Electronic Supplementary Information for the Manuscript

The halogen bond made visible: Experimental charge density of a very short intermolecular Cl…Cl donor-acceptor contact.

Ruimin Wang, Thomas Dols, Christian W. Lehmann, and Ulli Englert Institute of Inorganic Chemistry, RWTH Aachen University, Germany, and Max-Planck-Institut für Kohlenforschung, Mülheim, Germany

Synthesis:

Chemicals and reagents: Zincchloride and 3,4,5-trichloropyridine and 3-chloropyridine were purchased and used without further purification.

Preparation and Crystallization of 1

Crystals were directly obtained by reactant diffusion: 0.25 mmol (34 mg) ZnCl₂ were dissolved in 5 mL of ethanol and placed in a test tube. 3 mL of EtOH were layer above, and a third layer of 0.5 mmol (91 mg) of trichloropyridine was added. Colourless crystals formed after 3 days. Microanalysis for the solid: C 23.64, H 0.59, N 5.52 %; theoretical for $C_{10}H_4N_2Cl_8Zn$: C 23.97, H 0.80, N 5.59%.

Preparation of 2

10 mmol (1.36 g) of $ZnCl_2$ and 20 mmol (2.27 g) of 3-chloropyridine were dissolved separately, each in 20 mL of ethanol; the two solutions were mixed and stirred at room temperature. After 20 min, the off-white precipitate was filtered and dried in vacuo. Yield 2.55 g, 70%.

Crystallization of 2

An excess of **2** was suspended at 50° C in isopropanol; the hot suspension was filtered and the clear filtrate was slowly cooled to room temperature in a warm oil bath. Crystals formed after 15 hrs. Microanalysis for the solid: C 32.86, H 2.19, N 7.80 %; theoretical for $C_{10}H_8N_2Cl_4Zn$: C 33.05, H 2.22, N 7.71 %.

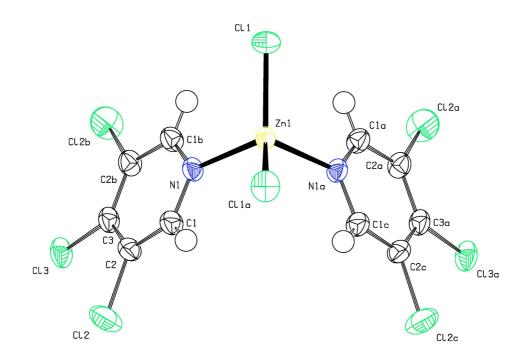
Crystallographic studies:

X-ray data collection

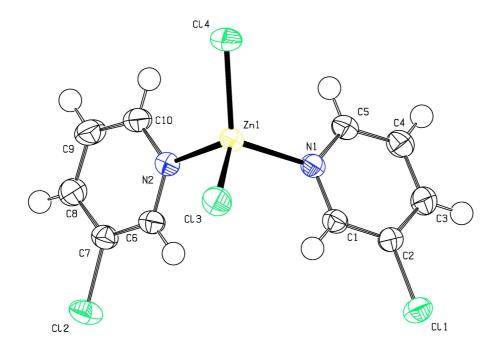
Intensity data for **1** were collected at 100 K on a Bruker AXS Mach3 goniometer with Kappa CCD detector. X-rays were generated by a rotating anode (Bruker AXS FR591) using Mo- $K\alpha$ radiation and a graphite monochromator. An Oxford Cryosystems 700 controller was used to ensure temperature stability during data collection.

Intensity data for **2** were collected at 100 K on a Bruker D8 goniometer equipped with an APEX CCD detector using Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). The radiation source was an

INCOATEC I- μ S microsource equipped with multilayer optics. An Oxford Cryosystems 700 controller was used to ensure temperature stability during data collection.


For both data sets the SAINT software [1] was used for integration. Data were merged with the program SHELXL97.[2] Crystal data and information concerning data collection is compiled in Table S1.

Spherical-atom refinement and multipole refinement


The structures were solved with direct methods and the independent atom refinement was performed by full-matrix least squares on F^2 .[2] Anisotropic displacement parameters were assigned to non-H atoms. Coordinates and isotropic displacement parameters of the only H atom in the asymmetric unit of **1** were refined, whereas the hydrogen atoms in **2** were included in idealized geometry.

The multipolar refinement was based on the independent atom model as starting geometry. It was carried out on F^2 according to the Hansen & Coppens formalism for aspherical atomic density expansion[3] as implemented in *XD*2006.[4] The VM databank was adopted for the refinement. For the metal center, the 12 electrons of $3d^{10}4s^2$ were regarded to populate the valence shell with the initial valence state of +2. Multipole coefficients up to hexadecapoles were refined for non-H atoms. For H atoms, positions were constrained to C-H bond distances of 1.083 Å and monopoles and bond-oriented dipoles were considered in the multipolar refinements. In all refinements the multipoles were introduced stepwise until a full hexadecapole expansion was reached. Convergence results and details about the treatment of contraction parameters have been compiled in Table S2.

1 and **2** are transition metal compounds with suitability factors [5] of 0.35 and 0.43, respectively. Residual densities after the multipole refinement are smaller than after the spherical-atom refinement but still higher than usually encountered for organic compounds; the most prominent maxima and minima are located in the neighborhood of the zinc centers.

Figure S1. Displacement ellipsoid plots [6] of a complex molecule in **1**, drawn at the 90% probability level. Symmetry operations: a = 1-x, 1-y, z; b = 1-y, 1-x, z; c = y, x, z.

Figure S2. Displacement ellipsoid plots [6] of a complex molecule in **2**, drawn at the 90% probability level.

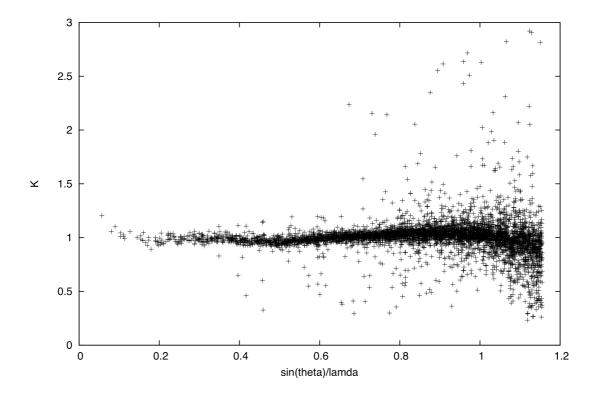

	1	2
Chemical formula	$C_{10}H_4Cl_8N_2Zn$	$C_{10}H_8Cl_4N_2Zn$
M _r	501.12	363.35
Crystal system, space group	Tetragonal, P4 ₂ nm	Triclinic, P-1
Temperature (K)	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.4404(3), 12.4404(3), 5.2602(3)	7.2699(10), 7.8257(11), 13.110(2)
$\alpha, \beta, \gamma(\text{deg})$		84.204(6), 89.280(6), 62.377(5)
$V(\text{\AA}^{-3})$	814.09(5)	656.97(17)
Ζ	2	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	2.811	2.658
Crystal form, size (mm)	Needle, 0.34*0.05*0.03	Prism, 0.29*0.26*0.25
Data collection		
Diffractometer	Bruker Kappa CCD	Bruker APEX CCD
	diffractometer (rotating anode)	diffractometer
Data-collection method	ω scans	ω scans
Absorption correction	Multi-scan SADABS	Multi-scan SADABS
T_{\min}, T_{\max}	0.448, 0.920	0.513, 0.556
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	1.155	1.148
No. of measured,		
independent, and observed		
reflections	81346, 5405, 5096	61942, 15656, 12077
Criterion for observed		
reflections	$I > 2\sigma(I)$	$I > 2\sigma(I)$
R _{int}	0.0426	0.0487
$ heta_{\max}$ (°)	55.21	54.71

Table S1 Crystal data and data collection parameters

	1	2
IAM model		
Function minimized	F^2	F^2
<i>R</i> 1 (obs)	0.0268	0.0271
<i>R</i> 1 (all)	0.0303	0.0363
wR2	0.0690	0.0587
<i>a</i> , <i>b</i> in weighting		
scheme	0.02, 0.42	0.02
S	1.051	1.012
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e}~{ m \AA}^{-3})$	1.063, -0.744	1.203, -1.090
No. of reflections	5405	15656
No. of parameters	60	154
Flack parameter	0.130(6)	
Multipole model		
Function minimized	F^2	F^2
<i>R</i> 1 (obs)	0.025	0.022
<i>R</i> 1 (all)	0.031	0.034
<i>R</i> 2, wR2	0.035, 0.075	0.038, 0.037
S	1.1399	0.945
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e~\AA}^{-3})$	0.925, -0.584	0.680, -0.803
Contraction		
parameters		
κ	refined for non H atoms; fixed to	refined for non H atoms; fixed to
	1.13 for H	1.13 for H
ĸ	fixed to 1.2 for Zn, Cl, H	fixed to 1.0 for Cl, 1.2 for H
	refined for N, C	refined for other atom types

Table S2 Refinement results on IAM and multipole model

Data quality and completeness for intensity data of **1** Plot of ratio K vs $\sin\theta/\lambda$; K is the ratio F_{obs}^2/F_{calc}^2

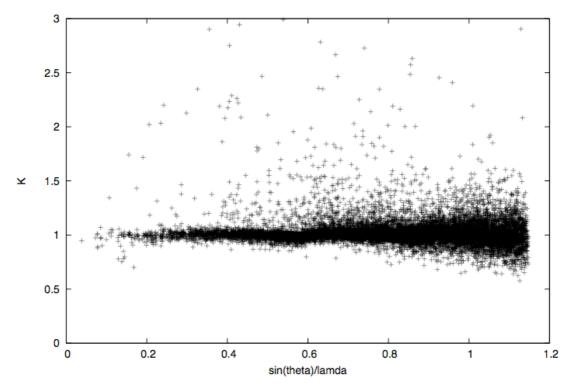
Summary of completeness for the experimental charge density data (Friedel pairs merged!)

θ	$sin(\theta_{max})/\lambda$	Complete	*Expected	*Measured	*Missing	*cumulative
20.82	0.500	0.993	268	266	2	
23.01	0.550	0.994	344	342	2	
25.24	0.600	0.995	443	441	2	
			A	ACTA Min. Re	es	
27.51	0.650	0.996	551	549	2	
29.84	0.700	0.997	686	684	2	
32.21	0.750	0.998	836	834	2	
34.65	0.800	0.998	1002	1000	2	
37.17	0.850	0.998	1188	1186	2	
39.77	0.900	0.999	1406	1404	2	
42.47	0.950	0.999	1636	1634	2	
45.29	1.000	0.999	1905	1903	2	
48.27	1.050	0.999	2190	2188	2	
51.43	1.100	0.999	2513	2511	2	
54.82	1.150	0.999	2853	2851	2	
55.21	1.156	0.997	2904	2895	9	

Summary of completeness for the experimental charge density data (Friedel pairs unmerged!)

overall SMAX = $\sin(\theta_{max})/\lambda = 1.156 \text{ Å}^{-1}$ overall DMIN = $1/(2*\sin(\theta_{max})/\lambda) = 0.43 \text{ Å}$

N = 5682 MEASURED UNIQUE HKL


M = 74 MISSING UNIQUE HKL WITH $sin(\theta_{max})/\lambda < SMAX$

overall completeness = 98.7%

DISTRIBUTION OF MEASURED AND MISSING REFLECTIONS IN EQUAL-VOLUME RESOLUTION SHELLS

SHELL	SHELL	NHKL	NHKL	PERCENT
SMAX	DMIN	MEASURED	MISSING	COMPLETENESS
0.4257	1.175	324	9	97.3
0.5363	0.932	300	1	99.7
0.6140	0.814	287	5	98.3
0.6758	0.740	280	7	97.6
0.7279	0.687	294	5	98.3
0.7736	0.646	271	5	98.2
0.8143	0.614	294	5	98.3
0.8514	0.587	269	2	99.3
0.8855	0.565	283	4	98.6
0.9171	0.545	287	2	99.3
0.9468	0.528	273	2	99.3
0.9746	0.513	287	2	99.3
1.0010	0.500	280	0	100.0
1.0260	0.487	291	2	99.3
1.0499	0.476	261	1	99.6
1.0727	0.466	283	1	99.6
1.0946	0.457	283	0	100.0
1.1157	0.448	284	0	100.0
1.1359	0.440	267	1	99.6
1.1555	0.433	284	21	93.1

Data quality and completeness for intensity data of 2

Plot of ratio K vs sin θ/λ ; K is the ratio F_{obs}^2/F_{calc}^2

Summary of completeness for the experimental charge density data

θ	sin($(\theta_{max})/\lambda$	Complete	*Expected	*Measured	*Missing	*cumulative
2	0.82	0.500	1.000	1369	1369	0	
2	3.01	0.550	1.000	1833	1833	0	
2	5.24	0.600	1.000	2389	2389	0	
					- ACTA Min.	Res	
2	7.51	0.650	1.000	3022	3022	0	
2	9.84	0.700	0.999	3760	3756	4	
3	2.21	0.750	0.998	4635	4625	10	
3	4.65	0.800	0.996	5656	5633	23	
3	7.17	0.850	0.994	6755	6712	43	
3	9.77	0.900	0.991	8003	7933	70	
4	2.47	0.950	0.988	9434	9317	117	
4	5.29	1.000	0.983	11014	10830	184	
4	8.27	1.050	0.975	12755	12432	323	
5	1.43	1.100	0.964	14631	14110	521	
5	4.71	1.148	0.940	16656	15656	1000	

Table S3. Topological properties for bond critical points in 1; dist is the interatomic distance, d_{ij} the total bond path $d_1 + d_2$, d_1 and d_2 the distances from the bond critical point to the 1st and 2nd atom along the bond path; ρ and $\nabla^2 \rho$ represent the electron density and its Laplacian at the bond critical point. Note the large discrepancy between the interatomic distance H(1) \cdots Cl(3)^b and the bond path due to the pronounced curvature of the latter.

Bond	dist(Å)	d _{ij} (Å)	$d_1(Å)$	d₂(Å)	ρ(eÅ ⁻³)	∇2(eÅ⁻⁵)
$Cl(1) \cdots Cl(3)^{a}$	3.1912(6)	3.1912	1.5779	1.6133	0.107(2)	1.102(4)
$H(1) \cdots Cl(3)^{b}$	2.84	3.0412	1.2529	1.7882	0.054(6)	0.424(3)
Zn(1)-Cl(1)	2.2048(3)	2.2051	1.0161	1.1890	0.47(2)	5.03(2)
Zn(1)-N(1)	2.0764(8)	2.0798	1.0320	1.0478	0.38(2)	7.12(3)
Cl(2)-C(2)	1.7113(7)	1.7118	0.9425	0.7694	1.41(8)	-7.1(2)
Cl(3)-C(3)	1.7014(9)	1.7144	1.0042	0.7102	1.53(5)	-13.1(2)
N(1)-C(1)	1.3379(8)	1.3437	0.8686	0.4752	2.41(7)	-36.7(3)
C(3)-C(2)	1.3980(8)	1.3984	0.7366	0.6618	2.31(6)	-27.3(2)
C(2)-C(1)	1.3882(10)	1.3900	0.6755	0.7146	2.16(6)	-28.4(2)
C(1)-H(1)	1.083	1.0850	0.6618	0.4232	1.7(2)	-13.9(4)

a= 3/2-y,1/2+x,3/2+z b= -1/2+y,1/2-x,1/2+z

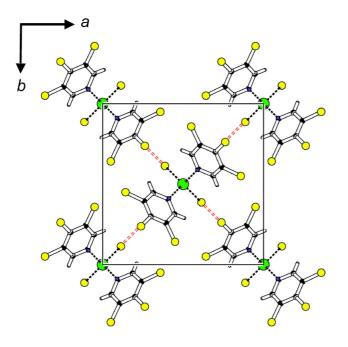
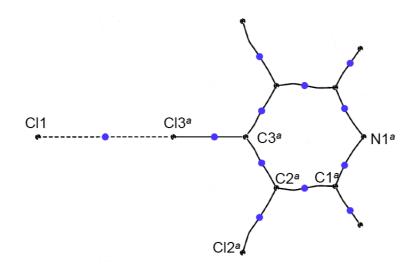



Figure S3. Packing diagram [6] for 1; the short Cl...Cl contacts are shown as dashed red lines.

Figure S4. Molecular graph [4] around the short Cl···Cl contacts in 1; nuclear attractors and bond paths are shown in black (Cl···Cl dashed), bond critical points in blue.

Table S4. Topological properties for bond critical points in **2**; dist is the interatomic distance, d_{ij} the total bond path $d_1 + d_2$, d_1 and d_2 the distances from the bond critical point to the 1st and 2nd atom along the bond path; ρ and $\nabla^2 \rho$ represent the electron density and its Laplacian at the bond critical point.

Bond	dist(Å)	d _{ij} (Å)	d1(Å)	d ₂ (Å)	ρ(eÅ ⁻³)	∇2(eÅ⁻⁵)
Cl(1)Cl(1)ª	3.3651(6)	3.3650	1.6825	1.6825	0.048(2)	0.576(2)
$Cl(2)\cdots Cl(2)^{k}$	3.5480(6)	3.5480	1.7738	1.7742	0.041(2)	0.489(2)
Cl(1)H(3) ^c	2.77	2.7684	1.7466	1.0218	0.046(7)	0.632(2)
$Cl(4) \cdots H(10)$	2.73	2.7416	1.6335	1.1081	0.080(3)	0.841(2)
Zn(1)-Cl(3)	2.22445(14)	2.2246	1.0359	1.1887	0.437(7)	6.855(4)
Zn(1)-Cl(4)	2.21662(14)	2.2171	1.0336	1.1835	0.387(7)	6.403(4)
Zn(1)-N(1)	2.0514(6)	2.0534	1.0011	1.0523	0.532(8)	8.89(2)
Zn(1)-N(2)	2.0831(6)	2.0834	1.0133	1.0701	0.509(8)	8.88(2)
Cl(1)-C(2)	1.7218(5)	1.7226	0.9784	0.7442	1.37(2)	-4.20(5)
Cl(2)-C(7)	1.7199(5)	1.7208	0.9203	0.8004	1.20(2)	-0.11(5)
N(1)-C(1)	1.3453(7)	1.3457	0.8255	0.5202	2.45(3)	-27.6(2)
N(1)-C(5)	1.3475(6)	1.3495	0.7698	0.5797	2.29(3)	-23.23(9)
N(2)-C(6)	1.3434(7)	1.3447	0.7945	0.5503	2.29(3)	-21.9(2)
N(2)-C(10)	1.3443(7)	1.3443	0.8239	0.5205	2.53(3)	-33.1(2)
C(1)-C(2)	1.3869(7)	1.3869	0.6878	0.6991	2.20(2)	-21.95(6)
C(1)-H(1)	1.083	1.0833	0.7797	0.3036	1.72(4)	-18.3(2)
C(2)-C(3)	1.3930(7)	1.3936	0.7824	0.6113	1.93(3)	-17.05(8)
C(3)-C(4)	1.3898(8)	1.3897	0.6782	0.7115	2.07(2)	-19.83(6)
C(3)-H(3)	1.083	1.0842	0.7629	0.3213	1.83(5)	-19.9(2)
C(4)-C(5)	1.3886(7)	1.3893	0.7131	0.6762	2.17(2)	-20.9(2)
C(4)-H(4)	1.083	1.0842	0.7595	0.3247	1.66(4)	-15.3(2)
C(5)-H(5)	1.083	1.0858	0.7903	0.2955	1.70(5)	-14.5(2)
C(6)-C(7)	1.3918(7)	1.3926	0.5976	0.7950	2.21(2)	-21.72(9)
C(6)-H(6)	1.083	1.0834	0.7876	0.2958	1.79(5)	-20.3(2)
C(7)-C(8)	1.3874(8)	1.3873	0.6707	0.7167	2.36(2)	-25.39(6)
C(8)-C(9)	1.3890(8)	1.3892	0.7064	0.6828	2.17(2)	-20.09(6)
C(8)-H(8)	1.083	1.0834	0.7896	0.2938	1.65(5)	-16.2(3)
C(9)-C(10)	1.3887(8)	1.3894	0.7371	0.6524	2.23(2)	-22.79(7)
C(9)-H(9)	1.083	1.0845	0.8056	0.2790	1.71(5)	-19.4(3)
C(10)-H(10)	1.083	1.0875	0.7819	0.3056	1.84(5)	-19.0(2)

a=-1-x,-y,1-z b=-1-x,1-y,-z c=-x,-1-y,1-z

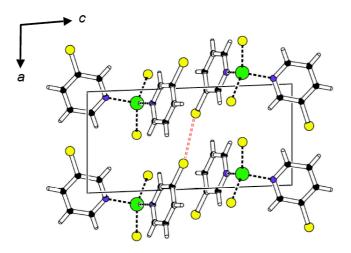
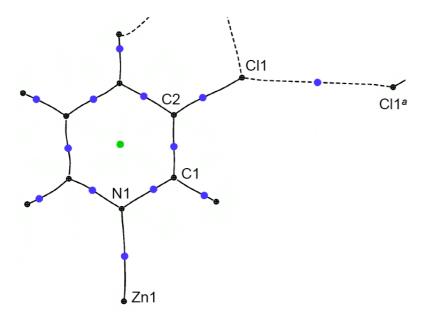



Figure S5. Packing diagram [6] for 2; the short Cl...Cl contacts are shown as dashed red lines.

Figure S6. Molecular graph [4] around the short Cl…Cl contacts in **2**; nuclear attractors and bond paths are shown in black (Cl…Cl and hydrogen bonds dashed), bond critical points in blue, ring critical point in green.

References:

- 1. Bruker SAINT, Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
- 2. Sheldrick, G. M. Acta Crystallogr. Sect A 2008, 64, 112.
- 3. Hansen, N. K. & Coppens, P. Acta Crystallogr. Sect A 1978, 34, 909.
- 4. Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallison, P. R., Richter, T. &

Koritsanszky, T. XD2006, University of New York at Buffalo, USA, 2006.

- 5. Coppens, P. Isr. J. Chem. 1977, 16, 144–148.
- 6. Spek, A. L. Acta Crystallogr. Sect. D, 2009, 65, 148.