Turn-on the fluorescence of tetra(4pyridylphenyl)ethylene by the synergic interactions of mercury (II) cation and hydrogen sulfate anion

Guangxi Huang, Guanxin Zhang, Deqing Zhang*

Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory,

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

E-mail: dqzhang@iccas.ac.cn (D. Zhang)

Table of Contents

1. General information S1
2. Intermolecular arrangements within the crystal of 1
3. Plot of fluorescence quantum yield of 1 vs the water content S2
4. Absorption and fluorescence spectra of $1 (0.1 \text{ mM})$ in the presence of different amounts of $Hg(ClO_4)_2$
5. ¹ H NMR spectra of 1 in the presence of different amounts of $Hg(ClO_4)_2$ S3
6. DLS profile for 1 (0.1 mM) in the presence of $Hg(ClO_4)_2$ S4
7. Absorption spectra of 1 (10 μ M) in the presence of different amounts of Hg(ClO ₄) ₂ S4
8. DLS profiles for 1 (10 μ M) in the presence of Hg(ClO ₄) ₂ and Bu ₄ NHSO ₄ S5
9. Absorption spectra of 1 (10 μ M) after addition of Bu ₄ NHSO ₄ in the presence of Hg(ClO ₄) ₂ S5
10. Fluorescence spectra of 1 (10 μ M) after addition of Hg(ClO ₄) ₂ in the presence of Bu ₄ NHSO ₄ S6
11. Fluorescence spectra of 1 (10 μ M) after addition of various anions in the presence of Hg(ClO ₄) ₂ S6
12. Fluorescence spectra of 1 (10 μ M) after addition of Bu ₄ NHSO ₄ in the presence of various metal cationsS10
13. ¹ H NMR spectra of 1 after addition of Bu_4NHSO_4 in the presence and absence of $Hg(ClO_4)_2$ S15
14. XPS spectra of 1 after addition of $Hg(ClO_4)_2$ in the presence and absence of Bu_4NHSO_4

1. General Information

¹H NMR spectra were recorded on Bruker Avance 400 MHz. Fluorescence spectra were studied on a Hitachi F-4500 spectrometer. Absorption spectra were measured on a Hitachi U3010 spectrometer. Dynamic light scattering (DLS) experiments were carried out with Malvern Instrument (Nano Series). The sample solutions were filtered through a Millipore filtration system prior to DLS experiments. All solvents were purified and dried following standard procedures unless special statements.

Single crystal of **1** was grown by slow evaporation from dichloromethane/methanol (v/v 1:1) at room temperature. All diffraction data were collected on a Rigaku Saturn X-ray diffractometer with graphite-monochromator Mo-K α radiation ($\lambda = 0.71073$ Å) at 113 K. Intensities were corrected for absorption effects using the multi-scan technique SADABS. The structure was solved by direction methods and refined by a full matrix least squares technique based on F² using SHELXL 97 program (Sheldrick, 1997). Methanol molecules located in each crystal cell could not be satisfactorily resolved because of severe disorder. The SQUEEZE routine within the crystallographic program PLATON was employed in the treatment of the disordered methanol molecules of the crystal.

2. Intermolecular arrangements within the crystal of 1

Figure S1. Four unique molecules of 1 in the unit cell of crystal; solvent molecules of methanol were omitted for clarity.

3. Plot of the fluorescence quantum yield of 1 vs the water content

Figure S2. Plot of the fluorescence quantum yield of 1 vs the water content of DMF/water mixture; the fluorescence quantum yields (Φ_f) were measured with quinine sulfate in 0.1 M H₂SO₄ ($\Phi_f = 54\%$) as the standard; the absorbance of each solution at 360 nm (the excitation wavelength) was adjusted to be less than 0.05.

4. Absorption and fluorescence spectra of 1 (0.1 mM) in the presence of different amounts of $Hg(ClO_4)_2$

Figure S3. Absorption (a) and fluorescence (b) spectra (0.1 mM in DMF) upon addition of increasing amounts of $Hg(ClO_4)_2$ up to 8.0 equiv.

5. ¹H NMR spectra of 1 in the presence of different amounts of Hg(ClO₄)₂

Figure S4. ¹H NMR spectra of 1 (0.125 mM) in DMF- d_7 upon addition of 1.0-4.0 equiv. of Hg(ClO₄)₂

6. DLS profile for 1 (0.1 mM) in the presence of 4.0 equiv. $Hg(ClO_4)_2$

Figure S5. DLS profile for 1 (0.1 mM) in DMF (A) and after the addition of 4.0 equiv. of $Hg(ClO_4)_2$ (B)

7. Absorption spectra of 1 (10 µM) in the presence of different amounts of Hg(ClO₄)₂

Figure S6. Absorption spectra of 1 (10 μ M in DMF) upon addition of 1.0–50.0 equiv. of Hg(ClO₄)₂

8. DLS profiles for 1 (10 μM) in the presence of Hg(ClO_4)_2 and Bu_4NHSO_4

Figure S7. DLS profiles for **1** (10 μ M) in DMF (A), after the addition of 4.0 equiv. of Hg(ClO₄)₂ (B), and after further addition of 8.0 equiv. of Bu₄NHSO₄ (C).

9. Absorption spectra of 1 (10 μ M) after addition of Bu₄NHSO₄ in the presence of Hg(ClO₄)₂

Figure S8. Absorption spectra of **1** (10 μ M) in DMF after addition of Bu₄NHSO₄ (1.0-16.0 equiv.) in the presence of 4.0 equiv. of Hg(ClO₄)₂.

10. Fluorescence spectra of 1 (10 μ M) after addition of Hg(ClO₄)₂ in the presence of

Bu₄NHSO₄

Figure S9. Fluorescence spectra of 1 (10 µM in DMF) containing 8.0 equiv. of Bu₄NHSO₄

after addition of 1.0 - 4.0 equiv. of Hg(ClO₄)₂.

11. Fluorescence spectra of 1 (10 μM) after addition of various anions in the presence of

Hg(ClO₄)₂

Figure S10. Fluorescence spectra of the ensemble of **1** (10 μ M) (black) and 4.0 equiv. of Hg(ClO₄)₂ (red) in DMF after addition of various anions: a) Bu₄NF (2.0-8.0 equiv.), b) Bu₄NCl (2.0-8.0 equiv.), c) Bu₄NBr (2.0-8.0 equiv.), d) Bu₄NI (2.0-8.0 equiv.), e) Bu₄NAcO (2.0-8.0 equiv.), f) Bu₄NNO₃ (2.0-8.0 equiv.), g) Bu₄NPF₆ (2.0-8.0 equiv.), h) Bu₄NClO₄ (2.0-8.0 equiv.), i) Bu₄NH₂PO₄ (2.0-12.0 equiv.), j) (Bu₄N)₂SO₄ (1.0-16.0 equiv.).

12. Fluorescence spectra of 1 (10 µM) after addition of Bu₄NHSO₄ in the presence of

various metal cations

Figure S11. Fluorescence spectra of **1** (10 μ M) (black) in DMF after addition of Bu₄NHSO₄ (2.0-8.0 equiv.) in the presence of 4.0 equiv. of various metal cations (red): a) NaClO₄, b) Mg(ClO₄)₂, c) KClO₄, d) Ca(ClO₄)₂, e) Sc(ClO₄)₃, f) Mn(ClO₄)₂, g) Fe(ClO₄)₂, h) Co(ClO₄)₂, i) Ni(ClO₄)₂, j) Cu(ClO₄)₂, k) Zn(ClO₄)₂, l) AgClO₄, m) Cd(ClO₄)₂ and n) Pb(ClO₄)₂.

13. ¹H NMR spectra of 1 after addition of Bu₄NHSO₄ in the presence and absence of Hg(ClO₄)₂

Figure S12. ¹H NMR spectra of 1 (20 μ M) in DMF-d₇ upon addition of 4.0 equiv. of Hg(ClO₄)₂ and 1.0-8.0 equiv. of Bu₄NHSO₄.

Figure S13. ¹H NMR spectra of 1 (0.1 mM) in DMF- d_7 upon addition of 1.0-4.0 equiv. of Bu₄NHSO₄.

14. XPS spectra of 1 after addition of $Hg(ClO_4)_2$ in the presence and absence of Bu_4NHSO_4

Figure S14. XPS data of Hg4f for 1 after addition of $Hg(ClO_4)_2$ in the presence and absence of Bu_4NHSO_4 .

Figure S15. XPS data of N1s for 1 after addition of $Hg(ClO_4)_2$ in the presence and absence of Bu_4NHSO_4 .