Supporting Information for:

1,4-Benzene-Bridged Covalent Hybrid of Triarylamine andCyclometalatedRuthenium:ANewTypeOrganic-Inorganic Mixed-Valent System

Chang-Jiang Yao,[†] Ren-Hui Zheng,[†] Qiang Shi,[†] Yu-Wu Zhong,^{*,†,‡} and Jiannian Yao[†]

[†]Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

^{*}State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

*Correspondance:

Prof. Yu-Wu Zhong CAS Key laboratory of photochemistry Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China Email: <u>zhongyuwu@iccas.ac.cn</u> Website: <u>http://zhongyuwu.iccas.ac.cn/</u>

1. Synthetic Procedures and Characterization

General. NMR spectra were recorded in the designated solvent on Bruker Avance 400 MHz spectrometer. Spectra are reported in ppm values from residual protons of deuterated solvent for ¹H NMR (δ 7.26 ppm for CDCl₃ and 1.92 ppm for CD₃CN) and ¹³C NMR (δ 77.00 ppm for CDCl₃). MS data were obtained with a Bruker Daltonics Inc. ApexII FT-ICR or Autoflex III MALDI-TOF mass spectrometer. The matrix for MALDI-TOF measurement is α -cyano-4-hydroxycinnamic acid. Microanalysis was carried out using Flash EA 1112 or Carlo Erba 1106 analyzer at the Institute of Chemistry, Chinese Academy of Sciences.

1,3,5-tribromobenzene (1.0 То mmol, 320 a solution of mg) and 2-(tributylstannyl)pyridine (2.2 mmol, 810 mg) in 20 mL dry toluene were added PdCl₂(PPh₃)₂ (0.2 mmol, 140 mg) and LiCl (10 mmol, 424 mg) under a N₂ atmosphere. The mixture was bubbled with nitrogen for 10 min before the vial was capped and heated at 150 °C for 48 h. After the reaction was cooled to room temperature, the solvent was removed under reduced pressure. The residue was then subjected to column chromatography on silica gel (eluent: CH₂Cl₂/ethyl acetate/NH₄OH 100/10/0.05) to afford 106 mg 3,5-di(2-pyridyl)bromobenzene as a yellow solid in a yield of 34%. ¹H NMR (400 MHz, CDCl₃): δ 7.28 (m, 2H), 7.80 (m, 4H), 8.21 (s, 2H), 8.54 (s,1H), 8.70 (d, J = 4.6 Hz, 2 H).

To a solution of 3,5-di(2-pyridyl)bromobenzene (1.0 mmol, 323 mg) and 4,4'-dimethoxydiphenylamine (1.5 mmol, 344 mg) in 20 mL dry toluene were added $Pd_2(dba)_3$ (0.02 mmol, 18.3 mg), 1,1'-bis(diphenylphosphino)ferrocene (dppf) (0.02 mmol, 11.1 mg) and NaO'Bu (1.2 mmol, 115.3 mg) under a N₂ atmosphere. The mixture was bubbled with nitrogen for 10 min before the vial was capped and heated at 130 ^{0}C

for 48 h. After the reaction was cooled to room temperature, the solvent was removed under reduced pressure. The residue was then subjected to column chromatography on silica gel (eluent: CH₂Cl₂/ethyl acetate/NH₄OH 75/6/1) to afford 317 mg 1-di-*p*-anisylamino-3,5-di(2-pyridyl)benzene as a yellow solid in a yield of 69%. ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 6 H), 6.82 (d, *J* = 8.3Hz, 4 H), 7.10 (d, *J* = 8.3 Hz, 4 H), 7.18 (t, *J* = 5.3 Hz, 2 H), 7.65 (s, 2 H), 7.67 (d, *J* = 5.3 Hz, 4 H), 8.12 (s, 1 H), 8.63 (d, *J* = 4.3 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 55.4, 114.7, 118.4, 120.3, 120.8, 122.1, 126.3, 126.4, 136.6, 140.8, 141.1, 149.4, 155.6, 157.2. EI-MS (m/z): 537 [M + 2K]⁺.

t-BuOH То a mixture of 3 mL DMF and 3 mL were added 1-di-p-anisylamino-3,5-di(2-pyridyl)benzene (0.1 mmol, 46 mg) and Ru(tpy)Cl₃ (0.1 mmol, 44 mg). The mixture was heated under microwave conditions for 50 min at a power of 200 W and then another 30 min at a power of 375 W. After cooling down to room temperature, an excess of aqueous KPF₆ were added. The resulting precipitate was collected by filtration and wash successively with water and ether. The crude product was purified by column chromatography on silica using acetonitrile/water/saturated aq. KNO₃ 30/1/0.05 as the eluent to give 56 mg [1](PF₆)₂ as a black solid (yield: 52%). MALDI-MS (m/z): 792.2 for [M-2PF₆]²⁺. Anal. Calcd for: C₄₅H₃₅F₁₂N₆O₂P₂Ru²H₂O: C, 48.31; H, 3.51; N, 7.51. Found: C, 48.64; H, 3.28; N, 7.65.

To 5 mL ethylene glycol were added [(2,3-di(2-pyridyl)-4-di-

p-anisylaminopyridine)RuCl₃]¹ (0.05 mmol, 33.4 mg), 1,3-di(2-pyridyl)benzene (0.05 mmol, 11.6 mg). The mixture was heated under microwave conditions (power = 375 W) for 30 min. After cooling down to room temperature, an excess of aqueous KPF₆ were added. The resulting precipitate was collected by filtration and washing successively with water and ether. The crude product was purified by column chromatography on silica using acetonitrile/water/saturated KNO₃ 30/1/0.05 as the eluent to give 16 mg [**2**](PF₆) as a black solid (34% yield). ¹H NMR (400 MHz, CD₃CN): δ 3.87 (s, 6 H), 6.74 (t, *J* = 6.6Hz, 2 H), 6.81 (t, *J* = 6.6 Hz, 2 H), 6.94 (d, *J* = 5.5 Hz, 2 H), 7.11 (d, *J* = 8.6 Hz, 4 H), 7.27 (d, *J* = 5.5 Hz, 2 H), 7.48-7.52 (m, 6 H), 7.61 (t, *J* = 7.8 Hz, 2 H), 7.96 (s, 2 H), 7.99 (d, *J* = 8.0 Hz, 2 H), 8.12 (d, *J* = 8.0 Hz, 2 H), 8.20 (d, *J* = 7.5 Hz, 2 H). MALDI-MS (m/z): 793.1 for [M-PF₆]⁺. Anal. Calcd. for C₄₅H₃₅F₆N₆O₂PRu⁺H₂O: C, 56.54; H, 3.90; N, 8.79. Found: C, 56.05; H, 3.76; N, 8.85.

¹H NMR spectrum of $[2](PF_6)$:

⁽¹⁾ Yao, C.-J.; Yao, J.; Zhong, Y.-W. Inorg. Chem. 2011, 50, 6847.

2. Computational Method

DFT and TDDFT calculations are carried out using the B3LYP exchange correlation functional² and implemented in the *Gaussian* 03 program package.³ The electronic structures of complexes were determined using a general basis set with the Los Alamos effective core potential LanL2DZ basis set for ruthenium, and 6-31G* for other atoms in vacuum.⁴ All orbitals have been computed at an isovalue of 0.02.

The initial structures for 1^+ and 2^+ were generated on the basis of a known single-crystal structure of the following complex¹ by removing one di-*p*-anisylamino segment and replacing one nitrogen atom with a carbon atom. The calculated lengths of the Ru-C bond for 1^+ and 2^+ are 1.983 and 1.975 Å, respectively. Other Ru-N lengths are in the range of 2.07~1.15 Å. This is quite reasonable compared to known single-crystal structures of know cyclometalated ruthenium complexes.⁵

^{(2) (}a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

⁽³⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision E.01; Gaussian Inc.: Pittsburgh PA, 2007.

^{(4) (}a) Dunning, T. H.; Hay, P. J. In *Modern Theoretical Chemistry*; Schaefer, H. F., Ed.; Plenum: New York, 1976; Vol. 3, p 1. (b) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 270. (c) Wadt, W. R.; Hay, P. J. *J. Chem. Phys.* **1985**, *82*, 284. (d) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 299. (5) (a) Yang, W.-W.; Zhong, Y.-W.; Yoshikawa, S.; Shao, J.-Y.; Masaoka, S.; Sakai, K.; Yao, J.; Haga, M.-a. *Inorg. Chem.* **2012**, *51*, 890. (b) Wadman, S. H.; Havenith, R. W. A.; Hartl, F.; Lutz, M.; Spek, A. L.; van Klink G. P. M.; van Koten, G. *Inorg. Chem.* **2009**, *48*, 5685.

Figure S1. Isodensity plots of selected frontier orbitals for 1^+ .

Figure S2. Energy level allignment for $\mathbf{1}^+$.

Figure S3. Isodensity plots of selected frontier orbitals for 1^{2^+} .

Figure S4. Isodensity plots of selected frontier orbitals for 1^{3+} .

188 (HOMO-1)

187 (HOMO-2)

186 (HOMO-3)

Figure S5. Isodensity plots of selected frontier orbitals for 2^+ .

Figure S6. Energy level allignment for 2^+ .

Figure S7. Isodensity plots of selected frontier orbitals for 2^{2+} .

Figure S8. Isodensity plots of selected frontier orbitals for 2^{3+} .

compoumd	S_n	E/eV	E/nm	f	dominant transitions (configuration coefficient)
1 ⁺	3	2.01	616	0.0347	189 (HOMO) → 192 (LUMO+2) (0.703)
	6	2.23	556	0.0185	189 (HOMO) → 195 (LUMO+5) (0.68)
	11	2.34	531	0.0437	186 (HOMO-3) → 191 (LUMO+1) (0.657);
					185 (HOMO-4) → 190 (LUMO) (0.209)
	12	2.68	463	0.1215	185 (HOMO-4) →191 (LUMO+1) (0.4192);
					186 (HOMO-3) → 190 (LUMO) (0.4555)
1 ²⁺	1	1.20	1036	0.102	187B → 189B (0.81); 188B → 189B (-0.55)
	2	1.23	1007	0.244	187B → 189B (0.58); 188B → 189B (0.75)
1 ³⁺	5	1.64	756	0.191	187B → 189B (0.98)
	7	1.74	712	0.1104	182B → 188B (0.8964)
2 ⁺	3	2.14	578	0.0154	188 (HOMO-1) → 190 (LUMO) (0.654)
	4	2.27	545	0.0783	188 (HOMO-1) → 191 (LUMO+1) (0.568)
	5	2.40	516	0.0353	187 (HOMO-2) → 191 (LUMO+1) (0.682)
	6	2.61	475	0.1515	187 (HOMO-2) → 190 (LUMO) (0.62)
	7	2.78	445	0.0627	189 (HOMO) → 192 (LUMO+2) (0.67)
2^{2+}	3	0.92	1346	0.290	188B → 189B (0.91)
2 ³⁺	3	1.39	892	0.208	187B → 188B (0.9976)
	6	1.55	799	0.134	185B → 188B (0.9677)

Table S1. Calculated main low-energy excitations of complexes studied.^a

^{*a*}Calculated on the level of B3LYP/LanL2DZ/6-31G*/vacuum theory.

Cartesian coordinates for DFT-optimized structure of $\mathbf{1}^+$:

Charge $= 1$	multiplicity = 1		
C	-0.34880242	0.94042121	0.77191848
Ċ	-1.75014753	0.93094294	0.78496869
Ċ	0.35885386	-0.00007006	-0.00005069
С	0.53087003	1.84678154	1.51849746
С	-2.46148550	-0.00002491	-0.00026009
С	-0.34871420	-0.94053982	-0.77213045
Ν	1.87738064	1.62021108	1.33737319
С	0.10289389	2.88047195	2.36362491
Ru	2.34156496	-0.00002274	0.00002506
Н	-2.31740547	1.63176722	1.38971468
С	-1.75005226	-0.93101114	-0.78538898
С	0.53104193	-1.84694277	-1.51856503
Ν	-3.87440724	-0.00001363	-0.00039543
С	2.76503530	2.39992339	1.98151616
С	1.03042249	3.67757749	3.02244248
Ν	1.87752720	-1.62031342	-1.33736991
Ν	4.40964395	0.00006140	-0.00001320
Ν	2.80535601	-1.31953761	1.59510437
Ν	2.80522273	1.31958536	-1.59508844
Н	-0.96004136	3.05089204	2.49560225
С	2.39313033	3.43489594	2.83021268
С	0.10315592	-2.88074927	-2.36359689
С	2.76525679	-2.40006542	-1.98136151
С	-4.59923507	-1.22583352	-0.09119640
С	-4.59917941	1.22582684	0.09075577
С	5.06063179	-0.75772250	0.91370229
С	5.06054794	0.75790732	-0.91373243
С	4.14994071	-1.50025071	1.81276737
С	4.14978635	1.50036751	-1.81278481
С	1.92935920	-1.96956302	2.38429376
С	1.92916188	1.96956791	-2.38423347
Н	-2.31724728	-1.63180077	-1.39023599
Н	3.81062448	2.17328120	1.79964052
Н	0.69774015	4.47777477	3.67692823
С	1.03075879	-3.67791994	-3.02223165
С	2.39344588	-3.43516879	-2.82993945
С	-4.27740729	2.31725951	-0.72369612
С	-5.66841440	1.35664089	0.99463663
С	-5.66884340	-1.35660493	-0.99464381
С	-4.27721240	-2.31728338	0.72314297
С	6.45880587	-0.77398606	0.93263009
С	6.45872273	0.77433255	-0.93264918
С	2.32427071	-2.81789749	3.41348808
С	4.60214974	-2.34194136	2.83343076
С	4.60192064	2.34205812	-2.83348358
С	2.32399476	2.81793326	-3.41343573
Н	3.15323844	4.03111759	3.32342161
Н	-0.95976461	-3.05121546	-2.49563422
Н	3.81082354	-2.17333289	-1.79947141
Н	0.88352384	-1.78808947	2.16444356
Н	0.88334310	1.78802006	-2.16436469
С	-4.98498310	3.51876239	-0.63587645

H H H H H H

Н

H H C C H H

Η

 $\begin{array}{c} H \\ H \\ H \\ H \\ O \\ O \\ C \\ H \\ H \end{array}$

Н

-	6.39079056	2.53890119	1.07188643
-	6.39132264	-2.53882242	-1.07158956
	4.98489373	-3.51874450	0.63561352
	7.15336958	0.00021535	-0.00000730
	3.68691077	-3.00801330	3.64301050
	3.68661739	3.00809126	-3.64302258
	0.69815013	-4.47822180	-3.67662698
	3.15360517	-4.03143502	-3.32301577
-	3.46401003	2.22813506	-1.43794024
-	5.93444778	0.51811520	1.63079954
-	5.93508867	-0.51807859	-1.63071663
-	3.46352896	-2.22821268	1.43706632
	7.00410011	-1.37255634	1.65368172
	7.00394765	1.37297436	-1.65369330
	1.57329747	-3.31501751	4.01818823
	5.66631007	-2.47428602	2.99358696
	5.66606776	2.47442522	-2.99370729
	1.57297745	3.31503593	-4.01809531
-	6.05418202	3.63470958	0.26112938
-	6.05445581	-3.63464460	-0.26096484
-	4.70749938	4.34310484	-1.28303692
-	7.22088307	2.64260646	1.76353898
-	7.22169721	-2.64247395	-1.76291156
-	4.70719398	-4.34309848	1.28266684
	8.23850881	0.00028448	0.00000367
	4.03238611	-3.66209737	4.43729859
	4.03203186	3.66217693	-4.43733632
-	6.82021747	4.75033042	0.42202032
-	6.82060462	-4.75023542	-0.42155546
-	6.55644986	5.87421894	-0.40279561
-	6.55674848	-5.87403056	0.40335648
-	5.54416437	6.26771917	-0.23836413
-	7.28749484	6.63274606	-0.11830520
-	6.68073296	5.63159959	-1.46644224
-	5.54459380	-6.26774727	0.23863283
-	7.28802921	-6.63247575	0.11925238
-	6.68060871	-5.63120805	1.46700589

Cartesian coordinates for DFT-optimized structure of 1^{2+} :

Charge $= 2$	multiplicity $= 2$		
С	-0.35738562	0.92943458	0.80347791
Ċ	-1.74838310	0.93064507	0.80387627
С	0.35203039	-0.00047203	-0.00064143
С	0.52729428	1.81007632	1.58671560
С	-2.45122821	-0.00055049	-0.00149629
С	-0.35682796	-0.93041501	-0.80518533
Ν	1.86915478	1.58376907	1.39081533
С	0.10014992	2.80829171	2.46808282
Ru	2.30259430	-0.00030082	-0.00002806
Н	-2.32112639	1.61043644	1.42644226
С	-1.74780828	-0.93163603	-0.80656573
С	0.52849819	-1.81081635	-1.58801809
Ν	-3.85947921	-0.00046885	-0.00180286
С	2.76123120	2.33651873	2.05850202
С	1.03295008	3.58027692	3.15430526
Ν	1.87021315	-1.58480737	-1.39072218
Ν	4.39744855	0.00004164	0.00017630
Ν	2.79203514	-1.36453278	1.56725529
Ν	2.79181226	1.36504234	-1.56596116
Н	-0.96133894	2.97684481	2.61456009
С	2.39186370	3.34147705	2.94648546
С	0.10203474	-2.80850692	-2.47029005
С	2.76277549	-2.33777180	-2.05750401
С	-4.57939294	-1.21802016	-0.08883450
С	-4.57900582	1.21733619	0.08619736
С	5.04525218	-0.77871628	0.89218646
С	5.04516129	0.77687993	-0.89356749
С	4.13666063	-1.54414957	1.77689536
С	4.13641225	1.54514014	-1.77559942
С	1.92252120	-2.03518107	2.34527210
С	1.92214069	2.03840670	-2.34150955
Н	-2.32009052	-1.61109883	-1.42989524
Н	3.80581675	2.11589387	1.86646446
Н	0.70524211	4.35520896	3.84030860
С	1.03535052	-3.58033136	-3.15600287
С	2.39409982	-3.34215432	-2.94643190
С	-4.16987846	2.34699924	-0.64555407
С	-5.73350600	1.30286034	0.89615415
С	-5.73407392	-1.30395779	-0.89856152
С	-4.17080352	-2.34710328	0.64419420
С	6.44401499	-0.79983928	0.91052656
С	6.44392429	0.79282544	-0.91656269
С	2.32397040	-2.90359343	3.35583010
С	4.59641034	-2.40433929	2.77734497
С	4.59590905	2.40923114	-2.77279346
С	2.32336192	2.91033019	-3.34910539
Н	3.15461409	3.91781344	3.45863811
Н	-0.95934566	-2.97684490	-2.61779745
Н	3.80723347	-2.11793900	-1.86384940
Н	0.87414818	-1.85712381	2.13707444
Н	0.87380609	1.85965827	-2.13372174
С	-4.88784467	3.53445836	-0.57980156

H H H H H H

Н

H H C C H H

Η

 $\begin{array}{c} H \\ H \\ H \\ H \\ O \\ O \\ C \\ H \\ H \end{array}$

Н

-6.446	671618	2.48212295	0.96860360
-6.44	777358	-2.48299915	-0.96969510
-4.889	924674	-3.53431365	0.57974724
7.13	781140	-0.00481967	-0.00420065
3.68	707529	-3.09207649	3.57675336
3.68	641635	3.09983950	-3.56951991
0.70	815953	-4.35467059	-3.84292084
3.15	725227	-3.91848384	-3.45799222
-3.302	290320	2.27995490	-1.29470290
-6.043	885961	0.44280402	1.47715854
-6.049	912599	-0.44444705	-1.48051358
-3.30	385340	-2.27969846	1.29333972
6.98	997430	-1.41649243	1.61509523
6.98	981878	1.40694878	-1.62338841
1.57	755596	-3.41614605	3.95300594
5.66	116901	-2.53541952	2.93232412
5.66	064819	2.54139560	-2.92700514
1.57	679747	3.42495696	-3.94430789
-6.038	859822	3.61422706	0.22879080
-6.040	013829	-3.61446630	-0.22863591
-4.56	631748	4.38276009	-1.17200760
-7.32	728749	2.56765138	1.59631925
-7.32	838913	-2.56887845	-1.59730326
-4.56	792849	-4.38215426	1.17272929
8.22	293898	-0.00701091	-0.00616134
4.03	873412	-3.76048891	4.35607241
4.03	788882	3.77127053	-4.34632067
-6.80	936002	4.70274955	0.36387641
-6.81	121114	-4.70288003	-0.36270794
-6.49	138583	5.89402832	-0.36261798
-6.494	415745	-5.89328531	0.36564843
-5.50	528974	6.27686324	-0.07614762
-7.25	885112	6.61645671	-0.08672437
-6.52	638371	5.71440726	-1.44295051
-5.508	856000	-6.27757695	0.07941979
-7.262	246085	-6.61539460	0.09125804
-6.52	855402	-5.71183022	1.44569092

Cartesian coordinates for DFT-optimized structure of 1^{3+} :

Charge =3	multiplicity $= 3$		
C	-0.35665645	0.89342671	0.85154871
C	-1.75520041	0.88831903	0.85327264
С	0.32780589	0.00016404	0.00024610
С	0.53152657	1.74341662	1.67503268
С	-2.44368372	0.00021159	-0.00005108
Č	-0.35645706	-0.89309557	-0.85124774
Ň	1.87403677	1.53320617	1.46753937
C	0.09933435	2.69305053	2.60077551
Ru	2.28938102	0.00010082	0.00039140
H	-2.33252629	1.53673071	1.50406753
С	-1.75494445	-0.88793354	-0.85324478
С	0.53177030	-1.74326022	-1.67470533
Ν	-3.87256474	0.00015607	-0.00020615
С	2.76525930	2.25440151	2.16548074
С	1.03307577	3.43760479	3.32349689
Ν	1.87429637	-1.53335685	-1.46714080
Ν	4.43682190	-0.00066323	-0.00030575
N	2.83818355	-1.41925116	1.50357440
Ν	2.83824576	1.42125150	-1.50110352
Н	-0.96183062	2.85069437	2.75979381
С	2.39028491	3.21625240	3.10263785
Č	0.09945667	-2.69276367	-2.60046599
С	2.76541485	-2.25472597	-2.16500589
С	-4.58554469	-1.21737473	-0.01909406
С	-4.58565556	1.21763273	0.01859609
С	5.08543774	-0.81226813	0.85717053
С	5.08547585	0.81006031	-0.85858284
С	4.17899522	-1.61231303	1.70918269
С	4.17906133	1.61205605	-1.70879004
С	1.95495650	-2.11189232	2.24789667
С	1.95504133	2.11639613	-2.24311657
Н	-2.33216353	-1.53635207	-1.50412846
Н	3.81107978	2.05032133	1.96321210
Н	0.70275651	4.17688964	4.04645480
С	1.03311582	-3.43753253	-3.32315457
С	2.39033792	-3.21650510	-3.10221918
С	-4.15211771	2.32658302	-0.74212505
С	-5.77367310	1.32908535	0.78597579
С	-5.77351731	-1.32890730	-0.78653758
С	-4.15191792	-2.32632662	0.74157244
С	6.48410181	-0.83500212	0.87813341
С	6.48414123	0.83056618	-0.88159070
С	2.34871013	-3.02217826	3.22431054
С	4.62839096	-2.51442972	2.67498641
С	4.62848559	2.51421410	-2.67454103
С	2.34882138	3.02678026	-3.21942867
Н	3.15101129	3.77148629	3.64047633
Н	-0.96172090	-2.85020932	-2.75958508
Н	3.81126034	-2.05086525	-1.96263719
Н	0.90781585	-1.92194824	2.04633106
Н	0.90789189	1.92828980	-2.03987494
С	-4.88254400	3.50259788	-0.75914532

H H H H H H

Н

H H C C H H

Η

 $\begin{array}{c} H \\ H \\ H \\ H \\ O \\ O \\ C \\ H \\ H \end{array}$

Н

-6 49747	'904 7	49921258	0 78211961
-6 49721	027 - 2	49910296	-0.78276615
-4 88222	2657 -3	50241502	0.75849869
7 1784	7751 -(00281661	-0.00227894
3 7095	2261 - 3	22802220	3 44226182
3 7096	3859	3 23020107	-3 43960727
0 7026	5995 -4	17673359	-4 04613741
3 1 5 0 9	8072 -3	3 77190336	-3 64000394
-3 26114	136 2	2 24318644	-1 35603494
-6.09823	3052 () 49595393	1 39988210
-6 09813	3040 -0	49577977	-1 40041975
-3.26095	5875 -2	24288673	1.35550258
7.0289	9525 -1	.47954976	1.55791807
7.0290	6701	1.47438389	-1.56204060
1.5968	0778 -3	3.55330691	3.79767112
5.6913	0142 -2	2.65926074	2.82967306
5.6913	9842	2.65728969	-2.83083627
1.5969	3266	3.55990079	-3.79095513
-6.07379	227 3	8.60410820	0.00015166
-6.07344	-396 -3	.60399741	-0.00083874
-4.54962	2808 4	1.33005029	-1.37413806
-7.39592	2464 2	2.60793435	1.38024901
-7.39562	2221 -2	.60788209	-1.38093567
-4.54923	.48766 -4	.32987403	1.37344321
8.2638	0565 -(0.00368420	-0.00307553
4.0533	0380 -3	3.92980063	4.19544570
4.0534	3828	3.93202955	-4.19273594
-6.85458	3288 4	1.67617356	0.05471961
-6.85411	.895 -4	.67614088	-0.05549712
-6.54736	5405 5	5.85751832	-0.70913580
-6.54680)312 -5	.85749747	0.70830304
-5.58460)362 6	5.27552458	-0.39853351
-7.34738	B173 6	6.56009007	-0.48186315
-6.54389	079 5	5.63014054	-1.77964300
-5.58399	9036 -6	.27538748	0.39770784
-7.34674	-6	.56013775	0.48096583
-6.54338	3681 -5	.63017912	1.77882307

Cartesian coordinates for DFT-optimized structure of 2^+ :

Charge $= 1$	multiplicity $= 1$		
С	-0.28615612	1.13405794	-0.31006911
Ċ	-1.67636181	1.16788236	-0.32515112
Ν	0.37518627	-0.00125563	-0.00131435
С	0.62429009	2.26491025	-0.61664970
Č	-2 40904750	-0 00194979	-0.00235502
Č	-0.28584124	-1 13694616	0 30673553
Ň	1 97066698	1 99701215	-0 54456104
Ĉ	0 16818526	3 54098040	-0.95823248
Ru	2 45739296	-0.00060950	0.00004082
H	-2 21015842	2 07175579	-0 58605674
C	-1 67603049	-1 17153273	0 32064214
C	0 62490559	-2 26734847	0.61410186
C	2 84146125	2.20754047	-0.81165612
C	1 07853963	4 55766664	-1 23234469
N	1 97120401	-1 99864084	0 54371438
C	4 43221304	0.00000532	0.0168145
N N	2 90690858	-0.55283072	_2 02660289
N	2.00000000	0.55100631	2.02000287
N	2.90515592	0.001/0062	0.002738003
	-3./9282129	2 72602262	-0.00229979
Γ	-0.89700505 2 44106454	J.75095205 A 27552188	-1.00/10414
C	0 16012427	4.27332100	-1.13/90/23
C	0.10912437	-3.34378930	0.93473308
C	2.04223479	-2.99003099	0.0115/202
C	5 12250805	-0.32430782	-1.1/013910
C	5.15550605	0.324/4488	1.102/3030
C	4.23503830	-0.03244/39	-2.3083/240
C	4.248//892	0.05251085	2.31143309
C	2.01800882	-0.81440122	-3.00308/02
C	2.01304980	0.81330840	5.00229208
C	-4.34048400	-1.22855480	-0.03921015
U U	-4.33/02094	1.22/30938	0.03/0/803
H	-2.20948313	-2.0/391344	0.38040470
H	3.88911110	2.72007425	-0./3938938
H C	0.72819609	5.55015592	-1.49/95960
C	1.0/9/4458	-4.56006/82	1.22948828
C	2.44309205	-4.2//13325	1.13666324
C	6.53916127	-0.32321/00	-1.1/1/4/41
C	6.5369/006	0.32396533	1.1/882800
C	2.388/1545	-1.16632630	-4.29501555
C	4.67925592	-0.9841/22/	-3.59/1/459
C	4.67258860	0.98444193	3.60093430
C	2.380/6164	1.16562338	4.29479510
C	-4.38670316	2.12281958	1.10855227
C	-5.45531382	1.52550043	-0.97232900
C	-5.4/152559	-1.51440250	0.96155368
C	-4.3/950381	-2.134/8134	-1.1001/030
H	3.19044521	5.033/32/6	-1.36216656
H	-0.89600960	-3.74035788	1.0023/366
H	3.88983504	-2.72070468	0.74041240
H	0.97359660	-0.73380536	-2.72173649
H	0.96856704	0.73213984	2.71915448
C	7.22649780	0.00049683	0.00414653

H H H H H H

Н

H H C C H H

Η

 $\begin{array}{c} H \\ H \\ H \\ H \\ O \\ O \\ C \\ H \\ H \end{array}$

Н

2 7500 40 40	1 0 5 0 5 4 0 0 0	4 50 40 2 7 1 4
3./5084948	-1.25254283	-4.59493/14
3.74233640	1.25252996	4.59/05420
-5.12552883	3.29671267	1.15349507
-6.21535036	2.69563756	-0.92675131
-6.23464009	-2.68257720	0.91773554
-5.12123151	-3.30691877	-1.14281605
0.72965906	-5.55282790	1.49434730
3.19176873	-5.03500666	1.36145607
7.11017522	-0.56884626	-2.06432354
7.10632514	0.56977011	2.07241396
1.62765876	-1.36595396	-5.04175942
5.74188087	-1.04367689	-3.80646733
5.73482360	1.04451892	3.81203360
1.61832285	1.36501256	5.04019169
-3.68998281	1.89075423	1.90925279
-5.58733666	0.83136148	-1.79683040
-5.61172740	-0.81216068	1.77776692
-3.67225839	-1.91289326	-1.89448649
-6.05039094	3.59358900	0.13722879
-6.05949755	-3.59129798	-0.13534172
8.31225119	0.00068798	0.00510650
4.08216659	-1.52457111	-5.59275491
4.07180123	1.52488637	5.59539566
-5.02073299	3.99485088	1.97777602
-6.92377269	2.89650537	-1.72170236
-6.95338011	-2.87352237	1.70583576
-5.00842397	-4.01317754	-1.95908873
-6.72781032	4.76053575	0.28073326
-6.73881715	-4.75754522	-0.27600524
-7.69978081	5.11021188	-0.69789589
-7.72342773	-5.09499039	0.69422046
-7.24524782	5.22872907	-1.68974968
-8.11616959	6.06505391	-0.37456541
-8.50120377	4.36259491	-0.75065434
-7.28119827	-5.20493397	1.69260380
-8.13856072	-6.05186179	0.37529184
-8.52336725	-4.34477355	0.72997557

Cartesian coordinates for DFT-optimized structure of 2^{2+} :

Charge $= 2$	multiplicity $= 2$		
С	0.28302395	-1.12480223	-0.38258257
C	1.66397744	-1.15857914	-0.39199723
N	-0.37855459	0.00001144	-0.00006947
С	-0.62869541	-2.23602481	-0.76797618
Č	2.39897760	0.00000561	-0.00001785
С	0.28301442	1.12481649	0.38248583
Ň	-1.97337842	-1.97610311	-0.67652248
С	-0.17471616	-3.48405951	-1.19662411
Ru	-2.42739809	-0.00000574	-0.00004057
Н	2.20161822	-2.04130797	-0.71010515
С	1.66396726	1.15858889	0.39194501
С	-0.62871258	2.23603592	0.76786997
С	-2.85056038	-2.93937862	-1.00486239
С	-1.09158402	-4.47763789	-1.53763912
Ν	-1.97339391	1.97610607	0.67641575
С	-4.44208236	-0.00003408	0.00011888
Ν	-2.92125292	0.67243619	-1.97994708
Ν	-2.92092862	-0.67250358	1.97994065
Ν	3.77044338	0.00001762	-0.00001253
Н	0.88889794	-3.68243865	-1.26370508
С	-2.45331594	-4.20173634	-1.43987747
С	-0.17474098	3.48407683	1.19650798
С	-2.85058145	2.93938191	1.00473966
С	-5.13869636	0.39627691	-1.15391789
С	-5.13850741	-0.39634309	1.15426868
С	-4.25968689	0.77467592	-2.26363284
С	-4.25931746	-0.77474722	2.26383857
С	-2.01427440	0.99169302	-2.92357078
С	-2.01380324	-0.99179110	2.92341272
С	4.51863405	1.22447149	-0.03229716
С	4.51866479	-1.22441995	0.03226914
Н	2.20160172	2.04131483	0.71007316
Н	-3.89750861	-2.67472186	-0.91062264
Н	-0.74418633	-5.44969793	-1.87286874
C	-1.09161476	4.47765419	1.53751004
C	-2.45334490	4.20174598	1.43974327
C	-6.54301649	0.39519973	-1.15027887
C	-6.54282805	-0.39526629	1.15085939
C	-2.37438552	1.42834594	-4.19125945
C	-4.67461248	1.21056979	-3.52817444
C	-4.67404413	-1.21066292	3.52843812
C	-2.3/3/1412	-1.42846955	4.19114932
C	4.26668889	-2.19311/34	1.02158173
C	5.54358492	-1.43835473	-0.89/93168
C	5.54369430	1.43834158	0.89776456
C	4.2664///1	2.19326061	-1.0214/488
H	-3.20244333	-4.94389681	-1.69337929
H	0.8888/182	3.68246294	1.26358830
H	-3.89/52/88	2.0/4/1832	0.91050050
H	-0.9/248691	0.88/93923	-2.64031200
Н	-0.9/205955	-0.88804019	2.03999301
U	-1.231/1925	-0.00003293	0.000346/3

H H H H H H

Н

H H C C H H

Η

 $\begin{array}{c} H \\ H \\ H \\ H \\ O \\ O \\ C \\ H \\ H \end{array}$

Н

-3.73356340	1.53944595	-4.49647229
-3.73284337	-1.53956482	4.49657934
5.01499132	-3.35693508	1.06170585
6.30035363	-2.60547531	-0.86205265
6.30042984	2.60548284	0.86187852
5.01474514	3.35710024	-1.06160325
-0.74422293	5.44971920	1.87273135
-3.20247690	4.94390576	1.69323347
-7.10890440	0.69623029	-2.02773275
-7.10857298	-0.69629832	2.02840474
-1.60700855	1.67286239	-4.91734759
-5.73439460	1.28836186	-3.74356684
-5.73379245	-1.28845582	3.74399620
-1.60622207	-1.67300847	4.91710830
3.50083534	-2.01681076	1.77133765
5.74679804	-0.68952816	-1.65696545
5.74704236	0.68944872	1.65669674
3.50051271	2.01700822	-1.77112968
6.04152071	-3.57927314	0.11991304
6.04141752	3.57937122	-0.11995044
-8.31693245	-0.00003346	0.00043535
-4.05347212	1.87744233	-5.47727991
-4.05259734	-1.87757969	5.47743105
4.84739276	-4.10677611	1.82764103
7.08313606	-2.75087572	-1.59657091
7.08332482	2.75083006	1.59628731
4.84700716	4.10701187	-1.82743879
6.70820493	-4.73819155	0.25035914
6.70805026	4.73831994	-0.25038557
7.79457603	-5.02991112	-0.63464143
7.79453793	5.02999009	0.63448855
7.45065035	-5.08892130	-1.67359869
8.17421298	-6.00143834	-0.31957704
8.58673617	-4.27832208	-0.54400501
7.45076100	5.08887259	1.67350218
8.17408709	6.00156778	0.31947405
8.58671670	4.27844456	0.54365451

Cartesian coordinates for DFT-optimized structure of 2^{3+} :

Charge $= 3$	multiplicity $= 3$		
С	0.28502595	-1.06785154	-0.50376335
C	1.67999921	-1.09969052	-0.51888708
Ň	-0.36659386	-0.00001704	0.00002204
C	-0.62389084	-2 12166858	-1 01447550
Č	2 39133814	-0.00000250	-0 00003228
č	0.28503476	1 06782504	0 50377957
Ň	-1 96533885	-1 86461350	-0.89236140
C	-0 17677319	-3 31231920	-1 58824852
Ru	-2 50768082	-0.00003108	0.00006991
Н	2 22064577	-1 93858801	-0.93816353
C	1 68000827	1 09967967	0.51884585
C	-0.62387260	2 12163302	1 01452684
C	-2 84902407	-2 77967573	-1 33340079
C	-1.09708075	-1 25518165	-1.555+0075 -2.04517812
N	-1.05708075	1 86456042	0.802/7320
Γ	1.90332270	0.00003440	0.0011862
N N	2 01545431	-0.00000000000000000000000000000000000	1 01086730
N	2.91545451	0.91243413	1 02002635
IN N	2 20552612	-0.91232231	0.00006880
	0.88565560	2 50666586	-0.00000889
Γ	2 45661006	-3.30000380	-1.00103211
C	-2.43001000	-3.96550652	-1.91440394
C	-0.1/0/4451	2 77061401	1.3002/444
C	-2.04099904	2.77901401	1.33334/10
C	-5.14002058	0.55250059	-1.11000309
C	-3.13990334	-0.33237009	1.11913409
C	-4.23/24900	1.03024440	-2.10310000
C	-4.23/13/09	-1.03031301	2.18340709
C	-2.02008139	1.34023332	-2.83004/18
C	-2.02393074	-1.340308/2 1 10270999	2.83013841
C	4.52299192	1.195/9000	-0.24239369 0.24239369
	4.32304210	-1.195/3039	0.24222140
П	2.22000514	1.93030032	0.93609333
П	-3.8900//49	-2.33038204	-1.21208902
н С	-0./55591//	-5.18249442	-2.49382009
C	-1.09/04328	4.25514489	2.04524070
C	-2.4303/493	5.98551400	1.914529//
C	-0.33093010	0.52804090	-1.11043091
C	-0.3308/332	-0.328/1390	1.110///3/
C	-2.40224337	1.91208510	-4.04319884
C	-4.09243317	1.00409023	-3.38313081
C	-4.09220008	-1.004/0209	5.58558450
C	-2.40203074	-1.91210240	4.04332/38
C	4.10/88/84	-2.09901838	1.2495/994
C	5.090/1440	-1.4//40103	-0.30413390
C	5.09070455	1.4//4/903	0.30390731
U U	4.10//3536	2.09966/10	-1.249/1152
H	-3.2110/328	-4.08520400	-2.25354954
	0.88568618	5.50005248	1.08102928
П	-3.89603321	2.33030/61	1.212882/1
П	-0.9/991403	1.21033433	-2.3/13080/
п	-0.9/9/8290	-1.21043013	2.3/130303
U	-/.210/08/6	-0.00003872	0.00018/09

H H H H H H

Н

H H C C H H

Η

 $\begin{array}{c} H \\ H \\ H \\ H \\ O \\ O \\ C \\ H \\ H \end{array}$

Н

0.7(111005	0.04(0(010	1 22 100 (2 (
-3.76111385	2.04636018	-4.32400626
-3.76089287	-2.04643616	4.32420475
4.84134852	-3.23651742	1.50301055
6.42864657	-2.62121708	-0.25823576
6.42858127	2.62132348	0.25795102
4.84114070	3.23659368	-1.50317797
-0.75554597	5.18246415	2.49386892
-3.21103195	4.68514270	2.25370295
-7.11608031	0.92348877	-1.93968804
-7.11598130	-0.92356627	1.94005694
-1.64391456	2.24081152	-4.74532292
-5.75416418	1.69875264	-3.58425124
-5.75398093	-1.69882532	3.58455316
-1.64367224	-2.24089297	4.74541096
3.23619562	-1.87591286	1.85612944
5.99512922	-0.80507503	-1.29937820
5.99519495	0.80515469	1.29910150
3.23600560	1.87594186	-1.85620034
6.01812282	-3.51796293	0.75658223
6.01795767	3.51806828	-0.75682772
-8.30234558	-0.00004069	0.00021392
-4.09372871	2.48688990	-5.25869048
-4.09346002	-2.48696835	5.25890478
4.55998336	-3.92707246	2.29089646
7.30591783	-2.82888159	-0.85908847
7.30588603	2.82901023	0.85874709
4.55969645	3.92715067	-2.29103394
6.64634332	-4.63684393	1.08620883
6.64611694	4.63697549	-1.08648193
7.87711620	-5.01688879	0.43409499
7.87692120	5.01705417	-0.43444712
7.70538024	-5.18755937	-0.63295327
8.17883740	-5.94508514	0.91604314
8.64099139	-4.24893526	0.58704672
7.70525229	5.18770425	0.63261521
8.17857710	5.94526760	-0.91640327
8.64081258	4.24912928	-0.58746159

EPR measurement:

The EPR measurement of $\mathbf{1}^{2+}$ (as-prepared sample) was performed in a solution in acetonitrile at room temperature on a Bruker ELEXSYS E500-10/12 spectrometer. The spectrometer frequency v is 9.51×10^9 Hz.