Practical synthesis of 4,4,4-trifluorocrotonaldehyde: A versatile precursor for the enantioselective formation of trifluoromethylated stereogenic centers via organocatalytic 1,4-additions

Kazutaka Shibatomi,* Akira Narayama, Yoshiyuki Abe, and Seiji Iwasa

Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan

shiba@ens.tut.ac.jp

Supplementary Information

Table of Contents

General information	S2
Synthesis of 4,4,4-trifluorocrotonaldehyde (Scheme 2)	S 3
Enantioselective conjugate Friedel-Crafts arylation (Table 1)	S 3
Experimental procedure and characterization of the products for Scheme 3	S 11
Enantioselective Michael addition with heteroatom nucleophiles (Table 2)	S 13
Asymmetric synthesis of befloxatone (Scheme 4)	S19
NMR spectra and HPLC traces	S23

General

All non-aqueous reactions were carried out in flame-dried glassware under argon atmosphere and stirred via magnetic stir-plates. Thin-layer chromatography analyses were performed using Merck pre-coated silica gel plates with F-254 indicator. Visualization was accomplished by UV light (254 nm), potassium permanganate, phosphomolybdic acid, or anisaldehyde. Flash column chromatography was performed using silica gel 60 (mesh 230-400) supplied by Kanto Chemical Co., Inc.

Instrumentation

¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a JEOL JNM-ECX500 (500 MHz ¹H, 126 MHz ¹³C, 470 MHz ¹⁹F). Chemical shift values (δ) are reported in ppm (tetramethylsilane 0.00 ppm for ¹H; trichlorofluoromethane 0.00 ppm for ¹⁹F; residual chloroform 77.0 ppm for ¹³C). Infrared spectra were recorded as thin films on sodium chloride plates using a JASCO FTIR-230 spectrometer. Optical rotations were measured on a JASCO P-1030 digital polarimeter. GC analysis was performed with a Shimadzu model 2014 instrument using nitrogen as a carrier gas. Analytical HPLC was performed on a JASCO PU1586 with a UV-1575 UV/Vis detector using a chiral column.

Materials

Commercial grade reagents and solvents were used without further purification unless otherwise noted. Anhydrous toluene, diethyl ether, dimethylformamide (DMF), dichloromethane, and pyridine were purchased from Aldrich (packaged in Sure/Seal bottle) and used without further purification.

Synthesis of 4,4,4-trifluorocrotonaldehyde (1)

F₃C CHO 1

A solution of ethyl 4,4,4-trifluorocrotonate (4) (20 mmol) in anhydrous ether (10 mL) was added to a suspension of lithium aluminum hydride (30 mmol) and aluminum trichloride (15 mmol) in anhydrous ether (15 mL) at 0 °C. The reaction mixture was stirred for 2 h at 0 °C. Saturated NaHCO₃ was added to the mixture. The compound was extracted with ether, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was distilled under atmospheric pressure to give pure **3** in 61% yield. The spectral data were identical to those previously reported for this compound [N. Ishikawa, M. G. Koh, T. Kitazume, S. K. Choi, *J. Fluorine Chem.* 1984, **24**, 419.].

Manganese dioxide (320 mmol) was added to a solution of **3** (40 mmol) in mesitylene (30 mL), and the mixture was stirred for 24 h at 50 °C. The reaction mixture was filtrated thorough Celite. The filtrate was distilled under atmospheric pressure to give 4,4,4-trifluorocrotonaldehyde (**1**) in 47% yield as a nearly pure form (observed boiling point: 38 °C).

¹H NMR (500 MHz, CDCl₃): δ 9.73 (d, 1H, J = 5.2 Hz), 6.72-6.62 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 190.7, 136.5 (q, J = 35.5 Hz), 135.8 (q, J = 5.8 Hz), 122.0 (q, J = 270.3 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ –66.2 (d, J = 1.5 Hz); FTIR (neat) υ_{max} 3505, 2919, 1604, 1129, 836, 685, 468 cm⁻¹.

General procedure for the enantioselective conjugate Friedel-Crafts arylation (Table 1):

Pyrroles or indoles (0.3 mmol) and **1** (0.2 mmol) were added successively to a solution of diarylprolinol silyl ethter **2** (0.02 mmol) in anhydrous toluene (2 mL). The mixture was stirred for 10–16 h at ambient temperature. The reaction mixture was directly subjected to silica gel column chromatography to give corresponding product **5** or **6** in high purity.

4,4,4-trifluoro-3-(1H-pyrrol-2-yl)butanal (5a)

The reaction mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 92% yield of **5a**. ¹H NMR (500 MHz, CDCl₃): δ 9.78 (s, 1H), 8.35 (brs, NH), 6.80-6.71 (m, 1H), 6.24-6.11 (m, 2H), 4.15-4.03 (m, 1H), 3.07 (d, 2H, *J* = 6.5 Hz); ¹³C NMR (126 MHz, CDCl₃): δ 197.9, 126.0 (q, *J* = 279.5 Hz), 123.6, 118.6, 108.7, 107.9, 42.9, 37.2 (q, *J*

= 28.8 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ -70.1 (d, J = 8.9 Hz); $[\alpha]_{D}^{24}$ --22.4 (c = 0.3, CHCl₃); FTIR (neat) υ_{max} 3397, 2850, 1464, 1324, 1320, 1315, 1212, 935, 907, 765, 698 cm⁻¹; Anal. Calcd (%) for C₈H₉F₃NO: C, 50.27; H, 4.22; N, 7.33. Found: C, 50.24; H, 4.22; N, 7.52.

The enantiomeric excess of **5a** was determined by HPLC after converted into **19a** (see below). **4,4,4-trifluoro-3-(1***H***-pyrrol-2-yl)butan-1-ol (18a)**

To a solution of sodium borohydride (0.2 mmol) in methanol (0.5 mL) was added a solution of **5a** (0.1 mmol) in dichloromethane (0.5 mL) at 0 °C. The mixture was stirred for 15 min at 0 °C. Saturated aqueous NH₄Cl solution was added to the reaction mixture. The compound was then extracted with dichloromethane, dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 1 : 1) to give 81% yield of **18a**. ¹H NMR (500 MHz, CDCl₃): δ 8.35 (brs, NH), 6.82-6.74 (m, 1H), 6.23-6.13 (m, 2H), 3.73 (ddd, 1H, *J* = 5.0, 5.4, 10.3 Hz), 3.70-3.60 (m, 1H), 3.50 (ddd, 1H, J = 4.2, 9.9, 9.9 Hz), 2.26-2.16 (m, 1H), 2.02-1.91 (m, 1H), 1.66 (brs, OH); ¹³C NMR (126 MHz, CDCl₃): δ 126.6 (q, *J* = 279.5 Hz), 123.8, 118.4, 108.6, 108.4, 59.3, 40.1 (d, *J* = 28.8 Hz), 31.1; ¹⁹F NMR (470 MHz, CDCl₃): δ -70.9 (d, *J* = 9.4 Hz); [α]²⁴_D -21.6 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3432, 3132, 2963, 1672, 1370, 1335, 1310, 1302, 1256, 1105, 956, 748, 735 cm⁻¹; Anal. Calcd (%) for C₈H₁₁F₃NO: C, 49.74; H, 5.22; N, 7.25. Found: C, 49.79; H, 5.31; N, 7.33.

4,4,4-trifluoro-3-(1*H*-pyrrol-2-yl)butyl 2-naphthoate (19a)

To a solution of **18a** (0.08 mmol) in anhydrous dichloromethane (0.5 mL) were added triethylamine (0.16 mmol), DMAP (0.01 mmol), and 2-naphthoyl chloride (0.12 mmol) successively. The reaction mixture was stirred for 4 h at ambient temperature. Saturated NaHCO₃ was added to the mixture. The compound was extracted with dichloromethane, dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography (hexane : $CH_2Cl_2 = 1 : 1$) to give 80% yield of **19a**. ¹H NMR (500 MHz, CDCl₃): δ 8.55 (s, 1H), 8.32 (brs, NH), 8.03-7.94 (m, 2H), 7.89 (d, 2H, *J* = 8.6 Hz),

7.63-7.53 (m, 2H), 6.81-6.78 (m, 1H), 6.24-6.19 (m, 2H), 4.47-4.39 (m, 1H), 4.33-4.26 (m, 1H), 3.69-3.59 (m, 1H), 2.56-2.49 (m, 1H), 2.31-2.21 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 166.6, 135.6, 132.4, 131.1, 129.4, 128.4, 128.3, 127.8, 127.0, 126.8, 126.3 (q, J = 279.9 Hz), 125.1, 123.1, 118.7, 109.0, 108.9, 62.0, 40.8 (q, J = 28.8 Hz), 28.1; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.4 (d, J = 8.4 Hz); $[\alpha]^{24}{}_{\rm D}$ -50.4 (c = 0.2, CHCl₃); FTIR (neat) $\upsilon_{\rm max}$ 3056, 2359, 1743, 1510, 1404, 1308, 1239, 1152, 1051, 1156, 784, 433 cm⁻¹; Anal. Calcd (%) for C₁₉H₁₆F₃NO₂: C, 65.70; H, 4.64; N, 4.03. Found: C, 65.96; H, 4.62; N, 4.11.

The enantiomeric ratio was determined by HPLC (hexane : 2-propanol = 50 : 1, 1.0 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 12.6 min and minor isomer 14.0 min.

4,4,4-trifluoro-3-(1-methyl-1*H*-pyrrol-2-yl)butanal (5b)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to give 96% yield of **5b**. ¹H NMR (500 MHz, CDCl₃): δ 9.69 (brs, 1H), 6.61-6.57 (m, 1H), 6.14-6.04 (m, 2H), 4.20-4.02 (m, 1H), 3.69 (s, 3H), 3.25-3.03 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 197.2, 126.5, 126.0 (q, *J* = 279.5 Hz), 108.1, 107.2, 43.7, 35.0 (q, *J* = 30.0 Hz), 34.0, 30.6; ¹⁹F NMR (470 MHz, CDCl₃): δ -70.9 (d, *J* = 9.4 Hz); [α]²⁴_D -19.3 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3397, 2850, 1464, 1324, 1320, 1315, 1212, 935, 907, 765, 698 cm⁻¹; Anal. Calcd (%) for C₉H₁₀F₃NO: C, 52.68; H, 4.91; N, 6.83. Found: C, 52.83; H, 4.95; N, 6.65.

The enantiomeric excess of **5b** was determined by HPLC after converted into **19b** (see below).

4,4,4-trifluoro-3-(1-methyl-1*H*-pyrrol-2-yl)butan-1-ol (18b)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **18a**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 81% yield of **18b**. ¹H NMR (500 MHz, CDCl₃): δ 6.62-6.58 (m, 1H), 6.15-6.11 (m, 2H), 3.79-3.67 (m, 2H), 3.61 (s, 3H), 3.46 (ddd, 1H, J = 3.8, 3.8, 10.3 Hz), 2.30-2.20 (m, 1H), 2.06-1.97 (m, 1H), 1.37 (brs, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 126.6 (q, *J* = 279.5 Hz), 125.3, 122.9, 108.0, 107.2, 59.1, 37.3 (q, *J* = 27.6 Hz), 33.9, 31.6; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.2 (d, *J* = 8.0 Hz); [α]²⁴_D -20.5 (c = 0.2, CHCl₃); FTIR

(neat) υ_{max} 3420, 2872, 1672, 1370, 1335, 1310, 1302, 1256, 1105, 956, 748, 735 cm⁻¹; Anal. Calcd (%) for C₉H₁₂F₃NO: C, 52.17; H, 5.84; N, 6.76. Found: C, 52.33; H, 5.90; N, 6.60. **4,4,4-trifluoro-3-(1-methyl-1***H***-pyrrol-2-yl)butyl 2-naphthoate (19b)**

The compound was synthesized according to a procedure similar to that employed for the synthesis of **19a**. The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 1 : 1) to give 80% yield of **19b**. ¹H NMR (500 MHz, CDCl₃): δ 8.54 (s, 1H), 8.00 (dd, 1H, *J* = 1.6, 8.6 Hz), 7.97 (d, 1H, *J* = 7.64 Hz), 7.89 (d, 2H, *J* = 8.41 Hz), 7.64-7.59 (m, 1H), 7.59-7.54 (m, 1H), 6.60 (dd, 1H, *J* = 1.9, 2.7 Hz), 6.23 (dd, 1H, *J* = 1.5, 3.4 Hz), 6.18 (dd, 1H, *J* = 2.7, 3.4 Hz), 4.48 (ddd, 1H, *J* = 5.4, 5.4, 10.7 Hz), 4.25 (ddd, 1H, *J* = 4.6, 9.6, 11.1 Hz), 3.72-3.62 (m, 1H), 3.56 (s, 3H), 2.61-2.52 (m, 1H), 2.37-2.27 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 166.4, 135.6, 132.4, 131.1, 129.3, 128.4, 128.3, 127.8, 126.8, 126.2 (q, *J* = 280.8 Hz), 125.0, 123.3, 108.4, 107.5, 62.1, 38.3 (q, *J* = 28.8 Hz), 33.8, 28.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.4 (d, *J* = 8.4 Hz); [α]²⁴_D -50.4 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3056, 2359, 1743, 1510, 1404, 1308, 1239, 1152, 1051, 1156, 784, 433 cm⁻¹; Anal. Calcd (%) for C₁₉H₁₆F₃NO₂: C, 65.70; H, 4.64; N, 4.03. Found: C, 65.96; H, 4.62; N, 4.11.

The enantiomeric ratio of **19b** was determined by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 12.0 min, minor isomer 11.2 min (97% ee).

4,4,4-trifluoro-3-(1-benzyl-1*H*-pyrrol-2-yl)butanal (5c)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to give 85% yield of **5c**. ¹H NMR (500 MHz, CDCl₃): δ 9.37 (s, 1H), 7.39-7.24 (m, 3H), 7.07-7.03 (m, 2H), 6.71-6.67 (m, 1H), 6.22-6.16 (m, 2H), 5.19 (dd, 2H, *J* = 16.4, 36.8 Hz), 4.01-3.91 (m, 1H), 3.03-2.90 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 197.5, 137.4, 128.8, 127.8, 126.7, 125.8 (q, *J* = 275.9 Hz), 124.7, 123.3, 109.3, 107.9, 50.7, 43.5, 35.1 (q, *J* = 30.0 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ -71.0 (d, *J* = 8.9 Hz); [α]²⁴_D +8.8 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3397, 2850, 1464, 1324, 1320, 1315, 1212, 935, 907, 765, 698 cm⁻¹; Anal. Calcd (%)

for C₁₅H₁₄F₃NO: C, 64.05; H, 5.02; N, 4.98. Found: C, 64.22; H, 5.06; N, 5.31.

The enantiomeric excess of 5c was determined by HPLC after converted into 18c (see below).

4,4,4-trifluoro-3-(1-benzyl-1*H*-pyrrol-2-yl)butan-1-ol (18c)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **18a**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to give 85% yield of **18c**. ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.25 (m, 3H), 7.09-7.00 (m, 2H), 6.82-6.76 (m, 1H), 6.29-6.17 (m, 2H), 5.17 (d, 1H, *J* = 16.4 Hz), 5.11 (d, 1H, *J* = 16.4 Hz), 3.54-3.43 (m, 2H), 3.18-3.08 (m, 1H), 2.14-2.03 (m, 1H), 1.95-1.85 (m, 1H), 0.53 (brs, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 197.5, 137.4, 128.8, 127.8, 126.7, 125.8 (q, *J* = 275.9 Hz), 124.7, 123.3, 109.3, 107.9, 50.7, 43.5, 35.1 (q, *J* = 30.0 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ -71.0 (d, *J* = 8.9 Hz); [α]²⁴_D +3.4 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 1672, 1370, 1335, 1310, 1302, 1256, 1105, 956, 748, 735 cm⁻¹; Anal. Calcd (%) for C₁₅H₁₆F₃NO: C, 63.60; H, 5.69; N, 4.94. Found: C, 63.57; H, 5.48; N, 5.06.

The enantiomeric ratio of **18c** was determined by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 18.9 min, minor isomer 13.7 min (99% ee).

4,4,4-trifluoro-3-(4-methyl-1*H*-pyrrol-2-yl)butanal (5d)

This compound was obtained together with 2,3-disubstituted form **5d'** which was inseparable by silica gel column chromatography. The isolation and determination of enantiomeric ratio were performed after converted into **19d** (see below).

4,4,4-trifluoro-3-(3-methyl-1*H*-pyrrol-2-yl)butyl 2-naphthoate (19d)

The compound was synthesized according to procedures similar to those employed for the synthesis of **18a** and **19a**. The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 1 : 2) to give 81% yield of **19d**. ¹H NMR (500 MHz, CDCl₃): δ 8.55 (s, 1H), 8.06 (brs, NH), 8.01 (d, 1H, *J* = 8.8 Hz), 7.96 (d, 1H, *J* = 8.0 Hz), 7.89 (d, 2H, *J* = 8.4 Hz), 7.61 (dd, 1H, *J* = 7.3, 7.3 Hz), 7.56 (dd, 1H, *J* = 7.3, 7.3 Hz), 6.74-6.71 (m, 1H), 6.04-6.01 (m, 1H), 4.40 (ddd, 1H, *J* = 5.4, 5.4, 11.1 Hz), 4.10 (ddd, 1H, *J* = 5.4, 9.6, 9.6 Hz), 3.85-3.69 (m, 1H), 2.60-2.45 (m, 1H), 2.26-2.11 (m, 1H), 2.05 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 166.4, 135.6, 132.4, 131.1, 129.3, 128.4, 128.2, 127.8, 127.0 (q, *J* = 280.7 Hz), 126.7, 126.6, 125.0, 119.2, 118.7, 118.0, 110.3, 61.8, 38.3 (q, *J* = 28.8 Hz), 27.7, 10.9; ¹⁹F NMR (470 MHz, CDCl₃): δ -70.5 (d, *J* = 9.4 Hz); [α]²⁴_D -35.4 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3056, 2359, 1743, 1510, 1404, 1308, 1239, 1152, 1051, 1156, 784, 433 cm⁻¹; Anal. Calcd (%) for C₂₀H₁₈F₃NO₂: C, 66.48; H, 5.02; N, 3.88. Found: C, 66.67; H, 5.31; N, 3.85.

The enantiomeric ratio of **19d** was determined by HPLC (hexane : 2-propanol = 50 : 1, 0.5 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 21.7 min, minor isomer 19.4 min (80% ee).

4,4,4-trifluoro-3-(1H-indol-2-yl)butanal (6a)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 98% yield of **6a**. ¹H NMR (500 MHz, CDCl₃): δ 9.63 (s, 1H), 8.25 (brs, NH), 7.67 (d, 1H, *J* = 7.6 Hz), 7.34 (d, 1H, *J* = 8.0 Hz), 7.25-7.20 (m, 1H), 7.20-7.15 (m, 1H), 7.11 (d, 1H, *J* = 2.7 Hz), 4.34 (qdd, 1H, *J* = 5.7, 8.8, 8.8 Hz), 3.18-3.07 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 198.3, 136.0, 126.8 (q, *J* = 279.5 Hz), 126.3, 123.7, 122.7, 120.2, 118.9, 111.5, 108.6, 42.9, 35.6 (q, *J* = 30.0 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ -71.0 (d, *J* = 9.4 Hz); [α]²⁴_D -24.3 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3397, 2850, 1464, 1324, 1320, 1315, 1212, 935, 907, 765, 698 cm⁻¹; Anal. Calcd (%) for C₁₂H₁₀F₃NO: C, 59.75; H, 4.18; N, 5.81. Found: C, 59.86; H,

The enantiomeric excess of 6a was determined by HPLC after converted into 20a (see below).

4,4,4-trifluoro-3-(1H-indol-2-yl)butan-1-ol (20a)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **18a**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 92% yield of **20a**. ¹H NMR (500 MHz, CDCl₃): δ 8.22 (brs, NH), 7.67 (d, 1H, *J* = 8.0 Hz), 7.40 (d, 1H, *J* = 8.0 Hz), 7.24 (ddd, 1H, *J* = 1.2, 6.9, 8.1 Hz), 7.20 (d, 1H, *J* = 2.3 Hz), 7.17 (ddd, 1H, *J* = 1.2, 6.9, 8.1 Hz), 3.91 (ddd, 1H, *J* = 3.8, 9.6, 9.9 Hz), 3.71 (ddd, 1H, *J* = 5.4, 5.4, 10.3 Hz), 3.50 (ddd, 1H, *J* = 5.0, 9.6, 9.6 Hz), 2.40-2.31 (m, 1H), 2.16 (dddd, 1H, *J* = 4.6, 4.6, 11.1, 13.8 Hz), 1.48 (brs, OH); ¹³C NMR (126 MHz, CDCl₃): δ 136.1, 127.5 (q, *J* = 279.5 Hz), 127.0, 123.4, 122.5, 120.1, 119.1, 111.4, 109.2, 59.6, 38.0 (q, *J* = 28.8 Hz), 31.7; ¹⁹F NMR (470 MHz, CDCl₃): δ -70.7 (d, *J* = 9.9 Hz); $[\alpha]^{24}_{D}$ -8.4 (c = 0.3, CHCl₃); FTIR (neat) υ_{max} 1672, 1370, 1335, 1310, 1302, 1256, 1105, 956, 748, 735 cm⁻¹; Anal. Calcd (%) for C₁₂H₁₂F₃NO: C, 59.26; H, 4.97; N, 5.76. Found: C, 59.05; H, 4.82; N, 5.94. The enantiomeric ratio of **20a** was determined by HPLC (hexane : 2-propanol = 10 : 1, 0.5 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 13.4 min, minor isomer 12.1 min (90% ee)

4,4,4-trifluoro-3-(1-methyl-1H-indol-2-yl)butanal (6b)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to give 83% yield of **6b**. ¹H NMR (500 MHz, CDCl₃): δ 9.66 (s, 1H), 7.66 (d, 1H, *J* = 8.0 Hz), 7.32 (d, 1H, *J* = 8.0 Hz), 7.27 (ddd, 1H, *J* = 1.2, 6.9, 8.0 Hz), 7.20 (d, 1H, *J* = 2.3 Hz), 7.18 (ddd, 1H, *J* = 1.2, 6.9, 8.0 Hz), 4.34 (qdd, 1H, *J* = 6.1, 9.2, 9.2 Hz), 3.77 (s, 3H), 3.18-3.08 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 198.2, 136.9, 128.2, 126.8, 126.8 (q, *J* = 283.1 Hz), 122.2, 119.8, 119.0, 109.6, 106.9, 43.0, 35.6 (q, *J* = 30.0 Hz), 32.9; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.0 (d, *J* = 9.4 Hz); [α]²⁴_D -37.3 (c = 0.1, CHCl₃); FTIR (neat) v_{max} 3397, 2850, 1464, 1324,

1320, 1315, 1212, 935, 907, 765, 698 cm⁻¹; Anal. Calcd (%) for C₁₃H₁₂F₃NO: C, 61.17; H, 4.74; N, 5.49. Found: C, 61.46; H, 4.81; N, 3.85.

The enantiomeric excess of **6b** was determined by HPLC after converted into **20b** (see below).

4,4,4-trifluoro-3-(1-methyl-1*H*-indol-2-yl)butan-1-ol (20b)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **18a**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 97% yield of **20b**. ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, 1H, *J* = 8.0 Hz), 7.33 (d, 1H, *J* = 8.4 Hz), 7.26 (ddd, 1H, *J* = 1.2, 6.9, 8.1 Hz), 7.15 (ddd, 1H, *J* = 1.2, 6.9, 8.1 Hz), 3.93-3.82 (m, 1H), 3.79 (s, 3H), 3.69 (ddd, 1H, *J* = 5.4, 5.4, 10.3 Hz), 3.48 (ddd, 1H, *J* = 5.0, 9.6, 10.3 Hz), 2.38-2.29 (m, 1H), 2.18-2.08 (m, 1H), 1.44 (brs, OH); ¹³C NMR (126 MHz, CDCl₃): δ 136.8, 128.0, 127.6, 127.5 (q, *J* = 278.3 Hz), 122.0, 119.9, 119.1, 109.5, 107.3, 59.6, 37.9 (q, *J* = 28.8 Hz), 32.9, 31.8; ¹⁹F NMR (470 MHz, CDCl₃): δ -70.8 (d, *J* = 9.9 Hz); [α]²⁴_D -27.2 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 1672, 1370, 1335, 1310, 1302, 1256, 1105, 956, 748, 735 cm⁻¹; Anal. Calcd (%) for C₁₃H₁₄F₃NO: C, 60.70; H, 5.49; N, 5.44. Found: C, 61.01; H, 5.70; N, 5.72.

The enantiomeric ratio of **20b** was determined by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 29.1 min, minor isomer 21.1 min (97% ee).

4,4,4-trifluoro-3-(5-methoxy-1*H*-indol-2-yl)butanal (6c)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 71% yield of **6c**. ¹H NMR (500 MHz, CDCl₃): δ 9.67 (s, 1H), 8.21 (brs, NH), 7.26 (d, 1H, *J* = 8.8 Hz), 7.13 (d, 1H, *J* = 2.7 Hz), 7.09 (d, 1H, *J* = 2.3 Hz), 6.89 (dd, 1H, *J* = 2.3, 8.8 Hz), 4.31 (qdd, 1H, *J* = 5.4, 5.4, 9.2 Hz), 3.88 (s, 3H), 3.19-3.07 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 154.3, 131.1, 127.5, 127.5, (q, *J* = 280.7 Hz), 124.0, 112.7, 112.1, 108.8, 100.8, 59.6, 55.8, 37.9 (d, *J* = 28.8 Hz), 25.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.1 (d, *J* = 8.9 Hz);

The enantiomeric excess of **6c** was determined by HPLC after converted into **20c** (see below). **4,4,4-trifluoro-3-(5-methoxy-1***H***-indol-2-yl)butan-1-ol (20c)**

The compound was synthesized according to a procedure similar to that employed for the synthesis of **18a**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 1 : 1) to give 94% yield of **20c**. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (brs, NH), 7.26 (d, 1H, *J* = 8.8 Hz), 7.13 (d, 1H, *J* = 2.7 Hz), 7.08 (d, 1H, *J* = 2.3 Hz), 7.15 (dd, 1H, *J* = 2.7, 8.8 Hz), 4.02 (qdd, 1H, J = 6.1, 6.1, 12.2 Hz), 3.85 (s, 3H), 3.70 (ddd, 1H, *J* = 5.0, 5.4, 10.3 Hz), 3.49 (ddd, 1H, *J* = 5.0, 9.6, 10.3 Hz), 2.37-2.29 (m, 1H), 2.17-2.08 (m, 1H), 1.53 (brs, OH); ¹³C NMR (126 MHz, CDCl₃): δ 154.3, 131.1, 127.5, 127.5 (q, *J* = 280.7 Hz), 124.0, 112.7, 112.1, 108.8, 100.8, 59.6, 55.8, 37.9 (d, *J* = 28.8 Hz), 25.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -70.7 (d, *J* = 9.9 Hz); [α]²⁴_D -10.8 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 1672, 1370, 1335, 1310, 1302, 1256, 1105, 956, 748, 735 cm⁻¹; Anal. Calcd (%) for C₁₃H₁₄F₃NO₂: C, 57.14; H, 5.16; N, 5.13. Found: C, 57.11; H, 5.15; N, 5.38.

The enantiomeric ratio of **20c** was determined by HPLC (hexane : 2-propanol = 10 : 1, 0.5 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 8.2 min, minor isomer 10.2 min (93% ee).

Experimental procedure and characterization of the products for Scheme 3:

Aromatic compounds (0.3 mmol) and **1** (0.2 mmol) were added successively to a solution of diarylprolinol silyl ethter **2** (0.06 mmol) in anhydrous toluene (2 mL). The mixture was stirred for 12–14 h at ambient temperature. To the mixture were added methanol (2 mL) and sodium borohydride (0.8 mmol) successively, and the mixture was stirred for 0.5 h at 0 °C. Saturated aqueous NH₄Cl solution was added to the reaction mixture. The compound was then extracted with dichloromethane, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding adducts in high purity.

3-(4-(dimethylamino)-2-methoxyphenyl)-4,4,4-trifluorobutan-1-ol (7)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 74% yield (99% ee). ¹H NMR (500 MHz, CDCl₃): δ 7.16 (d, 1H, *J* = 8.4 Hz), 6.35 (dd, 1H, *J* = 8.8, 2.3 Hz), 6.25 (d, 1H, *J* = 2.7 Hz), 4.12–4.01 (m, 1H), 3.85 (s, 3H), 3.64–3.55 (m, 1H), 3.43–3.34 (m, 1H), 2.97 (s, 6H), 2.30–2.20 (m, 1H), 1.96–1.85 (m, 1H), 1.78 (brs, OH); ¹³C NMR (126 MHz, CDCl₃): δ 158.6, 151.4, 128.6, 127.6 (q, *J* = 279.5 Hz), 110.1, 105.2, 95.7, 59.7, 55.8, 40.4, 36.5 (q, *J* = 26.4 Hz), 31.9; ¹⁹F NMR (470 MHz, CDCl₃): δ –69.7 (d, *J* = 9.9 Hz); [a]²⁸_D –20.4 (c = 0.95, CHCl₃); FTIR (neat) v_{max} 3386, 2946, 1616, 1571, 1521, 1453, 1361, 1246, 1123, 1039, 813 cm⁻¹; Anal. Calcd (%) for C₁₃H₁₈F₃NO₂: C, 56.31; H, 6.54; N, 5.05. Found: C, 56.19; H, 6.67; N, 5.11.

The enantiomeric excess was determined by HPLC (hexane : 2-propanol = 10 : 1, 0.5 mL/min) using a CHIRALPAK IC column (0.46 cm ϕ x 25 cm): major isomer 12.9 min and minor isomer 11.9 min.

4,4,4-trifluoro-3-(5-methoxyfuran-2-yl)butan-1-ol (8)

General procedure for the enantioselective Michael addition with alkylthiols (Table 2, Entries 1–6):

Alkylthiols (0.2 mmol) and **1** (0.3 mmol) were added successively to a solution of diarylprolinol silyl ethter **2** (0.02 mmol) and benzoic acid (0.02 mmol) in anhydrous toluene (0.5 mL). The mixture was stirred for 5 h at ambient temperature. To the mixture were added methanol (2 mL) and sodium borohydride (0.8 mmol) successively, and the mixture was stirred for 0.5 h at 0 °C. Saturated aqueous NH₄Cl solution was added to the reaction mixture. The compound was then extracted with dichloromethane, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to give corresponding thioethers **9** in high purity.

4,4,4-trifluoro-3-(phenylthio)butan-1-ol (9a)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to give 97% yield of **9a**. ¹H NMR (500 MHz, CDCl₃): δ 7.60-7.47 (m, 2H), 7.40-7.27 (m, 3H), 4.11-3.98 (m, 1H), 3.98-3.89 (m, 1H), 3.74-3.64 (m, 1H), 2.25-2.12 (m, 1H), 1.85-1.69 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 133.1, 133.1, 129.2, 128.3, 126.8 (q, *J* = 278.0 Hz), 58.7, 49.1 (q, *J* = 29.7 Hz), 31.0; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.1 (d, *J* = 8.3 Hz); $[\alpha]^{22}_{D}$ -40.7 (c = 0.3, CHCl₃); FTIR (neat) υ_{max} 1983, 1822, 1737, 1366, 1280, 1161, 853, 714 cm⁻¹; Anal. Calcd (%) for C₁₀H₁₁F₃OS: C, 50.84; H, 4.69. Found: C, 50.86; H, 4.70.

The enantiomeric ratio of **9a** was determined by HPLC (hexane : 2-propanol = 99 : 1, 0.5 mL/min) using a CHIRALPAK IC column (0.46 cm ϕ x 25 cm): major isomer 20.7 min, minor isomer 21.6 min (94% ee).

4,4,4-trifluoro-3-(benzylthio)butan-1-ol (9b)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to give 98% yield of **9b**. ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.27 (m, 5H), 3.83 (s, 2H), 3.60 (dd, 2H, *J* = 4.0, 7.6 Hz), 3.07 (qdd, 1H, *J* = 3.4, 8.5, 11.6 Hz), 2.07-1.95 (m, 2H), 1.53 (dddd, 1H, *J* = 4.0, 4.0, 11.6, 15.3 Hz), 1.25 (brs, OH); ¹³C NMR (126 MHz, CDCl₃): δ 137.2, 129.1, 127.6, 127.4 (q, *J* = 278.0 Hz), 58.6, 42.8 (q, *J* = 28.8 Hz), 30.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.3 (d, *J* = 8.0 Hz); [α]²⁴_D -147.7 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 1764, 1735, 1456, 1394, 1326, 1281, 1212, 1121, 1025, 959, 864, 716 cm⁻¹; Anal. Calcd (%) for

C₁₁H₁₃F₃OS: C, 52.79; H, 5.24. Found: C, 52.62; H, 5.24.

The enantiomeric ratio of **9b** was determined by HPLC (hexane : 2-propanol = 50 : 1, 1.0 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 8.1 min, minor isomer 10.1 min (95% ee).

4,4,4-trifluoro-3-(cyclohexylthio)butan-1-ol (9c)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to give 99% yield of **9c**. ¹H NMR (500 MHz, CDCl₃): δ 3.98-3.82 (m, 2H), 3.37 (qdd, 1H, J = 3.1, 8.5, 11.6 Hz), 2.91-2.80 (m, 1H), 2.19-2.04 (m, 2H), 2.01-1.90 (m, 1H), 1.84-1.71 (m, 2H), 1.71-1.58 (m, 3H), 1.41-1.19 (m, 5H); ¹³C NMR (126 MHz, CDCl₃): δ 127.2 (q, J = 278.0 Hz), 59.1, 44.8, 42.9 (q, J = 29.7 Hz), 33.8, 33.2, 31.3, 26.0, 25.8, 25.6; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.8 (d, J = 8.0 Hz); $[\alpha]^{24}{}_{\rm D}$ -17.2 (c = 0.2, CHCl₃); FTIR (neat) $\upsilon_{\rm max}$ 1738, 1735, 1439, 1333, 1292, 1203, 1022, 959, 932, 794, 723 cm⁻¹; Anal. Calcd (%) for C₁₀H₁₇F₃OS: C, 49.57; H, 7.07. Found: C, 49.33; H, 7.02.

The enantiomeric excess of **9c** was determined by HPLC after converted into corresponding benzoate **21c** (see below).

4,4,4-trifluoro-3-(cyclohexylthio)butyl benzoate (21c)

To a solution of **9c** (0.1 mmol) in anhydrous dichloromethane (2 mL) were added triethylamine (0.3 mmol), DMAP (0.01 mmol), and benzoyl chloride (0.2 mmol) successively. The mixture was stirred for 6 h at ambient temperature. Saturated NaHCO₃ was added to the mixture. The compound was extracted with dichloromethane, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 2 : 1) to give 76% yield of **21c**. ¹H NMR (500 MHz, CDCl₃): δ 8.07-8.00 (m, 2H), 7.62-7.56 (m, 1H), 7.50-7.43 (m, 2H), 4.63-4.53 (m, 2H), 3.38-3.25 (m, 1H), 2.90-2.77 (m, 1H), 2.49-2.36 (m, 1H), 2.02-1.89 (m, 2H), 1.89-1.78 (m, 1H), 1.78-1.64 (m, 2H), 1.64-1.51 (m, 1H), 1.40-1.15 (m, 5H); ¹³C NMR (126 MHz, CDCl₃): δ 166.2, 133.1, 129.8, 129.5, 128.4, 127.0 (q, *J* = 278.3 Hz), 61.3, 44.7, 43.0 (q, *J* = 28.8 Hz), 33.5, 33.1, 28.2, 25.8, 25.6, 25.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.8 (d, *J* = 8.0 Hz); [α]²⁴_D -58.1 (c = 0.2, CHCl₃); FTIR (neat)

The enantiomeric ratio of **21c** was determined by HPLC (hexane : 2-propanol = 400 : 1, 0.2 mL/min) using a CHIRALPAK AS-H column (0.46 cm ϕ x 25 cm): major isomer 27.7 min, minor isomer 33.7 min (96% ee)

4,4,4-trifluoro-3-(butylthio)butan-1-ol (9d)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 5 : 1) to give 93% yield of **9d**. ¹H NMR (500 MHz, CDCl₃): δ 3.97-3.82 (m, 2H), 3.30 (qdd, 1H, J = 3.4, 8.5, 11.6 Hz), 2.75-2.62 (m, 2H), 2.19-2.08 (m, 1H), 1.76 (brs, OH), 1.73-1.58 (m, 3H), 1.49-1.35 (m, 2H), 0.92 (t, 3H, J = 7.4 Hz); ¹³C NMR (126 MHz, CDCl₃): δ 127.3 (q, J = 279.5 Hz), 59.1, 44.7 (q, J = 28.8 Hz), 32.3, 31.3, 30.8, 21.8, 13.6; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.6 (d, J = 8.0 Hz); [α]²⁴_D -31.3 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 1735, 1411, 1392, 1305, 1147, 1011, 912, 781, 714 cm⁻¹; Anal. Calcd (%) for C₈H₁₅F₃OS: C, 44.43; H, 6.99. Found: C, 44.07; H, 6.81.

The enantiomeric excess of **9d** was determined by HPLC after converted into corresponding benzoate **21d** (see below).

4,4,4-trifluoro-3-(butylthio)butyl benzoate (21d)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **21c**. The crude product was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 2 : 1) to give 92% yield of **21d**. ¹H NMR (500 MHz, CDCl₃): δ 8.09-7.99 (m, 2H), 7.62-7.54 (m, 1H), 7.50-7.42 (m, 2H), 4.64-4.52 (m, 2H), 3.24 (qdd, 1H, *J* = 3.4, 8.2, 11.6 Hz), 2.74-2.60 (m, 2H), 2.47-2.35 (m, 1H), 1.87 (dddd, 1H, J = 4.3, 4.6, 11.3, 15.6 Hz), 1.71-1.48 (m, 2H), 1.45-1.29 (m, 2H), 0.85 (t, 3H, *J* = 7.3 Hz); ¹³C NMR (126 MHz, CDCl₃): δ 166.2, 133.1, 129.8, 129.5, 128.4, 127.1 (q, *J* = 278.0 Hz), 61.2, 44.8 (q, *J* = 29.7 Hz), 32.3, 31.3, 27.8, 21.7, 13.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.7 (d, *J* = 8.3 Hz); [α]²⁴_D -29.5 (c = 0.9, CHCl₃); FTIR (neat) υ_{max} 2850, 1772, 1474, 1384, 1335, 1264, 1052, 1023, 960, 746, 678 cm⁻¹; Anal. Calcd (%) for C₁₅H₁₉F₃O₂S: C, 56.24; H, 5.98. Found: C, 56.30; H, 6.02.

The enantiomeric ratio of **21d** was determined by HPLC (hexane : 2-propanol = 400 : 1, 0.3 mL/min) using a CHIRALPAK AS-H column (0.46 cm ϕ x 25 cm): major isomer 17.7 min,

minor isomer 19.7 min (93% ee).

ethyl 2-(1,1,1-trifluoro-4-hydroxybutan-2-ylthio)acetate (9e)

The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 5 : 1) to give 93% yield of **9e**. ¹H NMR (500 MHz, CDCl₃): δ 4.27-4.18 (m, 2H), 4.05 (ddd, 1H, J = 3.4, 11.0, 11.0 Hz), 3.85-3.77 (m, 2H), 3.65-3.52 (m, 1H), 3.58 (d, 1H, J = 16.8 Hz), 3.31 (d, 1H, J = 16.8 Hz), 2.33 (brs, OH), 2.24-2.14 (m, 1H), 1.55 (dddd, 1H, J = 3.1, 3.4, 12.2, 14.7 Hz), 1.31 (t, 3H, J = 7.0 Hz); ¹³C NMR (126 MHz, CDCl₃): δ 127.2 (q, J = 278.0 Hz), 59.1, 42.9 (q, J = 29.7 Hz), 33.8, 26.0, 25.6; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.6 (d, J = 8.0 Hz); $[\alpha]^{22}{}_{\rm D}$ -20.4 (c = 0.2, CHCl₃); FTIR (neat) $\upsilon_{\rm max}$ 1715, 1355, 1321, 1312, 1301, 1181, 931, 912, 773, 711 cm⁻¹; Anal. Calcd (%) for C₈H₁₃F₃O₃S: C, 39.02; H, 5.32. Found: C, 39.33; H, 5.12. The enantiomeric excess of **9e** was determined by HPLC after converted into corresponding benzoate **21e** (see below).

3-((ethoxycarbonyl)methylthio)-4,4,4-trifluorobutyl benzoate (21e)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **21c**. The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 2 : 1) to give 80% yield of **21e**. ¹H NMR (500 MHz, CDCl₃): δ 8.10-8.01 (m, 2H), 7.63-7.54 (m, 1H), 7.50-7.42 (m, 2H), 4.63-4.50 (m, 2H), 4.16-4.07 (m, 2H), 3.64 (qdd, 1H, J = 3.4, 8.2, 11.6 Hz), 3.48 (d, 1H, J = 15.3 Hz), 3.28 (d, 1H, J = 15.3 Hz), 2.47-2.36 (m, 1H), 1.90 (dddd, 1H, J = 4.6, 4.6, 11.0, 15.6 Hz), 1.23 (t, 3H, J = 7.3 Hz); ¹³C NMR (126 MHz, CDCl₃): δ 166.2, 133.1, 129.8, 129.5, 128.4, 127.1 (q, J = 278.0 Hz), 61.2, 44.8 (q, J = 29.7 Hz), 32.3, 30.8, 21.7, 13.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -71.8 (d, J = 8.0 Hz); $[\alpha]^{24}_{D}$ -45.0 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 2822, 1832, 1829, 1474, 1371, 1321, 1184, 1062, 9540, 752, 669 cm⁻¹; Anal. Calcd (%) for C₁₅H₁₇F₃O₄S: C, 51.42; H, 4.89. Found: C, 51.41; H, 4.89. The enantiomeric ratio of **21e** was determined by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 8.2 min, minor isomer 10.2 min (92% ee).

The enantioselective aza-Michael reaction with triazoles (Table 2, Entries 7 and 8)

Triazoles (0.2 mmol) and 1 (0.3 mmol) were added successively to a solution of diarylprolinol

silvl ethter **2** (0.04 mmol) and benzoic acid (0.04 mmol) in anhydrous toluene (5 mL) at -20 °C. The mixture was stirred for 40 h at -20 °C. To the mixture were added methanol (2 mL) and sodium borohydride (0.8 mmol) successively, and the mixture was stirred for 1 h at ambient temperature. Saturated aqueous NH₄Cl solution was added to the reaction mixture. The compound was then extracted with dichloromethane, dried over Na₂SO₄ and concentrated under reduced pressure.

4,4,4-trifluoro-3-(1H-1,2,4-triazol-1-yl)butan-1-ol (10a)

The crude product was purified by silica gel column chromatography (CH₂Cl₂ : MeOH = 20 : 1) to give 77% yield of **10a**. ¹H NMR (500 MHz, CDCl₃): δ 8.22 (s, 1H), 8.04 (s, 1H), 5.24-5.13 (m, 1H), 3.87-3.78 (m, 1H), 3.31-3.21 (m, 1H), 2.52 (dddd, 1H, *J* = 3.4, 3.4, 11.5, 14.5 Hz), 2.42-2.32 (m, 1H), 1.96 (brs, OH); ¹³C NMR (126 MHz, CDCl₃): δ 152.4, 144.8, 123.6 (q, *J* = 280.7 Hz), 57.5 (q, *J* = 32.4 Hz), 56.4, 29.7; ¹⁹F NMR (470 MHz, CDCl₃): δ -74.7 (d, *J* = 7.0 Hz); $[\alpha]_{D}^{20}$ -31.5 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3349, 2895, 1512, 1439, 1273, 1199, 1135, 1065, 1008, 856, 680 cm⁻¹; Anal. Calcd (%) for C₆H₈F₃N₃O: C, 36.93; H, 4.13; N, 21.53. Found: C, 36.91; H, 4.13; N, 21.72.

The enantiomeric excess of **10a** was determined by HPLC after converted into corresponding 2-naphthoate **22a** (see below).

4,4,4-trifluoro-3-(1H-1,2,4-triazol-1-yl)butyl 2-naphthoate (22a)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **19a**. The crude mixture was purified by silica gel column chromatography (CH₂Cl₂ acetone = 50 : 1) to give 96% yield of **22a**. ¹H NMR (500 MHz, CDCl₃): δ 8.51 (s, 1H), 8.28 (s, 1H), 8.06 (s, 1H), 8.01-7.94 (m, 2H), 7.93-7.88 (m, 2H), 7.66-7.55 (m, 2H), 5.12-5.03 (m, 1H), 4.55-4.48 (m, 1H), 4.22-4.14 (m, 1H), 2.90 (dddd, 1H, *J* = 4.6, 4.6, 11.1, 15.3 Hz), 2.72-2.62 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 166.3, 152.8, 144.7, 135.7, 132.4, 131.2, 129.4, 128.6, 128.4, 127.8, 126.9, 126.4, 124.9, 123.2 (q, *J* = 281.9 Hz), 59.9, 58.5 (q, *J* = 32.4 Hz), 27.1; ¹⁹F NMR (470 MHz, CDCl₃): δ -75.0 (d, *J* = 7.0 Hz); [α]²⁰_D -69.6 (c = 0.2, CHCl₃); FTIR (neat)

 v_{max} 3123, 1715, 1633, 1511, 1466, 1384, 1278, 1195, 1136, 1098, 1005, 864, 679 cm⁻¹; Anal. Calcd (%) for C₁₇H₁₄F₃N₃O₂: C, 58.45; H, 4.04; N, 12.03. Found: C, 58.47; H, 4.33; N, 11.85. The enantiomeric ratio was determined by HPLC (hexane : 2-propanol = 10 : 1, 1.0 mL/min) using a CHIRALPAK AS-H column (0.46 cm ϕ x 25 cm): major isomer 14.2 min, minor isomer 11.2 min (86% ee).

4,4,4-trifluoro-3-(1*H*-1,2,3-triazol-1-yl)butan-1-ol (10b)

The crude mixture was purified by silica gel column chromatography (dichloromethane : methanol = 15 : 1) to give 76% yield. ¹H NMR (500 MHz, CD₃OD): δ 8.21 (s, 1H), 7.83 (s, 1H), 5.70–5.60 (m, 1H), 3.67–3.59 (m, 1H), 3.21–3.12 (m, 1H), 2.61–2.51 (m, 1H), 2.42–2.32 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 134.3, 123.8, 123.6 (q, *J* = 281.9 Hz), 58.5 (q, *J* = 32.4 Hz), 56.5, 30.5; ¹⁹F NMR (470 MHz, CDCl₃): δ –74.8 (d, *J* = 7.5 Hz); $[\alpha]^{24}{}_{\rm D}$ –24.7 (c = 0.71, CHCl₃); FTIR (neat) $\upsilon_{\rm max}$ 3393, 3123, 2959, 2893, 1650, 1452, 1389, 1267, 1195, 1132, 1065, 919, 853, 762, 700 cm⁻¹; Anal. Calcd (%) for C₆H₈F₃N₃O: C, 36.93; H, 4.13; N, 21.53. Found: C, 36.99; H, 4.20; N, 21.77.

The enantiomeric excess of **10b** was determined by HPLC after converted into corresponding 2-naphthoate **22b** (see below).

4,4,4-trifluoro-3-(1H-1,2,3-triazol-1-yl)butyl 2-benzoate (22b)

The compound was synthesized according to a procedure similar to that employed for the synthesis of **21c**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 86% yield (84% ee). ¹H NMR (500 MHz, CD₃OD): δ 7.99–7.94 (m, 2H), 7.81 (s, 1H), 7.74 (s, 1H), 7.62–7.57 (m, 1H), 7.49–7.43 (m, 2H), 5.49–5.34 (m, 1H), 4.51–4.44 (m, 1H), 4.12–4.03 (m, 1H), 2.83–2.74 (m, 1H), 2.74–2.65 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 166.1, 133.6, 133.5, 129.6, 129.2, 128.5, 123.5, 123.3 (q, *J* = 281.9 Hz), 59.5, 59.2 (q, *J* = 32.4 Hz), 27.7; ¹⁹F NMR (470 MHz, CDCl₃): δ –74.4 (d, *J* = 7.0 Hz). The enantiomeric excess was determined by HPLC (hexane : dichloromethane = 1 : 1, 1.0 mL/min) using a CHIRALPAK IE column (0.46 cm ϕ x 25 cm): major isomer 17.5 min and minor isomer 18.8 min.

The enantioselective oxa-Michael reaction with aldoxime (Table 2, Entry 9): benzaldehyde *O*-(1,1,1-trifluoro-4-hydroxybutan-2-yl) oxime (11)

Benzaldehyde oxime (0.6 mmol) and 1 (0.2 mmol) were added to a solution of diarylprolinol silvl ether 2 (0.02 mmol) and benzoic acid (0.02 mmol) in toluene (0.5 mL). The mixture was stirred for 12 h at ambient temperature. To the mixture were added methanol (2 mL) and sodium borohydride (0.8 mmol) successively, and the mixture was stirred for 1 h at 0 °C. Saturated aqueous NH₄Cl solution was added to the reaction mixture. The compound was then extracted with ethyl acetate, dried over Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to give 73% yield of **11**. ¹H NMR (500 MHz, CDCl₃): δ 8.17 (s, 1H), 7.62-7.52 (m, 2H), 7.45-7.34 (m, 3H), 4.87-4.78 (m, 1H), 3.91-3.81 (m, 2H), 2.17-1.88 (m, 2H), 1.77 (brs, 1H, OH); ¹³C NMR (126 MHz, CDCl₃): δ 150.5, 131.0, 130.5, 128.8, 127.3, 124.6 (q, J = 238.1 Hz), 77.9 (q, J = 30.0 Hz), 57.8, 30.6; ¹⁹F NMR (470 MHz, CDCl₃): δ -77.2 (d, J = 7.0 Hz); $[\alpha]^{25}$ +14.3 (c = 0.3, CHCl₃); FTIR (neat) v_{max} 3368, 2963, 1277, 1172, 931, 763, 695, 453 cm⁻¹; Anal. Calcd (%) for C₁₁H₁₂F₃NO₂: C, 53.34; H, 4.89; N, 5.67. Found: C, 53.46; H, 4.97; N, 5.81. The enantiomeric ratio of 11 was determined by HPLC (hexane : 2-propanol = 50 : 1, 0.5 mL/min) using a CHIRALPAK ID column (0.46 cm \$\phi\$ x 25 cm): major isomer 18.8 min and minor isomer 13.5 min (95% ee).

Asymmetric synthesis of befloxatone (Scheme 4):

(*R*)-4,4,4-trifluorobutane-1,3-diol (12)

To a suspension of 20% Pd(OH)₂/C (10 mg) in methanol (0.4 mL) was added a solution of **1** (0.15 mmol) in methanol (0.6 mL). The mixture was stirred for 3 h at ambient temperature under a hydrogen atmosphere. After the reaction mixture was filtered, the filtrate was concentrated at reduced pressure. The crude product was purified by silica gel column chromatography (CH₂Cl₂ : MeOH = 5 : 1) to give 91% yield of **12**. ¹H NMR (500 MHz, CDCl₃): δ 4.87-4.78 (m, 1H), 3.91-3.81 (m, 2H), 2.17-1.88 (m, 2H); ¹³C NMR (126 MHz,

CDCl₃): δ 124.9 (q, J = 281.9 Hz), 69.4 (q, J = 34.8 Hz), 59.8, 31.1; ¹⁹F NMR (470 MHz, CDCl₃): δ -80.4 (d, J = 7.0 Hz); $[\alpha]^{24}{}_{D}$ +7.4 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 3378, 2930, 1706, 1275, 1129, 413 cm⁻¹; Anal. Calcd (%) for C₁₁H₁₂F₃NO₂: C, 33.34; H, 4.90. Found: C, 33.49; H, 5.02.

The absolute configuration of **12** was determined to be *R* by comparing the optical rotation with a reported value. [T. Yamazaki, N. Okamura, T. Kitazume, *Tetrahedron: Asymmetry* 1990, **1**, 521]

4,4,4-trifluoro-3-hydroxybutyl 4-methylbenzenesulfonate (13)

Tosyl chloride (0.33 mmol) was added to a solution of diol **12** (0.3 mmol) in pyridine (4.5 mmol). The mixture was stirred for 24 h at ambient temperature. Saturated NaHCO₃ was added to the mixture. The compound was extracted with dichloromethane, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to give 53% yield of **13**.¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, 2H, *J* = 7.6 Hz), 7.37 (d, 2H, *J* = 8.0 Hz), 5.17-5.04 (m, 1H), 3.88-3.77 (m, 2H), 2.47 (s, 3H), 2.15-2.02 (m, 1H), 1.97-1.86 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 125.3 (q, *J* = 282.7 Hz), 71.1, 69.2 (q, *J* = 34.8 Hz), 59.8, 31.3, 29.7; [α]²⁵_D +24.7 (c = 0.3, CHCl₃); FTIR (neat) υ_{max} 3282, 1782, 1387, 1257, 1232, 1041, 1033, 417, 369 cm⁻¹; Anal. Calcd (%) for C₁₁H₁₃F₃O₄S: C, 44.29; H, 4.39. Found: C, 44.22; H, 4.07.

methyl 4-(benzyloxy)phenylcarbamate (14)

To a solution of 4-benzyloxyaniline hydrochloride (4 mmol) and triethylamine (4.4 mmol) in anhydrous dichloromethane (5 mL) was added methyl chloroformate (6 mmol). The mixture was stirred at ambient temperature for 8 h. Saturated NaHCO₃ was added to the mixture. The compound was extracted with dichloromethane, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was used in the next step without further purification (90% yield). ¹H NMR (500 MHz, CDCl₃): δ 7.49-7.18 (m, 7H), 6.98-6.87 (m, 2H), 6.48 (brs, NH), 5.04 (s, 2H), 3.76 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 155.1, 154.3, 137.0, 131.1, 128.5, 127.9, 127.4, 120.5, 115.2, 70.2, 52.2; FTIR (neat) v_{max} 3320, 1706, 1597, 1453, 1416, 1298, 1239, 1074, 733 cm⁻¹; Anal. Calcd (%) for C₁₅H₁₅NO₃: C, 70.02; H, 5.88; N, 5.44. Found: C, 70.04; H,

5.88; N, 5.43.

3-(4-(benzyloxy)phenyl)-5-(methoxymethyl)oxazolidin-2-one (16)

To a solution of **14** (3 mmol) and K₂CO₃ (6 mmol) in anhydrous DMF (6 mL) was added (*S*)-4-methoxymethyl-1,3-dioxolane-2-one (**15**) (3 mmol). The mixture was stirred for 3 h at 155 °C. After the mixture was diluted with water, the compound was extracted with dichloromethane. The organic layer was washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (CH₂Cl₂ : MeOH = 10 : 1) to give 83% yield of **16**. ¹H NMR (500 MHz, CDCl₃): δ 7.47-7.28 (m, 7H), 6.99-6.95 (m, 2H), 5.05 (s, 2H), 4.77-4.70 (m, 1H), 4.02 (dd, 1H, *J* = 8.8, 8.8 Hz), 3.88 (dd, 1H, *J* = 6.5, 8.8 Hz), 3.64 (d, 2H, *J* = 4.6 Hz), 3.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 155.4, 136.8, 131.6, 128.6, 128.0, 127.4, 120.0, 115.2, 72.6, 71.1, 70.2, 59.6, 47.5; [α]²⁶_D -16.4 (c = 0.2, CHCl₃); FTIR (neat) υ_{max} 1745, 1510, 1229, 1132, 754 cm⁻¹; Anal. Calcd (%) for C₁₁H₁₃NO₄: C, 68.99; H, 6.11; N, 4.47. Found: C, 68.76; H, 5.97; N, 4.22.

3-(4-hydroxyphenyl)-5-(methoxymethyl)oxazolidin-2-one (17)

A mixture of **16** (0.16 mmol) and 5% Pd/C (34 mg) dissolved in EtOH–CH₂Cl₂ (1:1) (1.6 mL) was stirred for 12 h at ambient temperature under hydrogen atmosphere. After the reaction mixture was filtered, the filtrate was concentrated at reduced pressure. The crude mixture was purified by silica gel column chromatography (CH₂Cl₂ : MeOH = 20 : 1) to give 92% yield of **17**. ¹H NMR (500 MHz, CDCl₃): δ 7.31 (d, 2H, *J* = 8.0 Hz), 6.82 (d, 2H, *J* = 8.0 Hz), 4.81-4.69 (m, 1H), 4.01 (dd, 1H, *J* = 8.8, 8.8 Hz), 3.87 (dd, 1H, *J* = 6.5, 8.4 Hz), 3.64 (d, 2H, *J* = 4.2 Hz), 3.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 155.4, 153.3, 130.6, 120.9, 115.9, 72.6, 71.4, 59.6, 47.9; [α]²⁵_D –40.0 (c = 0.3, CHCl₃); FTIR (neat) υ_{max} 3248, 1717, 1515, 1427, 1236, 1134, 756 cm⁻¹; Anal. Calcd (%) for C₁₁H₁₃NO₄: C, 59.19; H, 5.87; N, 6.27. Found: C, 59.22; H, 5.97; N, 6.21.

befloxatone

A mixture of **17** (0.1 mmol), **13** (0.15 mmol), and K₂CO₃ (0.2 mmol) dissolved in anhydrous DMF (0.5 mL) was stirred for 6 h at 85 °C. After the mixture was diluted with water, the compound was extracted with dichloromethane. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to give 84% yield of befloxatone as a diastereomeric mixture (dr = 98 : 2). ¹H NMR (500 MHz, CD₃OD): δ 7.34-7.29 (m, 2H), 6.81-6.76 (m, 2H), 4.81-4.75 (m, 1H), 4.12-4.04 (m, 1H), 4.07 (dd, 1H, *J* = 8.8, 9.2 Hz), 3.84 (dd, 1H, *J* = 6.5, 8.6 Hz), 3.75-3.69 (m, 2H), 3.66 (dd, 1H, *J* = 3.4, 11.1 Hz), 3.59 (dd, 1H, *J* = 4.6, 11.1 Hz), 3.42 (s, 3H), 1.89-1.80 (m, 1H), 1.73-1.64 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 155.6, 153.2, 130.3, 124.9 (q, *J* = 281.9 Hz), 121.1, 115.8, 72.4, 71.5, 68.9 (q, *J* = 31.2 Hz), 59.5, 47.8, 31.0, 29.6; [α]²⁶_D +17.6 (c = 0.2, CHCl₃);FTIR (neat) υ_{max} 3368, 2933, 1726, 1516, 1131, 756, 416 cm⁻¹; Anal. Calcd (%) for C₁₅H₁₈F₃NO₅: C, 51.58; H, 5.19; N, 4.01. Found: C, 51.66; H, 5.43; N, 4.33.

The diastereomeric ratio of befloxatone was confirmed by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min) using a CHIRALPAK ID column (0.46 cm ϕ x 25 cm): major isomer 18.9 min, minor isomer 13.5 min (96% de)

¹³C NMR

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.9 30.0 20.0 10.0 0

¹H NMR

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0

40.0

30.0

20.0

10.0

ò

70.0

60.0 50.0

ーク名

13.40

1995977

7657

1

S26

 CH
 tR [min]
 開設 [JV*sec]
 当さ [JV]
 当初い

 I
 12.225
 2302456
 106516
 53.56
CH 12.017 227870 116570 87.81 ピーク名 48,435 13.683 Ŧ. \$453

\$7.92

167

2.074

¹H NMR

¹H NMR

¹H NMR

¹³C NMR

HPLC racemic

HPLC optically active

ビーク名	C ×4	(Rính)	推动 [s//wee]	Ma LVI	10844
Uninove	1	11,158	100430	10665	1,271
Unknown	1	11,892	13852058	3567.26	98.829

¹H NMR

¹H NMR

¹³C NMR

HPLC racemic

ŧ.	L-96	Q4	18 (m) (i	明朝 (5/4446)	観察	調査す
٥t	(himene	1	12.435	\$23.6677	\$7350	48.657
1	chinave	1	18.806	1278841	20190	\$1,043

18.200.06	C CH	4R [min]	補償なるよう	TEL DAY	「御殿」
1 Alexandres	3	13.675	7292	483	0.728
2 Airport	1	18.255	Sector	24633	99,565

 $^{1}\mathrm{H}\ \mathrm{NMR}$

¹H NMR

¹³C NMR

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

¹H NMR

HPLC racemic

	2-26	CH	th Inial	BE LYNN)	Ta ling	
5	Unknown	L.	8,253	541962	45/16	54.842
	(Solarown	1	12,015	446893	25118	48.054

×.	Ľ-26	64	(Rippin)	際語 Q.Yeed	THE DAYS !	調査に
2	Unknown	1	3 159	\$100096	179651	\$7,925
73	Unknown	1	50,150	65956	4621	2,755

¹H NMR

¹³C NMR

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

HPLC racemic

	E-74	GH	tH (min)	E (LIVING)	周老 [gV]	100
1	Unknown	1	11.862	2001118	174004	49.310
1	Linksown	1	12,825	3042908	169500	50.581

	F-36	201	the Daniel	and the seat	MC DYJ	
1	Unknown	1	11,092	31591	1003	0.551
2	Unknown	1	12.917	5700568	318477	99.443

¹H NMR

¹³C NMR

HPLC racemic

C-20	100	Distriction of the	E-E (IV-SHC)	MC (94)	
Unknown	1.	14,908	221575	10995	14.864
2Unknown	1	16.117	1270149	36362	65.144

HPLC optically active

5-98	QH I	ALC: NO.	BR GAMEST	MS 1973	0.94
Jainese .	1	8 283	542552	45195	અક્રમણે
Jangara	1.5	12.019	445835	25118	45,254

	Ľ-76	CH	(Richal)	Mill G/vec]	32 GVI	医结束
- 5	Onlengues	1	8,128	2466156	179951	97275
2	Unknown	1	10.150	65965	4871	2,755

¹³C NMR

HPLC optically active

33.65

42611

843

1.919

¹H NMR

S46

¹H NMR

HPLC racemic

HPLC optically active

¹³C NMR

HPLC racemic

	2-25	CH	tfl [min]	题题 (uVrees)	高さ[M]	影響な
1	Unknown	1	17,458	4144443	114012	88.911
24	Unknown	1	18.858	3543122	\$4788	48.088

٠	ピーラ名	CH	tit (min)	御職 [uVune]	篇字 [sV]	開催す
1	Unknown	1	17.778	3348245	101366	91.882
2	University	1	19,775	331187	12168	8.118

¹H NMR

¹H NMR

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

¹H NMR

¹H NMR

	ど-5名	ĊH.	28 (min)	里槽 (Mass)	進さ(sv)	図書()
1	Utknown	1	13,500	2197		1.625
μ.	Uningue	1	18.917	132783	4005	95,372