1.148000	7.676500	Cu	-8.840700	1.069300	-2.562900
Cu	-7.387000	-1.148000	-7.676500	Cu	-8.840700	1.069300	2.562900
Cu	5.893800	-1.128300	2.554700	Cu	11.056500	0.967500	-6.380500
Cu	5.893800	-1.128300	-2.554700	Cu	11.056500	0.967500	6.380500
Cu	-0.734500	-1.128300	6.381500	Cu	4.420500	1.067100	7.647100
Cu	-0.734500	-1.128300	-6.381500	Cu	4.420500	1.067100	-7.647100
Cu	-5.159300	-1.128300	3.826800	Cu	0.004700	0.968200	12.747700
Cu	-5.159300	-1.128300	-3.826800	Cu	0.004700	0.968200	-12.747700
Cu	8.108300	-1.149400	1.274500	Cu	-8.841500	1.071600	0.000000
Cu	8.108300	-1.149400	-1.274500	Cu	-11.057000	0.967200	6.381200
Cu	1.479100	-1.148400	2.561900	Cu	-11.057000	0.967200	-6.381200
Cu	1.479100	-1.148400	-2.561900	Cu	4.417200	1.108300	5.092800
Cu	-2.958200	-1.148400	0.000000	Cu	4.417200	1.108300	-5.092800
Cu	-2.950400	-1.149400	7.659200	Cu	2.203300	1.115700	6.367200
Cu	-2.950400	-1.149400	-7.659200	Cu	2.203300	1.115700	-6.367200
Cu	-5.157900	-1.149400	6.384700	Cu	-6.630600	1.110800	-1.276700
Cu	-5.157900	-1.149400	-6.384700	Cu	-6.630600	1.110800	1.276700
Cu	3.671900	-1.143700	1.263600	Cu	8.859600	1.095900	-5.104300
Cu	3.671900	-1.143700	-1.263600	Cu	8.859600	1.095900	5.104300
Cu	-0.741600	-1.143700	3.811700	Cu	-0.004400	1.096500	10.211300
Cu	-0.741600	-1.143700	-3.811700	Cu	-0.004400	1.096500	-10.211300
Cu	-2.930300	-1.143700	2.548100	Cu	-8.852100	1.096700	5.120400
Cu	-2.930300	-1.143700	-2.548100	Cu	-8.852100	1.096700	-5.120400
Cu	10.339600	-1.145500	0.000000	Cu	11.096200	0.992300	-3.826600
Cu	-5.169800	-1.145500	8.954300	Cu	11.096200	0.992300	3.826600
Cu	-5.169800	-1.145500	-8.954300	Cu	-2.227800	1.003300	11.506400
Cu	5.896500	-1.138200	0.000000	Cu	-2.227800	1.003300	-11.506400
Cu	1.475800	-1.153300	0.000000	Cu	-8.860500	1.001200	7.694600
Cu	-0.737900	-1.153300	1.278100	Cu	-8.860500	1.001200	-7.694600
Cu	-0.737900	-1.153300	-1.278100	Cu	6.642400	1.087000	-3.825000
Cu	-2.948200	-1.138200	5.106500	Cu	6.642400	1.087000	3.825000
Cu	-2.948200	-1.138200	-5.106500	Cu	-0.008300	1.088200	7.650900
Cu	8.854400	0.959800	7.661700	Cu	-0.008300	1.088200	-7.650900
Cu	8.854400	0.959800	-7.661700	Cu	-6.638900	1.087300	3.839400
Cu	2.215400	0.962100	11.487300	Cu	-6.638900	1.087300	-3.839400
Cu	2.215400	0.962100	-11.487300	Cu	2.207200	1.098600	3.815200
Cu	-11.068600	0.958000	-3.835600	Cu	2.207200	1.098600	-3.815200
Cu	-11.068600	0.958000	3.835600	Cu	-4.438200	1.025500	0.000000
Cu	6.643200	0.945700	8.930800	Cu	8.855200	1.106700	-2.556800
Cu	6.643200	0.945700	-8.930800	Cu	8.855200	1.106700	2.556800
Cu	4.422700	0.944700	10.209900	Cu	4.429800	1.120200	2.552200

Cu	4.429800	1.120200	-2.552200
Cu	-0.004100	1.114600	5.102800
Cu	-0.004100	1.114600	-5.102800
Cu	-2.213100	1.104800	8.936000
Cu	-2.213100	1.104800	-8.936000
Cu	-4.443400	1.135600	2.558100
Cu	-4.443400	1.135600	-2.558100
Cu	-6.647500	1.106400	6.387200
Cu	-6.647500	1.106400	-6.387200
Cu	11.083500	0.993200	-1.281200
Cu	11.083500	0.993200	1.281200
Cu	-4.431100	0.994800	10.231700
Cu	-4.431100	0.994800	-10.231700
Cu	-6.655500	0.989800	8.958500
Cu	-6.655500	0.989800	-8.958500
Cu	6.637700	1.078800	1.271300
Cu	6.637700	1.078800	-1.271300
Cu	-2.216000	1.082000	6.369000
Cu	-2.216000	1.082000	-6.369000
Cu	-4.420200	1.065700	5.106100
Cu	-4.420200	1.065700	-5.106100
Cu	8.859800	1.103400	0.000000
Cu	2.221500	1.052200	1.273000
Cu	2.221500	1.052200	-1.273000
Cu	0.009000	0.967500	2.558700
Cu	0.009000	0.967500	-2.558700
Cu	-2.222900	0.975000	1.270500
Cu	-2.222900	0.975000	-1.270500
Cu	-4.432000	1.096700	7.666200
Cu	-4.432000	1.096700	-7.666200
Cu	4.423800	1.113800	0.000000
Cu	-2.207100	1.192500	3.816100
Cu	-2.207100	1.192500	-3.816100
Cu	0.012600	1.030600	0.000000
С	-0.474800	3.738400	-1.220000
С	-2.646500	3.641500	0.000000
С	-1.969400	3.655700	-1.252400
0	-2.539400	3.490200	-2.394100
Ν	0.128200	3.718700	-2.433800
С	-0.474800	3.738400	1.220000
С	0.232000	3.714600	0.000000
С	-1.969400	3.655700	1.252400
0	-2.539400	3.490200	2.394100
N	0.128200	3.718700	2.433800
H	1.326300	3.711000	0.000000
H	-3.737000	3.590200	0.000000
Η	-0.487900	3.570600	3.237500
Η	1.114700	3.481600	2.535400

Н	1.114700	3.481600	-2.535400
Η	-0.487900	3.570600	-3.237500