Supplementary Material (ESI) for Chemical Communications This Journal is (c) The Royal Society of Chemistry 2012

Supporting Information for:

Intermediates in the Rh-catalysed dehydrocoupling of Phosphine Boranes

Miguel A. Huertos and Andrew S. Weller*

Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 6QR

Experimental	S-2
Synthesis of new complexes	S-2
NMR and ESI-MS characterisation	S-5
Catalytic study with [Rh(P ^t Bu ₂ H) ₂ (C ₆ H ₅ F)][Bar ^F ₄]	S-9
Catalytic study with [Rh(COD) ₂][BAr ^F ₄]	S-12
Reactivity of [Rh(P ⁱ Bu ₃) ₂ (C ₆ H ₅ F)][BAr ^F ₄]	S-13
Reactivity of [Rh(P ^t Bu ₂ H) ₂ (η ² -H ₃ B·P ^t Bu ₂ H)][BAr ^F ₄] (4a) with H ₃ B·P ^t Bu ₂ H (1a)	S-14
Reactivity of [Rh(COD)(Ρ ^t Bu ₂ H)(η ² -H ₃ B·Ρ ^t Bu ₂ H)][BAr ^F ₄] (6a) with H ₃ B·Ρ ^t Bu ₂ H (1a)	S-15
4a + D ₂	S-16
Crystallography	S-17
References	S-18

Supplementary Material (ESI) for Chemical Communications This Journal is (c) The Royal Society of Chemistry 2012

Experimental

All manipulations, unless otherwise stated, were performed under an atmosphere of argon, using standard Schlenk and glove-box techniques. Glassware was oven dried at 130°C overnight and flamed under vacuum prior to use. Hexane and pentane were dried using a Grubbs type solvent purification system (MBraun SPS-800) and degassed by successive freeze-pump-thaw cycles.¹ CD₂Cl₂, C₆H₅F and 1,2-F₂C₆H₄ were distilled under vacuum from CaH₂ and stored over 3 Å molecular sieves. 1,2-F₂C₆H₄ was stirred over alumina for two hours prior to drying. H₃B PPh₂H, H₃B P^tBu₂H and P^tBu₂H were purchased from Aldrich used as supplied. $[Rh(COD)_2][BAr^{F_4}]^2$ $[Rh(P^{i}Bu_3)_2(C_6H_5F)][BAr^{F_4}]^3$ $[Rh(NBD)Cl]_2^4$ (NBD = norbornadiene) and **2a**⁵ were prepared as previously described and $[Rh(NBD)(P^tBu_2H)_2][BAr^{F_4}]$ was prepared by an adaptation of the published route using NaBArF46 and PR3.7 NMR spectra were recorded on Varian Unity Plus 500 MHz spectrometers at room temperature unless otherwise stated. In 1,2-F₂C₆H₄, ¹H NMR spectra were referenced to the centre of the downfield solvent multiplet (δ = 7.07). Chemical shifts are quoted in ppm and coupling constants in Hz. Pcq = partially collapsed quartet. ESI-MS were recorded on a Bruker MicrOTOF instrument. Typical acquisition parameters were: Sample flow rate (4 µL/ min), nebuliser gas pressure (0.4 bar), drying gas (argon at 60°C, flowing at 4L/ min), capillary voltage 4.5 kV, funnel voltage (200 V). MS samples were diluted to a concentration of 1 x 10⁻⁶ M before running. Microanalyses were performed by Elemental Microanalysis Ltd and London Metropolitan University.

Synthesis of new complexes

Preparation of [Rh(PtBu₂H)₂(C₆H₅F)][BArF₄]

A solution of $[Rh(NBD)(P^tBu_2H)_2][BAr^F_4]$ (50 mg, 0.074 mmol) in C₆H₅F (5 mL) was placed under 4 atm H₂. A colour change from bright orange to pale orange was observed upon warming the sample to room temperature. The solution was thoroughly degassed by freeze/pump/thaw methods, evaporated to dryness and the residue washed with pentane (3 x 5 mL) to yield $[Rh(P^tBu_2H)_2(C_6H_5F)][BAr^F_4]$ as a pale orange powder (82 mg, 82%).

¹**H NMR (500 MHz, C₆H₅F):** δ 8.33 (s, 8H, BAr^F₄), 7.64 (s, 4H, BAr^F₄), 3.72 (AA'MM'XY, 2H, ¹J_{A-M}= 355 Hz, ³J_{A-M}= 12 Hz, ²J_{M-M}= 25 Hz, ²J_{A-X}≈ 0, ³J_{A-Y}≈ 0, PH), 1.02 (d, 36H, ³J_{H-P}= 14 Hz, ^tBu). Signals from C₆H₅F not observed.

³¹P{¹H} NMR (202 MHz, C₆H₅F): δ 87.1 (d, J_{Rh-P}= 200 Hz)

ESI-MS (C₆H₅F, 60°C): positive ion: *m*/*z*, 491.19 [M]⁺ (calc. 491.19).

Microanalysis: (C₅₄BH₅₅P₂RhF₂₅) Calc.: C, 47.88; H, 4.09. Found: C, 47.79; H, 3.94.

Preparation of $[Rh(P^tBu_2H)_2(\eta^2-H_3B\cdot P^tBu_2BH_2\cdot P^tBu_2H)][BAr^F_4]$ (3a)

To a Youngs flask charged with $[Rh(P^tBu_2H)_2(C_6H_5F)][BAr^{F_4}]$ (50 mg, 0.037 mmol) and $H_3B \cdot P^tBu_2BH_2 \cdot P^tBu_2H$ (2a) (12 mg, 0.038 mmol) was added 1,2-F₂C₆H₄ (5 mL). The solution was stirred at room temperature for 1 hour and a change in the colour from pale orange to blue was observed. The diffusion of pentane (15 mL) into the solution gave 3a as a blue microcrystalline solid (39 mg, 67%).

¹**H NMR (500 MHz, 1,2-F₂C₆H₄):** δ 8.34 (s, 8H, BAr^F₄), 7.69 (s, 4H, BAr^F₄), 4.28 (dq, 1H, ¹*J*_{H-P}= 366 Hz, ²*J*_{H-B}= 6 Hz, B-PH), 3.91 (AA'MM'XY, 2H, ¹*J*_{A-M}= 330 Hz, ³*J*_{A-M}= 20 Hz, ²*J*_{M-M}= 23 Hz, ²*J*_{A-X} \approx 0, ³*J*_{A-Y} \approx 0, PH), 1.44 (d, 18H, ³*J*_{H-P}= 13 Hz, ^tBu) 1.43 (d, 36H, ³*J*_{H-P}= 14 Hz, ^tBu), 1.37 (d, 18H, ³*J*_{H-P}= 15 Hz, ^tBu), 2-0.5 (vbr, 2H, BH₂), - 1.91 (pcq, 3H, ¹*J*_{B-H}= 86 Hz, BH₃).

³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄): δ 91.6 (d, J_{Rh-P}= 174 Hz), 37.6 (br), 7.1 (br).

¹¹B NMR (160 MHz, 1,2-F₂C₆H₄): δ 8.1 (br), -38.5 (m).

ESI-MS (1,2-F₂C₆H₄, 60°C): positive ion: *m*/*z*, 713.44 [M]⁺ (calc. 713.44).

Microanalysis: (C₆₄B₃H₉₂P₄RhF₂₄) Calc.: C, 48.76; H, 5.88. Found: C, 48.69; H, 5.86.

Preparation of $[Rh(P^tBu_2H)_2(\eta^2-H_3B\cdot P^tBu_2H)][BAr^F_4]$ (4a)

To a Youngs flask charged with $[Rh(P^tBu_2H)_2(C_6H_5F)][BAr^F_4]$ (50 mg, 0.037 mmol) and $H_3B \cdot P^tBu_2H$ (**1a**) (6 mg, 0.038 mmol) was added 1,2- $F_2C_6H_4$ (5 mL). The solution was stirred at room temperature for 1 hour and a change in the colour from pale orange to blue was observed. The resulting solution was layered with pentane and held at 5 °C for 72 hours to afford the product as blue crystals (42 mg, 78%).

¹**H NMR (500 MHz, C₆H₄F₂):** δ 8.33 (s, 8H, BAr^F₄), 7.68 (s, 4H, BAr^F₄), 4.74 (d, 1H, ¹*J*_{H-P}= 389 Hz, B-PH), 3.92 (AA'MM'XY, 2H, ¹*J*_{A-M}= 345 Hz, ³*J*_{A-M}= 22 Hz, ²*J*_{M-M}= 25 Hz, ²*J*_{A-X} \approx 0, ³*J*_{A-Y} \approx 0, PH), 1.42 (d, 36H, ³*J*_{H-P}= 15 Hz, ^tBu), 1.40 (d, 18H, ³*J*_{H-P}= 15 Hz, ^tBu), -1.89 (pcq, 3H, ¹*J*_{B-H}= 96 Hz, BH₃).

³¹P{¹H} NMR (202 MHz, C₆H₄F₂): δ 90.5 (d, J_{Rh-P}= 175 Hz), 31.7 (br).

¹¹B NMR (160 MHz, C₆H₄F₂): δ 0.3 (br).

ESI-MS (C₆H₄F₂, 60°C): positive ion: *m*/*z*, 555.30 [M]⁺ (calc. 555.30).

Microanalysis: (C₅₆B₂H₇₂P₄RhF₂₄) Calc.: C, 47.41; H, 5.12. Found: C, 47.63; H, 5.08.

Preparation of $[Rh(H_2)(P^tBu_2H)_2(\eta^2-H_3B\cdot P^tBu_2H)][BAr^F_4]$ (5a)

A solution of **4a** (10 mg, 0.007 mmol) in $1,2-C_6H_4F_2$ (0.4 mL) was placed under hydrogen (4 atm) to form **5a** in quantitative yield. **5a** was characterised *in situ* by ¹H, ³¹P{¹H}, ¹¹B NMR and ESI-MS.

¹**H NMR (500 MHz, 1,2-F₂C₆H₄):** δ 8.34 (s, 8H, BAr^F₄), 7.69 (s, 4H, BAr^F₄), 4.52 (dq, 1H, ¹*J*_{H-P}= 369 Hz, ²*J*_{H-B}= 5 Hz, B-PH), 4.33 (d, 2H, *J*_{H-P}=318 Hz, PH), 1.39 (d, 36H, ³*J*_{H-P}= 14 Hz, ^tBu), 1.35 (d, 18H, ³*J*_{H-P}= 15 Hz, ^tBu), -0,94 (pcq, 3H, ¹*J*_{B-H}= 104 Hz, BH₃), -17.67 (dt, 2H, ¹*J*_{H-Rh}= 20 Hz, ²*J*_{H-P}= 15 Hz, Rh-H).

³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄): δ 81.0 (d, J_{Rh-P}= 107.3 Hz), 27.4 (br).

¹¹B NMR (160 MHz, 1,2-F₂C₆H₄): δ -20.4 (br).

ESI-MS (1,2-F₂C₆H₄, 60°C): positive ion: *m*/*z*, 557.32 [M]⁺ (calc. 557.32).

Preparation of $[Rh(COD)(P^tBu_2H)(\eta^2-H_3B\cdot P^tBu_2H)][BAr^F_4]$ (6a)

To a Youngs flask charged with $[Rh(COD)_2][BArF_4]$ (70 mg, 0.059 mmol) and $H_3B \cdot P^tBu_2H$ (**1a**) (19 mg, 0.120 mmol) was added 1,2-F₂C₆H₄ (10 mL). The solution was stirred at 40 °C for 24 hours and a change in the colour from pale orange to yellow was observed. The diffusion of pentane (20 mL) into the solution gave **3a** as a pale yellow microcrystalline solid (67 mg, 82%).

¹**H NMR (500 MHz, 1,2-F₂C₆H₄):** δ 8.33 (s, 8H, BAr^F₄), 7.68 (s, 4H, BAr^F₄), 5.12 (s, 2H, COD), 4.10 (dq, 1H, ¹J_{H-P}= 359 Hz, ²J_{H-B}= 5 Hz, B-PH), 5.12 (s, 2H, COD), 3.15 (d, 1H, ¹J_{H-P}= 336 Hz, PH), 2.45 (m, 2H, COD), 2.28 (m, 2H, COD), 2.19 (m, 2H, COD), 2.05 (m, 2H, COD), 1.44 (d, 18H, ³J_{H-P}= 14 Hz, ^tBu), 1.39 (d, 18H, ³J_{H-P}= 15 Hz, ^tBu), -0.62 (pcq, 3H, ¹J_{B-H}= 98 Hz, BH₃).

³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄): δ 79.3 (d, J_{Rh-P}= 138 Hz), 28.5 (br).

¹¹B NMR (160 MHz, 1,2-F₂C₆H₄): δ -35.5 (br).

ESI-MS (1,2-F₂C₆H₄, 60°C): positive ion: *m*/*z*, 517.29 [M]⁺ (calc. 517.29).

Microanalysis: (C₅₆B₂H₆₅P₂RhF₂₄) Calc.: C, 48.72; H, 4.75. Found: C, 48.74; H, 4.80.

Preparation of [(PtBu₂H)₂BH₂][BH₄] (7[BH₄])

Monobromoborane-metylsulfide complex (280 μ L of 1.0 M CH₂Cl₂ solution, 0.280 mmol) was added to a stirred solution of di-*tert*-butylphosphine (100 μ L, 0.540 mmol) in CH₂Cl₂ (10 mL). After 40 h, the volatiles were removed under vacuum, and the resulting white solid was washed with hexane and then dissolved in CH₂Cl₂ (5 mL). To this solution was added Li[BH₄] (10 mg, 0.280 mmol), and then stirred for 12 h. before filtering to removed LiCl. The solution was evaporated to dryness, the residue washed with hexane (3 x 5 mL) and dried under vacuum (83 mg, 74%).

¹**H NMR (500 MHz, 1,2-F₂C₆H₄):** δ 8.32 (s, 8H, BAr^F₄), 7.69 (s, 4H, BAr^F₄), 4.35 (dm, 2H, ¹*J*_{H-P}= 372 Hz, PH), 2.32 (br, qu, 4H, ¹*J*_{H-B}= 105 Hz, BH₄), 1.44 (d, 36H, ³*J*_{H-P}= 14 Hz, ^tBu). Signals from BH₂ not observed.

³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄): δ 34.9 (m, br).

¹¹B NMR (160 MHz, 1,2-F₂C₆H₄): δ -41.1 (m, br, 2B) BH₂ and BH₄ peaks are coincident.

ESI-MS (1,2-F₂C₆H₄, 60°C): positive ion: *m*/*z*, 305.27 [M]⁺ (calc. 305.27).

Preparation of [(P^tBu₂H)₂BH₂][BAr^F₄] (7[BAr^F₄])

Compound **7[BAr^F₄]** was made as described above for **7[BH**₄] but using Na[BAr^F₄] (248 mg, 0.280 mmol) (291 mg, 90%).

¹**H NMR (500 MHz, 1,2-F₂C₆H₄):** δ 8.32 (s, 8H, BAr^F₄), 7.69 (s, 4H, BAr^F₄), 4.54 (dm, 2H, ¹*J*_{H-P}= 380 Hz, PH),

Supplementary Material (ESI) for Chemical Communications This Journal is (c) The Royal Society of Chemistry 2012

1.38 (d, 36H, ${}^{3}J_{H-P}$ = 16 Hz, ${}^{t}Bu$). Signals from BH₂ not observed.

³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄): δ 36.6 (m, br).

¹¹B NMR (160 MHz, 1,2-F₂C₆H₄): δ -41.1 (m, br).

NMR and ESI-MS characterisation

Figure S.2: ¹¹B NMR (160 MHz, 1,2-F₂C₆H₄) spectra of **3a**, **4a**, **5a** and **6a** all over the same chemicals shift range. $* = H_3B \cdot P^tBu_2H$ (1a).

Figure S.3: ¹H NMR (500 MHz, 1,2-F₂C₆H₄) spectrum of 3a. ***** = 1,2-F₂C₆H₄.

Figure S.5: ¹H NMR (500 MHz, 1,2-F₂C₆H₄) spectrum of **5a**. ***** =1,2-F₂C₆H₄, † = H₂.

Figure S.7: Observed (top) and simulated (bottom) ESI-MS of 3a, 4a, 5a and 6a in 1,2-F₂C₆H₄. ***** = 4a (5a loses H₂ under Ar atmosphere to give [M-H₂]*).

Catalytic study with $[Rh(P^tBu_2H)_2(C_6H_5F)][BArF_4]$

Dehydrocoupling of H₃B·P^tBu₂H (**1a**) using 5 mol% of $[Rh(P^tBu_2H)_2(C_6H_5F)][BArF_4]$ at 140 °C in melt conditions led to compound **2a** in approximately 65% conversion in 20 hours. Monitoring the melt reaction using ³¹P{¹H} NMR spectroscopy and ESI-MS (in 1,2-F₂C₆H₄ solutions for both) showed as well as **2a**, PH^tBu₂ (free phosphine) and [^tBu₂HP·BH₂·PH^tBu₂]⁺ (**7**⁺) assumed to be the [BH₄]⁻ salt (Figure S.8). By monitoring the same reaction but using 20 mol% of [Rh(P^tBu₂H)₂(C₆H₅F)][BArF₄] we have identified possible intermediate species (Figures S.9 and S.10).

Scheme S.1: Catalytic dehydrocoupling of 1a to give 2a (left) and possible intermediate species (right). Bottom: Reaction of 8 -C₆H₄F₂ when you solve it in difluorobenzene, formation of 8.

Figure S.8: ³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄) spectra for the catalytic dehydrocouplin of **1a** to give **2a** (melt, 140 °C) at 1 hour (top), 5 hours (middle) and 20 hours (bottom). **†** = PH^tBu₂. After 30 hours no changes observed.

Figure S.9: ³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄) spectrum for the catalytic dehydrocoupling of **1a** to give **2a** (melt, 140 °C) at 5 hours using 20 mol% of [Rh(P^tBu₂H)₂(C₆H₅F)][BAr^F₄]. In the box, signals for intermediate species **8** and **3a**. † = free PH^tBu₂. ***** = unknown species.

Supplementary Material (ESI) for Chemical Communications This Journal is (c) The Royal Society of Chemistry 2012

★ = unknown species. We see no evidences from the specie ['Bu₂HP ·BH₂ ·P'Bu₂ ·BH₂ ·P'Bu₂H]⁺ by NMR spectroscopy and assume arises from fragmentation in the ESI-MS.

Catalytic study with [Rh(COD)₂][BArF₄]

Dehydrocoupling of $H_3B \cdot P^tBu_2H$ (**1a**) using 5 mol% of $[Rh(COD)_2][BArF_4]$ at 140 °C in melt conditions led to compound **2a** in approximately 65% of conversion in 20 hours. Monitoring the melt reaction, after 5 hours, using ³¹P{¹H} NMR spectroscopy and ESI-MS (in 1,2-F₂C₆H₄ solutions for both) showed as well as **2a**, PH^tBu₂ (free phosphine) and [^tBu₂HP ·BH₃ ·PH^tBu₂]⁺ (**7**⁺). We have also identified possible organometallic intermediate species (Figure S.11).

Figure S.11: Left: ³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄) spectrum for the catalytic dehydrocoupling of **1a** to give **2a** (melt, 140 °C) at 5 hours. In the box, signals for intermediate species **8** and **3a**. † = free PHⁱBu₂. ***** = unknown species. **Right:** Observed ESI-MS for the catalytic dehydrocoupling of **1a** (melt, 140 °C) at 5 hours.

Supplementary Material (ESI) for Chemical Communications This Journal is (c) The Royal Society of Chemistry 2012

Reactivity of [Rh(PiBu₃)₂(C₆H₅F)][BArF₄]

To a Youngs NMR tube charged with $[Rh(P^{i}Bu_{3})_{2}(C_{6}H_{5}F)][BAr^{F}_{4}]$ (10 mg, 0.007 mmol) an equimolar amount of H₃B P^tBu₂H (**1a**) (1.2 mg, 0.007 mmol) was added 1,2-F₂C₆H₄ (0.4 mL). Instantaneously, a change in the colour from pale orange to blue was observed and the products of this reaction were characterised *in situ* by ¹H, ³¹P{¹H} and ¹¹B NMR spectroscopy and interrogated by NMR spectroscopy after 24 and 72 hours at room temperature (Figure S.12).

Scheme S.2: Reaction of $[Rh(P^{i}Bu_{3})_{2}(C_{6}H_{5}F)][BAr^{F}_{4}]$ with **1a**. Formation of the sustances $[Rh(P^{i}Bu_{3})_{n}(P^{t}Bu_{2}H)_{2-n}(H_{3}B \cdot PR_{3})][BAr^{F}_{4}]$ (PR₃ = PⁱBu₃, P^tBu₂H; n = 2–0) (I, II and III).

Figure S.12: ³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄) spectra of the reaction between [Rh(PⁱBu₃)₂(C₆H₅F)][BAr^F₄] and **1a** after 0 hours (top), 24 hours (middle) and 72 hours (bottom).

Reactivity of $[Rh(P^tBu_2H)_2(\eta^2-H_3B\cdot P^tBu_2H)][BAr^F_4]$ (4a) with $H_3B\cdot P^tBu_2H$ (1a)

A Youngs NMR tube charged with $[Rh(P^tBu_2H)_2(\eta^2-H_3B \cdot P^tBu_2H)][BAr^F_4]$ (4a) (10 mg, 0.007 mmol), an equimolar amount of $H_3B \cdot P^tBu_2H$ (1.2 mg, 0.007 mmol) (1a) and 1,2- $F_2C_6H_4$ (0.4 mL) was heated for 5 hours at 60 °C and for 15 hours at 75 °C. The mixture of reaction changed in colour from blue to yellow with the formation of 5a.

Scheme S.3: Reaction of 4a with 1a. Formation of 5a and 3a.

Figure S.13 : ³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄) spectra of the reaction of **4a** and 1 eq. of **1a** after 0 hours (top), 5 hours at 60 °C (middle) and 15 hours at 75 °C (bottom). Only the Rh-PH^tBu₂ area is shown for clarity.

Reactivity of $[Rh(COD)(P^tBu_2H)(\eta^2-H_3B\cdot P^tBu_2H)][BAr^F_4]$ (6a) with $H_3B\cdot P^tBu_2H$ (1a)

A Youngs NMR tube charged with $[Rh(COD)(P^tBu_2H)(\eta^2-H_3B \cdot P^tBu_2H)][BAr^F_4]$ (**6a**) (10 mg, 0.007 mmol), 2 equivalents of $H_3B \cdot P^tBu_2H$ (**1a**) (2.4 mg, 0.014 mmol) and 1,2- $F_2C_6H_4$ (0.4 mL) was heated for 48 hours at 75 °C until **5a** was formed in almost quantitative yield.

Figure S.14 : ³¹P{¹H} NMR (202 MHz, 1,2-F₂C₆H₄) spectra of the reaction of **6a** and 2 eq. of **1a** after 0 hours (top), 24 hours (middle) and 48 hours (bottom). ***** = unidentified product (< 5%).

4a + D₂

A solution of **4a** (10 mg, 0.007 mmol) in 1,2- $F_2C_6H_4$ (0.4 mL) was placed under D_2 (4 atm) and the resulting mixture was characterised *in situ* by ¹H and ²H NMR experiments after 1 hour. A ¹H NMR experiment shows a small hydride peak growing in at -17.9 ppm and the ²H NMR experiment shows a small peak for Rh-**D**-B (Figure S.15). We propose that at first the D_2 oxidatively adds to the Rh (I) compound to give a Rh(III) compound, and then slowly exchanges with the BH₃ hydrogen atoms via reversible B-H activation process (Scheme S.5).

Figure S.15: ²H NMR (500 MHz, 1,2-F₂C₆H₄) spectrum of the reaction between 3a and D₂ at 4 atm.

Supplementary Material (ESI) for Chemical Communications This Journal is (c) The Royal Society of Chemistry 2012

Crystallography

Relevant details about structure refinement are given in Table S.1. Data were collected on a Enraf Nonious Kappa CCD difractometer using graphite monochromated Mo K α radiation (λ = 0.71073 Å) and a low temperature device;⁸ data were collected using COLLECT, reduction and cell refinement was performed using DENZO/SCALEPACK.⁹ The structures were solved by direct methods using SIR92¹⁰ and refined full-matrix least squares on *F*² using SHELX-97.¹¹ All non-hydrogen atoms were refined anysotropically. H1, H2, H3, H001 and H002 were located on the Fourier difference map. All other hydrogen atoms were placed in calculated positions using the riding model. Disorder of the solvent molecule (1,2-F₂C₆H₄) was treated by modelling the fluorine substituent in the 6 sites in the molecule and restraining all of C-F distances. Disorder of the phosphine-borane ligand was treated by modelling it over two sites and restraining its geometry. Rotational disorder of the CF₃ groups of the anion was treated by modelling the fluorine atoms over three sites and restraining their geometry in respect to both the *ipso* and methyl carbons on which they were present. Rigid geometric restraints applied to 6 of the 8 CF₃ groups on the counter anion, disordered phosphine-borane ligand and solvent molecule (1,2-F₂C₆H₄) are responsible for the high number of restraints in the final structure.

	4a
CCDC number	865050
Formula	C59H74B2F25P3Rh
Μ	1475.62
Crystal System	Triclinic
Space group	<i>P</i> -1
T [K]	150(2)
a [Å]	12.8587(1)
b [Å]	13.3769(1)
c [Å]	20.2366(2)
α [deg]	87.9016(4)
β [deg]	80.6774(4)
γ[deg]	82.2782(5)
V [Å3]	3403.73(5)
Z	2
Density [gcm ⁻³]	1.440
μ [mm ⁻¹]	0.426
θ range [deg]	5.11 ≤ <i>θ</i> ≤ 27.52
Refins collected	23970
R _{int}	0.0174
Completeness	98.5%
Data/restr/param	15457 / 1028 / 1082
R_1 [l > 2 σ (l)]	0.0427
wR ₂ [all data]	0.1087
GoF	1.041
Largest diff. pk and hole [eÅ-3]	0762, -0.555

Table S.1: Crystallographic data for 4a.

References

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
- 2. E. Neumann, A. Pfaltz, Organometallics 2005, 24, 2008.
- 3. A. B. Chaplin, A. I. Poblador-Bahamonde, H. A. Sparkles, J. A. K. Howard, S. A. Macgregor and A. S. Weller, *Chem. Commun.*, **2009**, 244.
- 4. W. E. Abel, M. A. Bennet, G. J. Wilkinson, J. Chem. Soc., 1959, 3178.
- 5. H. Dorn, E. Vejzovic, A. J. Lough and I. Manners, Inorg. Chem. 2001, 40, 4327.
- 6. W. E. Buschman, J. S. Miller, K. Bowmn-James and C. N. Miller, Inorg. Synth., 2002, 33, 83.
- 7. A. Rifat, V. E. Laing, G. Kociok-Köhn, M. F. Mahon, G. D. Ruggiero and A. S Weller, J. Organometallic Chem. 2003, 680, 127.
- 8. J. Cosier and M. A. Glazer, J. Appl. Cryst., **1986**, 19, 105.
- 9. Z. Otwinowski, Z. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol. **1997**, 276, Eds C. W. Carter, R. M. Sweet, Academic Press.
- 10. A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camali. J. Appl. Cryst., **1994**, 27, 435.
- 11. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.