Electronic Supplementary Information

Unusual CoS₂ Ellipsoids with Anisotropic Tube-like Cavities and Their

Application in Supercapacitors

Lei Zhang,^a Hao Bin Wu,^a and XiongWen (David) Lou^a*

^{*a*} School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang

Drive, Singapore 637457. Email: xwlou@ntu.edu.sg

Webpage: http://www.ntu.edu.sg/home/xwlou/

Experimental Section

Materials Synthesis. In a typical synthesis, 0.25 g of cobalt acetate tetrahydrate (Co(Ac)₂; Co(CH₃COO)₂·4H₂O, Aldrich) and 0.5 g of polyvinyl-pyrrolidone (PVP; MW=58000, Reagent Chemicals) were first dissolved in 20 mL of polyethylene glycol (PEG; MW=400, Aldrich) at room temperature, followed by the addition of 0.25 g of urea (CO(NH₂)₂, Aldrich) under vigorous stirring. After stirring for 15 min, the mixture was transferred into a 60 ml Teflon-lined stainless steel autoclave and placed in an electric oven at 220 °C for 18 h. After that, the product was harvested, and washed with de-ionized water and ethanol several times by a centrifugation-redispersion process. Then the final product was dried in an oven at 60 °C for 24 h. To convert the carbonate into CoS₂, the as-synthesized CoCO₃ was heated to 350 °C with a temperate ramp of 2 °C min⁻¹ and kept at the same temperature for 6 h in a gas flow of 10% H₂S + 90% N₂.

Materials Characterization. X-ray diffraction (XRD) patterns were collected on a Bruker D8 Advanced X-Ray Diffractometer with Ni filtered Cu K α radiation (λ =1.5406 Å) at a voltage of 40 kV and a current of 40 mA. Field-emission scanning electron microscopy (FESEM) images were acquired on a JEOL JSM 6700F microscope operated at 5 kV. Transmission electron microscopy (TEM) images were taken on JEOL 2010 and JEOL 2100F microscopes. Thermogravimetric analysis (TGA) was carried out under nitrogen flow with a temperature ramp of 10 °C min⁻¹. Nitrogen sorption measurement was performed on Autosorb 6B at liquid N₂ temperature.

Electrochemical Measurements. The working electrode was prepared by mixing 70 wt% of electroactive material (CoS₂), 20 wt% of carbon black (super-P), and 10 wt% of polyvinylidene difluoride (PVDF, Aldrich). This mixture was then pressed onto the Ni foam electrode and dried at 80 °C. The electrolyte used was a 2M KOH aqueous solution. The capacitive performance of the

samples was evaluated on a CHI 660C electrochemical workstation using cyclic voltammetry and chronopotentiometry tests with a three-electrode cell where Pt foil serves as the counter electrode and a standard calomel electrode (SCE) as the reference electrode.

Figure S1. XRD pattern of CoCO₃ ellipsoids.

Figure S2. (a, b) FESEM and (c, d) TEM images of CoCO₃ ellipsoids.

Figure S3. TGA curve of the CoCO₃ ellipsoids in N₂ with a temperature ramp of 10 °C min⁻¹.

Figure S4. N_2 adsorption-desorption isotherms of CoS_2 ellipsoids with anisotropic tube-like cavities.

Figure S5. The cyclic voltammograms of Ni foam with and without loading of CoS_2 ellipsoids at a scan rate of 5 mV s⁻¹.

Figure S6. Specific capacitance and Coulombic efficiency of CoS_2 ellipsoids with anisotropic tube-like cavities in an aqueous KOH (2 M) electrolyte as a function of cycle number at current density of 2.5 A g⁻¹.