Supporting Information for

Desymmetrization of Cyclohexadienones *via* D-Camphor-derived Triazolium Salts Catalyzed Intramolecular Stetter Reaction

Min-Qiang Jia and Shu-Li You*

State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China

E-mail: slyou@sioc.ac.cn

Table of Contents

General methods	S2
Experimental details and characterization data	\$3-\$33
X-Ray of 2a	S34
Copies of NMR and HPLC spectra	S35-S76

General methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use.

¹H and ¹³C NMR spectra were recorded on Varian instruments (300 MHz and 75 MHz or 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

The D-camphor-derived triazolium salt¹, compound $3b^2$ and 3-substituted-prop-2ynoic acid³⁻⁴ were prepared according to the reported procedures, compound 3a is commercially available.

⁽¹⁾ Y. Li, Z. Feng and S.-L. You, Chem. Commun. 2008, 2263.

⁽²⁾ T. M. Salo, J. Juho Helaja and A. M. P. Koskinen, Tetrahedron Lett. 2006, 47, 2977.

⁽³⁾ H. Sai, T. Ogiku, H. Ohmizu and A. Akio Ohtani, Chem. Pharm. Bull. 2006, 54, 1686.

⁽⁴⁾ T. W. Lyons and M. S. Sanford, *Tetrahedron* 2009, 65, 3211.

⁽⁵⁾ J.-W. Sun, Y.-M. Dong, L.-Y. Cao, X.-Y. Wang, S.-Z. Wang and Y.-F. Hu, J. Org. Chem. 2004, 69, 8932.

Substrate synthesis

General procedure for the synthesis of substrates 1a-l

When $R^1 = H$, $R^2 = n$ -Pr, the substrate was synthesized as follows:

1: General procedure for the synthesis of 3-substituted-prop-2-ynoic amide (5)

To a solution of 3-substituted-prop-2-ynoic acid (1.1 eq) in CH_2Cl_2 (0.2 mol/L), DMAP (0.1 eq) was added, then the solution was cooled to 0 °C. (*N*-4,4-Diethoxyalkyl)-4-methoxyaniline (1 eq) and DCC (1.2 eq) were added sequentially. The resulting solution was stirred at room temperature until completion. The precipitated urea was then filtered off by celite and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the desired compounds.

2: General procedure for dearomatization

ICl (2 eq) in CH₂Cl₂ (0.1 mol/L) was added to a solution of the diethoxyacetal (1 eq) (method **A**) or the corresponding aldehyde (1 eq) (method **B**) in CH₂Cl₂ (0.03 mol/L) at -78 °C over a period of 30-60 minutes. The resulting solution was stirred for another 10-60 minutes. After the reaction was complete (monitored by TLC), it was quenched with saturated aqueous Na₂SO₃ solution. The reaction mixture was allowed to warm up to room temperature and extracted three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, concentrated in vacuo, the residue was purified by column chromatography on silica gel to afford the corresponding iodocyclohexadienone.

3: General procedure for acetal removal⁵

To the solution of acetal (1 eq) in acetone (0.04 mol/L), iodine (10 mol%) was added. The resulting solution was stirred at room temperature until completion. The solution was concentrated in vacuo, and the residue was purified by column chromatography on silica gel to afford the desired compounds.

N-(2,2-Diethoxyethyl)-4-methoxyaniline

DMSO (15 mL) was added to a mixture of 4-iodoanisole (2.0 g, 8.55 mmol), CuI (163 mg, 0.85 mmol), L-proline (197 mg, 1.71 mmol) and K_2CO_3 (powdered) (2.38 g, 17.1 mmol) in a round bottom flask under argon, then 2,2-diethoxyethanamine (1.86 mL, 12.83 mmol) was added. The reaction mixture was stirred under argon at 80 °C for

40h, diluted with water and extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc:PE = 1:10) to afford the product as a pale yellow oil (1.67 g, 82% yield); ¹H NMR (300 MHz, CDCl₃) δ 6.77 (d, *J* = 9.0 Hz, 2H), 6.61 (d, *J* = 8.7 Hz, 2H), 4.67 (t, *J* = 5.4 Hz, 1H), 3.77-3.67 (m, 5H), 3.61-3.51 (m, 2H), 3.20 (d, *J* = 5.7 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 152.2, 142.0, 114.7, 114.4, 100.9, 62.2, 55.6, 47.3, 15.3; MS (ESI) 240 ([M+H]⁺); HRMS (ESI) mass calcd. For C₁₃H₂₂NO₃ ([M+H]⁺): 240.1594. Found 240.1598.

N-(2,2-Diethoxyethyl)-4-methoxy-3,5-dimethylaniline

Pale yellow oil (97% yield), following the procedure for **4a**; ¹H NMR (300 MHz, CDCl₃) δ 6.28 (s, 2H), 4.63 (t, *J* = 4.6 Hz, 1H), 3.72-3.66 (m, 3H), 3.61 (d, *J* = 1.8 Hz, 3H), 3.55-3.50 (m, 2H), 3.17 (d, *J* = 5.4 Hz, 2H), 2.20 (s, 6H), 1.23 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 148.5, 143.6, 130.7, 112.7, 100.5, 61.6, 59.3, 46.4, 15.7, 14.9; MS (EI, *m*/z, rel. intensity) 267 ([M]⁺, 34), 164 (98), 103 (100); HRMS (EI) mass calcd. For C₁₅H₂₅NO₃ ([M]⁺): 267.1834. Found 267.1833.

N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)-3-phenylpropiolamide

Pale yellow solid, following general procedure **1** (93% yield). M.p. 64-66 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.23 (m, 3H), 7.17 (t, *J* = 7.2 Hz, 2H), 7.10 (d, *J* =

7.2 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.79 (t, J = 5.4 Hz, 1H), 3.84 (d, J = 5.4 Hz, 2H), 3.76 (s, 3H), 3.68-3.56 (m, 2H), 3.53-3.43 (m, 2H), 1.13 (t, J = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.8, 154.4, 134.9, 132.0, 129.6, 129.3, 128.0, 120.0, 113.6, 98.9, 90.8, 82.4, 61.7, 55.1, 50.8, 14.9; MS (ESI) 368 ([M+H]⁺); HRMS (ESI) mass calcd. For C₂₂H₂₅NaNO₄ ([M+Na]⁺): 390.1676. Found 390.1683.

N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)-3-(p-tolyl)propiolamide

Pale yellow solid (80% yield), following general procedure **1**. M.p. 54-56 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, *J* = 9.0 Hz, 2H), 7.05 (s, 4H), 6.92 (d, *J* = 9.0 Hz, 2H), 4.84 (t, *J* = 5.7 Hz, 1H), 3.88-3.84 (m, 4H), 3.72-3.61 (m, 2H), 3.59-3.47 (m, 2H), 2.31 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 154.9, 140.4, 135.4, 132.4, 129.6, 129.0, 117.3, 113.9, 99.2, 91.6, 82.3, 62.0, 55.5, 51.1, 21.5, 15.2; MS (ESI) 382 ([M+H]⁺); HRMS (ESI) mass calcd. For C₂₃H₂₇NaNO₄ ([M+Na]⁺): 404.1832. Found 404.1840.

N-(2,2-Diethoxyethyl)-*N*-(4-methoxyphenyl)-3-(m-tolyl)propiolamide

Pale yellow oil (95% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, *J* = 9.3 Hz, 2H), 7.11 (d, *J* = 4.5 Hz, 2H), 6.95-6.92 (m, 4H), 4.84 (t, *J* = 5.4 Hz, 1H), 3.88 (d, *J* = 6.0 Hz, 2H), 3.82 (s, 3H), 3.71-3.61 (m, 2H), 3.59-3.49 (m, 2H), 2.23 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.8,

154.5, 137.7, 135.1, 132.7, 130.5, 129.4, 129.2, 127.9, 119.9, 113.7, 99.0, 91.2, 82.2, 61.7, 55.2, 50.8, 20.8, 15.0; MS (ESI) 382 ([M+H]⁺); HRMS (MALDI) mass calcd. For C₂₃H₂₇NaNO₄ ([M+Na]⁺): 404.1832. Found 404.1843.

N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)-3-(o-tolyl)propiolamide

Pale yellow oil (98% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 7.5 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 4.75 (t, *J* = 5.7 Hz, 1H), 3.78 (d, *J* = 5.4 Hz, 2H), 3.69 (s, 3H), 3.61-3.51 (m, 2H), 3.49-3.38 (m, 2H), 1.84 (s, 3H), 1.08 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 154.8, 141.2, 135.3, 133.0, 129.8, 129.6, 129.3, 125.4, 120.2, 114.1, 99.2, 99.0, 86.3, 61.9, 55.4, 51.2, 19.8, 15.1; MS (ESI) 404 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₃H₂₇NaNO₄ ([M+Na]⁺): 404.1832. Found 404.1840.

N-(2,2-Diethoxyethyl)-3-(4-fluorophenyl)-*N*-(4-methoxyphenyl)propiolamide

Yellow oil (84% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 7.33 (d, *J* = 9.0 Hz, 2H), 7.15 (dd, *J* = 9.0, 5.4 Hz, 2H), 6.97-6.91 (m, 4H), 4.84 (t, *J* = 5.7 Hz, 1H), 3.88 (d, *J* = 6.0 Hz, 2H), 3.84 (s, 3H), 3.72-3.62 (m, 2H), 3.60-3.50 (m, 2H), 1.19 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 163.2 (d, *J* = 250.7 Hz), 158.9, 154.5, 135.1, 134.4 (d, J = 9.1 Hz), 129.5, 116.3 (d, J = 3.4 Hz), 115.6 (d, J = 22.1 Hz), 113.8, 99.0, 90.0, 82.3, 61.9, 55.3, 50.9, 15.1; MS (ESI) 386 ([M+H]⁺); HRMS (ESI) mass calcd. For C₂₂H₂₄FNaNO₄ ([M+Na]⁺): 408.1582. Found 408.1583.

Orange oil (82% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 7.34 (d, *J* = 9.0 Hz, 2H), 7.19 (d, *J* = 8.7 Hz, 2H), 7.06 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 4.84 (t, *J* = 5.7 Hz, 1H), 3.89 (d, *J* = 5.7 Hz, 2H), 3.82 (s, 3H), 3.71-3.61 (m, 2H), 3.59-3.48 (m, 2H), 1.18 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.6, 153.9, 135.5, 134.6, 133.0, 129.2, 128.2, 118.4, 113.5, 98.7, 89.3, 83.1, 61.4, 54.9, 50.6, 14.8; MS (ESI) 424 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₂H₂₄ClNaNO₄ ([M+Na]⁺): 424.1286. Found 424.1283.

N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)-3-(thiophen-2-yl) propiolamide

Yellow oil (86% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.29 (m, 3H), 7.04 (d, *J* = 3.3 Hz, 1H), 6.95-6.87 (m, 3H), 4.84 (t, *J* = 5.7 Hz, 1H), 3.88 (d, *J* = 5.7 Hz, 2H), 3.82 (s, 3H), 3.70-3.60 (m, 2H), 3.57-3.478 (m, 2H), 1.17 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.7, 154.0, 134.5, 134.4, 129.9, 129.1, 126.8, 119.6, 113.5, 98.7, 86.4, 84.5, 61.5, 55.0, 50.5, 14.8; MS (ESI)

396 ($[M+Na]^+$); HRMS (MALDI) mass calcd. For $C_{20}H_{23}NaNO_4S$ ($[M+Na]^+$): 396.1240. Found 396.1243.

N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)but-2-ynamide

Pale yellow solid (87% yield), following general procedure **1**. M.p. 54-56 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.23 (d, *J* = 9.0 Hz, 2H), 6.88 (d, *J* = 9.0 Hz, 2H), 4.78 (t, *J* = 5.7 Hz, 1H), 3.83 (s, 3H), 3.79 (d, *J* = 6.0 Hz, 2H), 3.68-3.58 (m, 2H), 3.56-3.46 (m, 2H), 1.74 (s, 3H), 1.16 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.6, 154.6, 135.2, 129.2, 113.7, 99.1, 90.0, 74.0, 61.9, 55.2, 51.0, 15.1, 3.7; MS (ESI) 328 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₁₇H₂₃NaNO₄ ([M+Na]⁺): 328.1519. Found 328.1526.

N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)hex-2-ynamide

Pale yellow oil (84% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 6.96 (dd, *J* = 9.0, 2.4 Hz, 2H), 6.61 (dd, *J* = 9.0, 2.4 Hz, 2H), 4.51-4.48 (m, 1H), 3.53-3.52 (m, 5H), 3.40-3.30 (m, 2H), 3.28-3.17 (m, 2H), 1.81-1.76 (m, 3H), 1.06-0.94 (m, 2H), 0.91-0.85 (m, 6H), 0.46-0.40 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.3, 154.0, 134.7, 128.8, 113.2, 98.5, 93.1, 74.5, 61.1, 54.6, 50.2, 20.2, 19.8, 14.5, 12.3; MS (ESI) 356 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₁₉H₂₇NaNO₄ ([M+Na]⁺): 356.1832. Found 356.1842.

3-Cyclopropyl-N-(2,2-diethoxyethyl)-N-(4-methoxyphenyl)propiolamide

Pale yellow oil (81% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 7.03 (d, *J* = 8.7 Hz, 2H), 6.70 (d, *J* = 8.7 Hz, 2H), 4.57 (t, *J* = 5.7 Hz, 1H), 3.64 (s, 3H), 3.60 (d, *J* = 5.4 Hz, 2H), 3.49-3.39 (m, 2H), 3.37-3.27 (m, 2H), 0.98 (t, *J* = 6.9 Hz, 6H), 0.79-0.73 (m, 1H), 0.57-0.51 (m, 2H), 0.28-0.23 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 154.2, 135.0, 129.0, 113.3, 98.8, 97.5, 69.6, 61.4, 54.9, 50.4, 14.7, 8.5, -1.1; MS (ESI) 354 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₁₉H₂₅NaNO₄ ([M+Na]⁺): 354.1676. Found 354.1680.

N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)-4,4-dimethylpent-2-ynamide

Pale yellow oil (96% yield), following general procedure **1**. ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, *J* = 9.0 Hz, 2H), 6.88 (d, *J* = 9.0 Hz, 2H), 4.78 (t, *J* = 5.7 Hz, 1H), 3.81 (s, 3H), 3.80 (d, *J* = 6.3 Hz, 2H), 3.69-3.58 (m, 2H), 3.57-3.47 (m, 2H), 1.17 (t, *J* = 7.2 Hz, 6H), 0.97 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 158.7, 154.9, 135.5, 129.4, 113.6, 101.1, 99.1, 73.4, 61.6, 55.3, 50.7, 29.5, 27.1, 15.0; MS (ESI) 370 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₀H₂₉NaNO₄ ([M+Na]⁺): 370.1989. Found 370.1998.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

N-(2,2-Diethoxyethyl)-*N*-(4-methoxy-3,5-dimethylphenyl)-3-phenylpropiolamide

Pale yellow solid (94% yield), following general procedure **1**. M.p. 64-66 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.28 (m, 1 H), 7.28 (t, *J* = 7.5 Hz, 2H), 7.09-7.13 (m, 4 H), 4.86 (t, *J* = 5.7 Hz, 1H), 3.89 (d, *J* = 5.7 Hz, 2H), 3.73 (s, 3H), 3.70-3.62 (m, 2H), 3.59-3.49 (m, 2H), 2.30 (s, 6H), 1.18 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 156.0, 153.9, 137.4, 131.8, 130.7, 129.4, 128.1, 127.8, 120.0, 98.8, 90.3, 82.4, 61.5, 59.1, 50.5, 15.5, 14.7; MS (ESI) 418 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₄H₂₉NaNO₄ ([M+Na]⁺): 419.1989. Found 418.1997.

1-(2,2-Diethoxyethyl)-3-iodo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione

Pale yellow solid (54% yield), following general procedure **2**, method **A**. M.p. 140-142 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.43-7.34 (m, 3H), 7.25 (d, *J* = 7.2 Hz, 2H), 6.57 (d, *J* = 9.6 Hz, 2H), 6.38 (d, *J* = 10.2 Hz, 2H), 4.89 (t, *J* = 5.4 Hz, 1H), 3.79-3.69 (m, 2H), 3.60-3.50 (m, 2H), 3.40 (d, *J* = 5.4 Hz, 2H), 1.20 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 183.8, 167.8, 158.8, 144.1, 132.4, 131.7, 129.9, 128.4, 127.6, 99.1, 97.9, 71.0, 63.0, 45.1, 15.2; MS (ESI) 502 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₁H₂₂INaNO₄ ([M+Na]⁺): 502.0486. Found 502.0496.

1-(2,2-Diethoxyethyl)-3-iodo-4-(p-tolyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8dione

Pale yellow solid (45% yield), following general procedure **2**, method **A**. M.p. 138-140 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.16 (s, 4H), 6.53 (d, *J* = 10.2 Hz, 2H), 6.38 (d, *J* = 10.2 Hz, 2H), 4.89 (t, *J* = 5.7 Hz, 1H), 3.79-3.69 (m, 2H), 3.60-3.50 (m, 2H), 3.38 (d, *J* = 5.7 Hz, 2H), 2.35 (s, 3H), 1.20 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 183.8, 167.8, 158.7, 144.3, 140.0, 132.2, 129.0, 128.7, 127.4, 99.0, 97.3, 70.9, 62.9, 45.0, 21.2, 15.1; MS (ESI) 516 ([M+Na]⁺); HRMS (ESI) mass calcd. For C₂₂H₂₄INaNO₄ ([M+Na]⁺): 516.0642. Found 516.0651.

1-(2,2-Diethoxyethyl)-3-iodo-4-(m-tolyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8dione

Yellow solid (41% yield), following general procedure **2**, method **A**. M.p. 128-130 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.12-7.04 (m, 2H), 6.92-6.90 (m, 2H), 6.48 (d, *J* = 9.9 Hz, 2H), 6.24 (d, *J* = 9.6 Hz, 2H), 4.76 (t, *J* = 5.4 Hz, 1H), 3.65-3.55 (m, 2H), 3.46-3.36 (m, 2H), 3.27 (d, *J* = 5.1 Hz, 2H), 2.19 (s, 3H), 1.06 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 183.8, 167.8, 159.0, 144.2, 138.1, 132.2, 131.7, 130.6, 128.3, 128.1, 124.5, 99.0, 97.6, 71.0, 62.9, 45.1, 21.2, 15.1; MS (ESI) 516 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₂H₂₄INaNO₄ ([M+Na]⁺): 516.0642. Found 516.0660.

1-(2,2-Diethoxyethyl)-3-iodo-4-(o-tolyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8dione

White solid (61% yield), following general procedure **2**, method **A**. M.p. 123-124 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.28-7.20 (m, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 7.2 Hz, 1H), 6.71 (dd, *J* = 9.6 Hz, 2.7 Hz, 1H), 6.63 (dd, *J* = 9.6 Hz, 2.7 Hz, 1H), 6.42 (d, *J* = 9.9 Hz, 1H), 6.22 (d, *J* = 10.2 Hz, 1H), 4.90 (t, *J* = 5.4 Hz, 1H), 3.79-3.69 (m, 2H), 3.60-3.50 (m, 2H), 3.47-3.37 (m, 2H), 2.21 (s, 3H), 1.22-1.17 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 183.3, 167.2, 159.8, 143.6, 143.5, 135.1, 132.3, 131.5, 130.22, 130.17, 129.2, 127.8, 124.9, 99.8, 98.8, 72.3, 62.6, 45.1, 19.7, 14.9; MS (ESI) 516 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₂H₂₄INaNO₄ ([M+Na]⁺): 516.0642. Found [(M+Na)⁺] 516.0653.

1-(2,2-Diethoxyethyl)-4-(4-fluorophenyl)-3-iodo-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione(jmq6-74)

White solid (51% yield), following general procedure **2**, method **A**. M.p. 143-145 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.24 (m, 2H), 7.07 (t, *J* = 8.4 Hz, 2H), 6.54 (d, *J* = 10.2 Hz, 2H), 6.39 (d, *J* = 9.9 Hz, 2H), 4.89 (t, *J* = 5.7 Hz, 1H), 3.77-3.69 (m, 2H), 3.60-3.52 (m, 2H), 3.39 (d, *J* = 5.4 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 183.8, 167.8, 163.4 (d, *J* = 250.1 Hz), 157.9, 144.2, 132.6, 129.9 (d, *J* = 8.5 Hz), 127.9 (d, *J* = 3.4 Hz), 116.0 (d, *J* = 22.1 Hz), 99.2, 98.6, 71.1, 63.2, 45.3, 15.3; MS (ESI) 520 ($[M+Na]^+$); HRMS (ESI) mass calcd. For C₂₁H₂₁FINaNO₄ ($[M+Na]^+$): 520.0392. Found 520.0404.

4-(4-Chlorophenyl)-1-(2,2-Diethoxyethyl)-3-iodo-1-azaspiro[4.5]deca-3,6,9-triene -2,8-dione

White solid (53% yield), following general procedure **2**, method **A**. M.p. 176-178 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.9 Hz, 2H), 6.55 (d, *J* = 10.2 Hz, 2H), 6.40 (d, *J* = 9.9 Hz, 2H), 4.89 (t, *J* = 5.4 Hz, 1H), 3.79-3.69 (m, 2H), 3.60-3.49 (m, 2H), 3.39 (d, *J* = 5.4 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 183.7, 167.6, 157.6, 144.0, 136.2, 132.6, 130.2, 129.1, 129.0, 99.1, 98.7, 71.0, 63.1, 45.2, 15.2; MS (ESI) 536 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₁H₂₁CIINaNO₄ ([M+Na]⁺): 536.0096. Found 536.0105.

1-(2,2-Diethoxyethyl)-3-iodo-4-(thiophen-2-yl)-1-azaspiro[4.5]deca-3,6,9-triene-2, 8-dione

Yellow solid (51% yield), following general procedure **2**, method **A**. M.p. 89-91 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 3.9 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.11 (t, *J* = 4.5 Hz, 1H), 6.60 (d, *J* = 9.9 Hz, 2H), 6.53 (d, *J* = 10.5 Hz, 2H), 4.92 (t, *J* = 5.4 Hz, 1H), 3.79-3.69 (m, 2H), 3.59-3.49 (m, 2H), 3.34 (d, *J* = 5.4 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 184.2, 168.0, 150.2, 145.2, 132.6, 132.4, 129.8, 129.5, 127.4, 99.2, 93.5, 69.7, 63.4, 44.7, 15.2; MS (ESI) 508 ($[M+Na]^+$); HRMS (MALDI) mass calcd. For $C_{19}H_{20}INaNO_4S$ ($[M+Na]^+$): 508.0050. Found 508.0056.

1-(2,2-Diethoxyethyl)-3-iodo-4-methyl-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione

Pale yellow solid (47% yield), following general procedure **2**, method **A**. M.p. 94-96 ^oC. ¹H NMR (300 MHz, CDCl₃) δ 6.50 (d, *J* = 10.5 Hz, 2H), 6.45 (d, *J* = 10.5 Hz, 2H), 4.82 (t, *J* = 5.4 Hz, 1H), 3.78-3.67 (m, 2H), 3.58-3.48 (m, 2H), 3.37 (d, *J* = 5.7 Hz, 2H), 1.89 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 183.9, 167.7, 156.9, 145.0, 132.1, 99.0, 95.8, 70.8, 62.8, 45.1, 15.2, 15.0; MS (ESI) 440 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₁₆H₂₀INaNO₄ ([M+Na]⁺): 440.0329. Found 440.0341.

N-(4-Methoxyphenyl)-N-(2-oxoethyl)hex-2-ynamide

Pale yellow oil (79% yield), following general procedure **3**. ¹H NMR (300 MHz, CDCl₃) δ 9.61 (s, 1H), 7.27 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 4.48 (s, 2H), 3.81 (s, 3H), 2.09 (t, *J* = 6.9 Hz, 2H), 1.37-1.25 (m, 2H), 0.72 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.1, 159.3, 155.0, 134.8, 129.2, 114.3, 95.4, 74.3, 58.8, 55.5, 20.9, 20.7, 13.1; MS (ESI) 260 ([M+H]⁺); HRMS (MALDI) mass calcd. For

 $C_{15}H_{18}NO_3$ ([M+H]⁺): 260.1281. Found 260.1284.

4-Cyclopropyl-1-(2,2-diethoxyethyl)-3-iodo-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione

Pale yellow solid (35% yield), following general procedure **2**, method **A**. M.p. 72-74 ^oC. ¹H NMR (300 MHz, CDCl₃) δ 6.50 (s, 4H), 4.82 (t, *J* = 5.7 Hz, 1H), 3.76-3.66 (m, 2H), 3.57-3.47 (m, 2H), 3.31 (d, *J* = 5.4 Hz, 2H), 1.38-1.26 (m, 3H), 1.18 (t, *J* = 7.2 Hz, 6H), 0.99-0.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 184.1, 167.9, 158.9, 145.1, 132.0, 99.0, 88.0, 71.4, 62.8, 44.8, 15.0, 11.1, 7.6; MS (ESI) 466 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₁₈H₂₂INaNO₄ ([M+Na]⁺): 466.0486. Found 466.0490.

4-(tert-Butyl)-1-(2,2-diethoxyethyl)-3-iodo-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione

Modified general procedure **2**, method **A**, N-(2,2-Diethoxyethyl)-N-(4-methoxyphenyl)-4,4- dimethylpent-2-ynamide (1.39 g, 4.0 mmol), CH_2Cl_2 135 mL, ICl (408 uL, 8.0 mmol) in 80 mL CH_2Cl_2 , stirred for 30 min, then the solution was slowly warmed to room temperature for 12h, quenched with saturated aqueous Na₂SO₃ solution and extracted three times with CH_2Cl_2 . The combined organic layers were dried over Na₂SO₄, concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc:PE, 1:3) to afford the product as a pale yellow solid (380 mg, 28% yield); M.p. 148-150 °C. ¹H NMR (300 MHz, CDCl₃) δ 6.50 (s, 4H), 4.82 (t, J = 5.4 Hz, 1H), 3.76-3.66 (m, 2H), 3.55-3.45 (m, 2H), 3.15 (d, J = 5.7 Hz, 2H), 1.40 (s, 9H), 1.18 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 184.2, 168.2, 166.1, 145.0, 132.2, 99.1, 96.1, 70.5, 63.3, 43.9, 36.0, 28.4, 15.2; MS (ESI) 482 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₁₉H₂₆INaNO₄ ([M+Na]⁺): 482.0799. Found 482.0801.

1-(2,2-Diethoxyethyl)-3-iodo-7,9-dimethyl-4-phenyl-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione

Pale yellow solid (54% yield), following general procedure **2**, method **A**. M.p. 153-155 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.21 (m, 3H), 7.13-7.10 (m, 2H), 6.22 (s, 2H), 4.80 (t, *J* = 5.7 Hz, 1H), 3.71-3.60 (m, 2H), 3.51-3.41 (m, 2H), 3.26 (d, *J* = 5.4 Hz, 2H), 1.77 (s, 3H), 1.12 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 185.3, 167.8, 160.0, 139.0, 138.8, 132.2, 129.6, 128.3, 127.5, 99.4, 96.9, 71.5, 63.0, 45.1, 16.0, 15.3; MS (ESI) 530 ([M+Na]⁺); HRMS (MALDI) mass calcd. For C₂₃H₂₆INaNO₄ ([M+Na]⁺): 530.0799. Found 530.0798.

2-(3-Iodo-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetaldehyde

Pale yellow solid (86% yield), following general procedure **3**. M.p. 93-95 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.85 (s, 1H), 7.43-7.37 (m, 3H), 7.31 (d, *J* = 6.9 Hz, 2H), 6.64 (d, *J* = 9.6 Hz, 2H), 6.39 (d, *J* = 9.9 Hz, 2H), 4.21 (s, 2H); ¹³C NMR (75 MHz,

CDCl₃) δ 194.9, 183.5, 167.5, 159.3, 143.1, 133.0, 131.6, 130.2, 128.6, 127.5, 96.9, 70.1, 50.5; IR (thin film): v_{max} (cm⁻¹) = 2919, 1694, 1667, 1628, 1383, 1112, 1059, 724, 698; MS (ESI) 406 ([M+H]⁺); HRMS (ESI) mass calcd. For C₁₇H₁₃INO₃ ([M+H]⁺): 405.9935. Found 405.9939.

2-(3-Iodo-2,8-dioxo-4-(p-tolyl)-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetaldehyde

White solid (96% yield), following general procedure **3**. M.p. 163-164 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.58 (s, 1H), 7.21 (m, 4H), 6.63 (d, *J* = 9.6 Hz, 2H), 6.40 (d, *J* = 9.6 Hz, 2H), 4.21 (s, 2H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.0, 183.6, 167.6, 159.2, 143.3, 140.5, 132.9, 129.3, 128.6, 127.4, 96.3, 70.0, 50.5, 21.3; IR (thin film): v_{max} (cm⁻¹) = 2921, 2854, 1733, 1699, 1667, 1627, 1507, 1386, 1060, 998, 873, 823, 749; MS (ESI) 420 ([M+H]⁺); HRMS (ESI) mass calcd. For C₁₈H₁₅INO₃ 420.0091 ([M+H]⁺). Found 420.0083.

$\label{eq:constraint} 2-(3-Iodo-2,8-dioxo-4-(m-tolyl)-1-azaspiro[4.5] deca-3,6,9-trien-1-yl) acetalde hyde$

White solid (72% yield), following general procedure **3**. M.p. 80-82 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.58 (s, 1H), 7.27-7.25 (m, 2H), 7.09-7.06 (m, 2H), 6.60 (d, *J* = 9.9 Hz, 2H), 6.40 (d, *J* = 10.2 Hz, 2H), 4.19 (s, 2H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 194.9, 183.6, 167.6, 159.6, 143.2, 138.4, 132.9, 131.5, 131.0, 128.5, 128.1, 124.5, 96.7, 70.1, 50.5, 21.3; IR (thin film): v_{max} (cm⁻¹) = 2922, 2854, 1733, 1700, 1668, 1629, 1507, 1385, 1061, 874, 823, 750; MS (ESI) 420 ([M+H]⁺); HRMS

(MALDI) mass calcd. For $C_{18}H_{15}INO_3$ ([M+H]⁺): 420.0091. Found 420.0105.

2-(3-Iodo-2,8-dioxo-4-(o-tolyl)-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetaldehyde

White solid (67% yield), following general procedure **3**. M.p. 210-211 °C. ¹H NMR (300 MHz, d₆-DMSO) δ 9.51 (s, 1H), 7.26 (s, 2H), 7.15 (s, 1H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.87 (d, *J* = 9.9 Hz, 2H), 6.35 (d, *J* = 9.6 Hz, 1H), 6.21(d, *J* = 9.6 Hz, 1H), 4.20 (s, 2H), 2.19 (s, 3H); ¹³C NMR (75 MHz, d₆-DMSO) δ 198.3, 183.8, 167.4, 160.0, 144.2, 144.0, 135.5, 132.5, 132.0, 131.0, 130.4, 129.4, 128.4, 125.2, 100.8, 71.7, 50.9, 19.7; IR (thin film): v_{max} (cm⁻¹) = 2921, 1738, 1700, 1663, 1626, 1423, 1381, 1115, 1059, 741, 700; MS (ESI) 420 ([M+H]⁺); HRMS (MALDI) mass calcd. For C₁₈H₁₅INO₃ ([M+H]⁺): 420.0091. Found 420.0101.

2-(4-(4-Fluorophenyl)-3-iodo-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)aceta ldehyde

White solid (96% yield), following general procedure **3**. M.p. 186-188 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.56 (s, 1H), 7.33-7.29 (m, 2H), 7.07 (t, *J* = 8.4 Hz, 2H), 6.59 (d, *J* = 9.6 Hz, 2H), 6.38 (d, *J* = 10.2 Hz, 2H), 4.18 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 194.7, 183.4, 167.4, 163.5 (d, *J* = 250.7 Hz), 158.3, 143.1, 133.1, 129.8 (d, *J* = 8.6 Hz), 127.6 (d, *J* = 4.0 Hz), 116.1 (d, *J* = 22.1 Hz), 97.5, 70.1, 50.6; IR (thin film): v_{max} (cm⁻¹) = 2920, 2127, 1706, 1663, 1627, 1503, 1383, 1231, 1159, 1062, 843; MS (ESI) 478 ([M+CH₃OH+Na]⁺); HRMS (ESI) mass calcd. For C₁₈H₁₅FINaNO₄ ([M+CH₃OH

+Na]⁺): 477.9922. Found 477.9918.

2-(4-(4-Chlorophenyl)-3-iodo-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)aceta ldehyde

White solid (82% yield), following general procedure **3**. M.p. 180-181 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.58 (s, 1H), 7.38 (d, *J* = 8.7 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 10.2 Hz, 2H), 6.41 (d, *J* = 9.9 Hz, 2H), 4.23 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 194.9, 182.3, 167.2, 158.0, 142.9, 136.2, 133.0, 129.9, 129.0, 128.9, 97.6, 69.9, 50.5; IR (thin film): v_{max} (cm⁻¹) = 2912, 1704, 1668, 1626, 1385, 1091; MS (ESI) 440 ([M+H]⁺); HRMS (MALDI) mass calcd. For C₁₇H₁₂ClINO₃ ([M+H]⁺): 439.9567. Found 439.9562.

2-(3-Iodo-2,8-dioxo-4-(thiophen-2-yl)-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetald ehyde

Yellow solid (81% yield), following general procedure **3**. M.p. 165-167 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.56 (s, 1H), 7.69 (d, *J* = 3.6 Hz, 1H), 7.57 (d, *J* = 5.1 Hz, 1H), 7.12 (t, *J* = 5.2 Hz, 1H), 6.69 (d, *J* = 9.6 Hz, 2H), 6.53 (d, *J* = 9.6 Hz, 2H), 4.20 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 195.2, 183.6, 167.4, 150.3, 144.2, 132.6, 132.1, 129.8, 129.6, 127.4, 91.8, 68.6, 49.7; IR (thin film): v_{max} (cm⁻¹) = 2919, 1665, 1628, 1383, 1062, 711; MS (ESI) 410 ([M-H]⁻); HRMS (MALDI) mass calcd. For C₁₅H₁₁INO₃S ([M+H]⁺): 411.9499. Found 411.9514.

2-(3-Iodo-4-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetaldehyde

Pale yellow solid (96% yield), following general procedure **3**. M.p. 92-94 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.56 (s, 1H), 6.51 (s, 4H), 4.20 (s, 2H), 1.94 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.3, 183.5, 167.4, 157.8, 143.7, 132.8, 94.9, 70.0, 50.6, 15.3; IR (thin film): v_{max} (cm⁻¹) = 2923, 1733, 1690, 1665, 1626, 1387, 1063; MS (ESI) 344 ([M+H]⁺); HRMS (ESI) mass calcd. For C₁₂H₁₁INO₃ 343.9778 ([M+H]⁺). Found 343.9785.

2-(3-Iodo-2,8-dioxo-4-propyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetaldehyde

White solid (54% yield), following general procedure **2**, method **B**. M.p. 150-152 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.55 (s, 1H), 6.53-6.45 (m, 4H), 4.16 (s, 2H), 2.18 (t, *J* = 7.8 Hz, 2H), 1.59-1.48 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.1, 183.8, 167.6, 161.2, 143.6, 132.9, 95.4, 70.2, 50.6, 31.5, 21.6, 14.2; IR (thin film): v_{max} (cm⁻¹) = 2926, 2853, 1699, 1667, 1626, 1414, 1385, 1307, 1058, 850; MS (ESI) 372 ([M+H]⁺); HRMS (MALDI) mass calcd. For C₁₄H₁₅INO₃ ([M+H]⁺): 372.0091. Found 372.0103.

2-(4-Cyclopropyl-3-iodo-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetaldehyde

Yellow solid (81% yield), following general procedure **3**. M.p. 166-168 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.53 (s, 1H), 6.55-6.48 (m, 4H), 4.12 (s, 2H), 1.38-136 (m, 3H), 1.02-0.98 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 195.2, 183.9, 167.8, 160.2, 144.1, 132.9, 88.0, 70.5, 50.4, 11.9, 8.0; IR (thin film): v_{max} (cm⁻¹) = 2921, 2857, 1737, 1699, 1666, 1627, 1414, 1384, 1308, 1058, 1110; MS (ESI) 368 ([M-H]⁻); HRMS (MALDI) mass calcd. For C₁₄H₁₃INO₃ ([M+H]⁺): 369.9935. Found 369.9938.

2-(4-(tert-Butyl)-3-iodo-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)acetaldehyde

Pale yellow solid (67% yield), following general procedure **3**. M.p. 187-189 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.48 (s, 1H), 6.59 (d, J = 10.2 Hz, 2H), 6.48 (d, J = 9.9 Hz, 2H), 4.00 (s, 2H), 1.42 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 195.0, 183.8, 167.8, 166.9, 144.3, 132.2, 95.2, 69.6, 49.2, 36.0, 28.4; IR (thin film): v_{max} (cm⁻¹) = 2944, 2866, 1723, 1694, 1664, 1625, 1417, 1390, 1307, 1052, 1009, 878, 850, 796, 750; MS (ESI) 384 ([M-H]⁻); HRMS (MALDI) mass calcd. For C₁₅H₁₇INO₃ ([M+H]⁺): 386.0248. Found 386.0256.

2-(3-Iodo-7,9-dimethyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl) acetaldehyde

Off white solid (96% yield), following general procedure **3**. M.p. 214-216 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.56 (s, 1H), 7.42-7.34 (m, 3H), 7.26-7.24 (m, 2H), 6.32 (s, 2H), 4.13 (s, 2H), 1.85 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 195.2, 184.9, 167.3, 160.3, 140.0, 137.5, 131.8, 129.8, 128.4, 127.3, 95.8, 70.5, 50.3, 15.8; IR (thin film): v_{max} (cm⁻¹) = 2920, 2838, 1729, 1692, 1668, 1638, 1388, 1037, 913, 756, 699; MS (ESI) 434 ([M+H]⁺); HRMS (MALDI) mass calcd. For C₁₉H₁₇INO₃ ([M+H]⁺): 434.0248. Found 434.0255.

General procedure for desymmetrization of cyclohexadienones via intramolecular Stetter reaction

A flame-dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added triazolium salt \mathbf{E} (9.7 mg, 0.02 mmol, 10 mol%), *o*-xylene (2.0 mL), DIEA (3.3 uL, 0.02 mmol, 10 mol%). The reaction mixture was stired at 25°C for 20 minutes. The substrate (0.2 mmol) was then added. After the reaction was complete (monitored by TLC), the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the product.

(6aS,10aR)-2-Iodo-1-phenyl-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trione

White solid, 81% yield, 91% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.7 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 22.9 min, t (minor) = 30.4 min]; [α]_D²⁰ = +94 (c = 0.1, CHCl₃). M.p. 225 °C (decomposed). ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.44 (m, 3H), 7.30-7.29 (m, 2H), 6.62 (d, *J* = 10.2 Hz, 2H), 6.20 (d, *J* = 9.9 Hz, 2H), 4.45 (d, *J* = 18.9 Hz, 1H), 3.63 (d, *J* = 18.9 Hz, 1H), 2.96-2.87 (m, 2H), 2.12 (dd, *J* = 18.0, 6.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 208.8, 192.5, 169.5, 164.4, 143.2, 133.7, 132.4, 130.2, 129.1, 127.1, 97.5, 72.4, 50.9, 50.1, 32.7; IR (thin film): v_{max} (cm⁻¹) = 2922, 1765, 1707, 1682, 1632, 1382, 1346, 1255, 1098, 765, 696; MS (ESI) 406 ([M+H]⁺); HRMS (MALDI) calcd for C₁₇H₁₃INO₃ ([M+H]⁺): 405.9935. Found: 405.9947.

(6aS,10aR)-2-Iodo-1-(p-tolyl)-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trione

White solid, 55% yield, 80% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 26.4 min, t (minor) = 34.9 min]; [α]_D²⁰ = +62 (c = 0.2, CHCl₃). M.p. 174-176 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.26 (d, J = 7.5 Hz, 2H), 7.22 (d, J = 7.5 Hz, 2H), 6.63 (d, J = 10.2 Hz, 2H), 6.24 (d, J = 9.9 Hz, 2H), 4.47 (d, J = 19.2 Hz, 1H), 3.64 (d, J = 18.6 Hz, 2H), 2.96 (d, J = 17.7 Hz, 1H), 2.86 (d, J = 5.7 Hz, 1H), 2.40 (s, 3H), 2.16 (dd, J = 18.0, 6.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 208.9, 192.6, 169.7, 164.6, 143.4, 140.6, 133.7, 129.8, 129.4, 127.0, 97.0, 72.5, 51.2, 50.2, 32.8, 21.4; IR (thin film): v_{max} (cm⁻¹) = 2921, 1766, 1633, 1381, 1078, 778, 694; MS (ESI) 420 ([M+H]⁺); HRMS (MALDI) calcd for C₁₈H₁₅INO₃ ([M+H]⁺): 420.0091. Found: ([M+H]⁺) 420.0103.

(6aS, 10aR) - 2 - Iodo - 1 - (m - tolyl) - 6a, 7 - dihydropyrrolo[2, 1 - i] indole - 3, 6, 8(5H) - trione

Pale yellow solid, 60% yield, 71% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 24.7 min, t (minor) = 30.1 min]; [α]_D²⁰ = +75 (c = 0.2, CHCl₃). M.p. 176-178 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.28 (m, 2H), 7.10-7.08 (m, 2H), 6.62 (d, *J* = 10.5 Hz, 2H), 6.22 (d, *J* = 10.2 Hz, 2H), 4.47 (d, *J* = 19.2 Hz, 1H), 3.64 (d, *J* = 19.2 Hz, 2H), 2.97 (d, *J* = 18.6 Hz, 1H), 2.87 (d, *J* = 6.9 Hz, 1H), 2.39 (s, 3H), 2.17 (dd, *J* = 18.0, 6.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 208.8, 192.6, 169.7, 164.8, 143.3, 139.0, 133.7, 132.4, 131.1, 129.1, 127.6, 124.1, 97.3, 72.5, 51.1, 50.2, 32.8, 21.4; IR (thin film): v_{max} (cm⁻¹) = 2922, 2853, 1768, 1672, 1634, 1382, 1256, 1092, 777, 691; MS (ESI) 420 ([M+H]⁺); HRMS (MALDI) calcd for C₁₈H₁₅INO₃ ([M+H]⁺): 420.0091. Found: 420.0106.

(6aS, 10aR) - 2 - Iodo - 1 - (o-tolyl) - 6a, 7 - dihydropyrrolo[2, 1 - i] indole - 3, 6, 8(5H) - trione

White solid, 52% yield, 89% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t_R (major) = 22.8, 27.7 min, t_R (minor) = 34.9, 39.3 min]; $[\alpha]_D^{20} = +110$ (c = 0.2, CH₂Cl₂). M.p. 227-229 °C. ¹H NMR (300 MHz,

CDCl₃) δ 7.41-7.20 (m, 6H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.65 (d, *J* = 10.2 Hz, 1H), 6.54 (d, *J* = 9.9 Hz, 1H), 6.19 (d, *J* = 10.2 Hz, 1H), 6.06 (d, *J* = 10.2 Hz, 1H), 4.53 (d, *J* = 6.9 Hz, 1H), 4.46 (d, *J* = 7.2 Hz, 1H), 3.66 (d, *J* = 19.2 Hz, 2H), 3.10-3.04 (m, 2H), 2.98-2.87 (m, 2H), 2.49 (dd, *J* = 18.3, 7.5 Hz, 1H), 2.33 (s, 3H), 2.27 (s, 3H), 2.02 (dd, *J* = 17.7, 7.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 208.65, 208.64, 208.37, 192.3, 192.2, 169.29, 169.27, 165.9, 164.9, 143.1, 135.3, 134.3, 133.8, 133.3, 131.8, 131.3, 131.2, 131.0, 130.2, 129.9, 127.6, 126.3, 126.2, 126.0, 99.65, 99.55, 73.4, 73.1, 51.3, 51.0, 50.2, 50.1, 32.9, 32.1, 20.0, 19.8; IR (thin film): v_{max} (cm⁻¹) = 2922, 1767, 1685, 1623, 1363, 1255, 1083, 986, 765, 693; MS (ESI) 420 ([M+H]⁺); HRMS (MALDI) calcd for C₁₈H₁₅INO₃ ([M+H]⁺): 420.0091. Found: 420.0102.

(6aS,10aR)-1-(4-Fluorophenyl)-2-iodo-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H) -trione

White solid, 55% yield, 84% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 30.3 min, t (minor) = 38.6 min]; [α]_D²⁰ = +128 (c = 0.1, CHCl₃). M.p. 195-197 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.33 (m, 2H), 7.18 (t, J = 8.4 Hz, 2H), 6.63 (dd, J = 9.9, 1.2 Hz, 2H), 6.26 (d, J =10.2 Hz, 2H), 4.48 (dd, J = 18.9, 1.5 Hz, 1H), 3.66 (d, J = 18.9 Hz, 2H), 2.99 (d, J =18.0 Hz, 1H), 2.86 (d, J = 6.9 Hz, 1H), 2.15 (ddd, J = 18.0, 7.2, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 208.5, 192.2, 169.4, 163.5 (d, J = 251.0 Hz), 162.3, 143.1, 134.0, 129.4 (d, J = 8.6 Hz), 128.4 (d, J = 3.4 Hz), 116.6 (d, J = 21.9 Hz), 98.2 (d, J =0.7 Hz), 72.4 (d, J = 0.8 Hz), 51.1, 50.2, 32.7, 25.3; IR (thin film): v_{max} (cm⁻¹) = 2921, 2853, 1765, 1707, 1638, 1504, 1382, 1346, 1232, 1160, 1099, 985, 848, 784, 697; MS (ESI) 424 ([M+H]⁺); HRMS (MALDI) calcd for C₁₇H₁₂FINO₃ ([M+H]⁺): 423.9840. Found: 423.9848.

(6aS,10aR)-1-(4-Chlorophenyl)-2-iodo-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trione

Pale yellow solid, 54% yield, 86% ee [Daicel Chiralcel OD-H, *n*-hexane /2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 33.8 min, t (minor) = 42.3 min]; [α]_D²⁰ = +105 (c = 0.1, CHCl₃). M.p. 107-109 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 7.5 Hz, 2H), 6.62 (d, J = 10.2 Hz, 1H), 6.26 (d, J = 9.9 Hz, 1H), 4.48 (d, J = 18.6 Hz, 1H), 3.66 (d, J = 18.9 Hz, 1H), 3.00 (d, J = 17.7 Hz, 1H), 2.84 (d, J = 6.0 Hz, 1H), 2.16 (dd, J = 18.0, 6.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 208.4, 192.1, 169.3, 163.1, 142.9, 136.7, 134.1, 130.8, 129.7, 128.6, 98.4, 72.4, 51.2, 50.2, 32.7; IR (thin film): v_{max} (cm⁻¹) = 2920, 1767, 1683, 1633, 1428, 1380, 1092, 876, 615; MS (ESI) 440 ([M+H] ⁺); HRMS (MALDI) calcd for C₁₇H₁₂ClINO₃ ([M+H] ⁺): 439.9545. Found: 439.9557.

(6aS,10aR)-2-Iodo-1-(thiophen-2-yl)-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-t rione

Yellow solid, 54% yield, 75% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 39.1 min, t (minor) = 64.9 min]; [α]_D²⁰ = +70 (c = 0.1, CHCl₃). M.p. 201-202 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 4.0 Hz, 1H), 7.61 (d, J = 4.8 Hz, 1H), 7.20 (t, J = 4.8 Hz, 1H), 6.69 (dd, J = 10.0, 0.8 Hz, 1H), 6.40 (d, J = 10.4 Hz, 1H), 4.49 (dd, J = 19.2, 4.0 Hz, 1H), 3.63 (d, J = 18.8 Hz, 1H), 3.13 (d, J = 18.0 Hz, 1H), 2.91 (d, J = 7.6 Hz, 1H), 2.73 (dd, J = 18.4, 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 192.9, 170.0, 155.6, 144.1, 134.6, 133.0, 130.2, 130.0, 127.9, 93.9, 72.2, 51.2, 50.0, 33.4; IR (thin film): v_{max} (cm⁻¹) = 2920, 2850, 1766, 1692, 1675, 1631, 1384, 1254, 1096, 712; MS (ESI) 412 ([M+H]⁺); HRMS (MALDI) calcd for C₁₅H₁₁INO₃S ([M+H]⁺): 410.9499. Found: 411.9510.

(6aS,10aR)-2-Iodo-1-methyl-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trione

White solid, 58% yield, 86% ee [Daicel Chiralpak IC, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 50.3 min, t (minor) = 69.9 min]; $[\alpha]_D^{20} = +182$ (c = 0.2, CHCl₃). M.p. 83-85 °C. ¹H NMR (300 MHz, CDCl₃) δ 6.42 (dd, J = 10.5, 0.9 Hz, 1H), 6.29 (d, J = 10.5 Hz, 1H), 4.42 (d, J = 18.9 Hz, 1H), 3.59 (d, J = 19.2 Hz, 1H), 3.21 (dt, J = 17.1, 4.5 Hz, 1H), 2.74-2.67 (m, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.8, 192.4, 170.0, 163.0, 144.2, 133.8, 96.0, 71.8, 50.8, 50.2, 32.6, 17.1; IR (thin film): v_{max} (cm⁻¹): 2921, 2848, 1766, 1683, 1633, 1383, 1259, 1104; MS (ESI) 365 ([M+Na]⁺); HRMS (MALDI) calcd for C₁₂H₁₀INaNO₃ ([M+Na]⁺): 365.9598. Found: 365.9603.

Pale yellow solid, 60% yield, 85% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 19.4 min, t (minor) = 23.7 min]; [α]_D²⁰ = +236 (c = 0.1, CHCl₃). M.p. 186-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.41 (dd, J = 10.4, 1.2 Hz, 1H), 6.28 (d, J = 10.4 Hz, 1H), 4.41 (d, J = 18.8 Hz, 1H), 3.58 (d, J = 19.2 Hz, 1H), 3.21 (dt, J = 16.8, 4.8 Hz, 1H), 2.77-2.70 (m, 2H), 2.48-2.40 (m, 2H), 1.68-1.59 (m, 2H), 1.05 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.9, 192.5, 169.9, 166.4, 144.2, 133.5, 96.2, 71.9, 50.7, 49.9, 32.84, 32.83, 21.7, 14.4; IR (thin film): v_{max} (cm⁻¹) = 2924, 1768, 1696, 1634, 1260, 1079, 778, 693; MS (ESI) 372 ([M+H]⁺); HRMS (MALDI) calcd for C₁₄H₁₅INO₃ ([M+H]⁺): 372.0091. Found: 372.0105.

(6aS,10aR)-1-Cyclopropyl-2-iodo-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trione

White solid, 85% yield, 88% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 25.2 min, t (minor) = 33.1 min]; [α]_D²⁰ = +177 (c = 0.1, CHCl₃). M.p. 201-203 °C. ¹H NMR (300 MHz, CDCl₃) δ 6.47 (d, *J* = 10.2 Hz, 1H), 6.31 (d, *J* = 10.2 Hz, 1H), 4.41 (d, *J* = 18.9 Hz, 1H), 3.57 (d, *J* = 19.2 Hz, 1H), 3.23 (d, *J* = 17.4 Hz, 1H), 2.89-2.77 (m, 2H), 1.66-1.49 (m, 2H), 1.44-1.36 (m, 2H), 1.20-1.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 209.1, 192.8, 170.3, 164.9, 144.6, 133.6, 87.6, 72.9, 51.0, 50.1, 32.8, 11.9, 8.2, 7.7; IR (thin film): v_{max} (cm⁻¹) = 2921, 1763, 1698, 1677, 1638, 1382, 1355, 1258, 1208, 1099, 1029, 779, 761, 714; MS (ESI) 370 ([M+H]⁺); HRMS (MALDI) calcd for C₁₄H₁₃INO₃ ([M+H]⁺): 369.9935. Found: 369.9942.

(6aS,10aR)-1-(tert-Butyl)-2-iodo-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trione

White solid, 75% yield, 94% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 23.4 min, t (minor) = 30.8 min]; [α]_D²⁰ = +153 (c = 0.2, CHCl₃). M.p. 203-205 °C. ¹H NMR (300 MHz, CDCl₃) δ 6.50 (dd, J = 10.5, 1.2 Hz, 1H), 6.27 (d, J = 10.2 Hz, 1H), 4.44 (dd, J = 19.2, 0.9 Hz, 1H), 3.50 (d, J = 19.2 Hz, 1H), 3.23 (d, J = 18.3 Hz, 1H), 3.09-3.00 (m, 1H), 2.88 (d, J =7.5 Hz, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 210.1, 192.9, 171.5, 169.8, 145.5, 132.9, 96.3, 73.3, 49.6, 48.8, 35.9, 35.0, 29.6; IR (thin film): v_{max} (cm⁻¹): 2921, 1766, 1703, 1676, 1382, 1250, 1088, 776, 694; MS (ESI) 386 ([M+H]⁺); HRMS (MALDI) calcd for C₁₅H₁₇INO₃ ([M+H]⁺): 386.0248. Found: 386.0260.

(6aS,7S,10aR)-2-Iodo-7,9-dimethyl-1-phenyl-6a,7-dihydropyrrolo[2,1-i]indole-3, 6,8(5H)-trione

White solid, 9% yield, 99% ee [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $v = 0.8 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 22.0 min, t (minor) = 70.4 min]; M.p. 215-217 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.45 (m, 3H), 7.27-7.23 (m, 2H), 6.49 (s, 1H), 4.49 (d, J = 18.9 Hz, 1H), 3.64 (d, J = 18.9 Hz, 1H), 3.08 (q, J = 7.8 Hz, 1H), 2.51 (s, 1H), 1.91 (s, 3H), 0.41 (d, J = 8.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 209.5, 196.6, 169.4, 165.1, 140.5, 137.5, 133.4, 130.2, 129.0, 127.9, 98.4, 73.6, 57.6, 49.8, 37.9, 17.7, 16.7; IR (thin film): v_{max} (cm⁻¹) = 2922, 1764, 1704, 1679, 1625, 1368, 1119, 758, 697; MS (ESI) 434 ([M+H]⁺); HRMS (MALDI) calcd for $C_{19}H_{17}INO_3$ ([M+H]⁺): 434.0248. Found: 434.0256.

NOE experiment of **2l**:

(6aS,10aR)-1-Phenyl-2-(p-tolylethynyl)-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5 H)-trione

Under argon, compound **2a** (40.5 mg, 0.1 mmol), CuI (5.7 mg, 0.03 mmol) and PdCl₂(PPh₃)₂ (21.0 mg, 0.03 mmol) were placed in a Schlenk tube equipped with a stir bar. Then Et₃N/toluene (2mL/2mL) and 4-ethynyltoluene (116.0 mg, 1.0 mmol) were added. The reaction was stirred at room temperature for 48h. After the reaction was complete, the reaction mixture was filtrated over a pad of celite, and extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc:PE, 1:2) affording compound **2aa** as a white solid (30 mg, 76% yield, 98% ee). [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, $\nu = 0.8$ mL · min⁻¹, $\lambda = 254$ nm, t (major) = 20.6 min, t (minor) = 28.0 min]; [α]_D²⁰ = +200 (c = 0.1, CHCl₃). M.p. 186-188 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.76

(d, J = 6.3 Hz, 2H), 7.51-7.43 (m, 3H), 7.35 (d, J = 7.2 Hz, 2H), 7.14 (d, J = 7.2 Hz, 2H), 6.75 (d, J = 9.9 Hz, 1H), 6.34 (d, J = 9.9 Hz, 1H), 4.50 (d, J = 19.2 Hz, 1H), 3.60 (d, J = 19.2 Hz, 1H), 3.04 (d, J = 19.2 Hz, 1H), 2.87 (d, J = 6.6 Hz, 3H), 2.41-2.36 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 209.5, 193.0, 169.9, 159.2, 145.0, 139.9, 133.6, 132.0, 131.8, 130.7, 129.2, 129.0, 127.6, 120.1, 118.7, 99.9, 80.0, 69.3, 51.3, 49.6, 33.3, 21.6; IR (thin film): v_{max} (cm⁻¹) = 2918, 2850, 1767, 1717, 1693, 1637, 1413, 1385, 1342, 1211, 1084, 816, 767, 693; MS (ESI) 394 ([M+H]⁺); HRMS (MALDI) calcd for C₂₆H₂₀NO₃ ([M+H]⁺): 394.1438. Found: 394.1447.

(6aS,10aR)-1-Phenyl-2-(p-tolyl)-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trion e

Under argon, Pd(OAc)₂ (4.8 mg, 0.02 mmol), PPh₃ (12.8 mg, 0.04 mmol), 4-tolylboronic acid (20.4 mg, 0.15 mmol), compound **2a** (40.5 mg, 0.1 mmol) and K₂CO₃ (27.8 mg, 0.2 mmol) were placed in a Schlenk tube equipped with a stir bar. Benzene/H₂O (5/1, 4.8 mL) was added, and the resulting heterogeneous reaction mixture was stirred vigorously for 48 hours at 60 °C. The reaction mixture was then filtered through a short pad of celite and concentrated under reduced pressure, the residue was purified by column chromatography on silica gel (EtOAc:PE, 1:2) to afford compound **2ab** as a white solid (36.0 mg, 97% yield, 98% ee). [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, v = 0.8 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 21.2 min, t (minor) = 29.0 min]; $[\alpha]_D^{20} = +193$ (c = 0.1, CHCl₃). M.p. >250 °C. ⁻¹H NMR (300 MHz, CDCl₃) δ 7.35 (m, 5H), 7.17 (d, *J* = 5.7 Hz, 2H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.67 (d, *J* = 9.9 Hz, 1H), 6.21 (d, *J* = 10.5 Hz, 1H), 4.54 (d, *J* = 18.6 Hz, 1H), 3.64 (d, *J* = 18.9 Hz, 1H), 2.99 (d, *J* = 18.0 Hz, 1H), 2.88 (d, *J* = 7.2 Hz, 1H), 2.31 (s, 3H), 2.20 (dd, *J* = 18.0, 7.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 210.0, 193.0, 172.0, 154.7, 145.0, 138.9, 134.1, 133.6, 132.7, 129.4, 129.19, 129.16, 129.0, 127.9, 126.8, 68.9, 51.3, 49.8, 33.0, 21.3; IR (thin film): v_{max} (cm⁻¹): 2922, 2852, 1769, 1696, 1635, 1378, 1333, 1085, 775, 696; MS (EI, *m*/z, rel. intensity) 369 ([M]⁺, 100), 312 (56); HRMS (EI) calcd for C₂₄H₁₉NO₃ ([M]⁺): 369.1365. Found: 369.1364.

(6aS,10aR)-1-Phenyl-6a,7-dihydropyrrolo[2,1-i]indole-3,6,8(5H)-trione

CH₃OH/CH₂Cl₂ (4 mL/1 mL) was added to a Schlenk tube containing compound 2a (40.5 mg, 0.1 mmol) equipped with a stir bar, then 10% Pd/C (20 mg, 50% wt) was added. The vial was sealed up, and then it was evacuated and filled with hydrogen (three cycles). The reaction was stirred at room temperature for 120h. After the reaction was complete, the reaction mixture was filtrated over a pad of celite and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc:PE, 1:2) to afford compound 2ac as a white solid (26.0 mg, 64% yield, 99% ee). [Daicel Chiralcel OD-H, *n*-hexane/2-propanol = 60/40, v = 0.8 mL · min⁻¹, $\lambda = 254$ nm, t (major) = 43.6 min, t (minor) = 70.7 min]; $[\alpha]_{D}^{20} = +92$ (c = 0.1, CHCl₃). M.p. 183-185 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.43 (m, 5H), 6.75 (d, J = 9.9 Hz, 1H), 6.54 (s, 1H), 6.35 (d, J = 10.2 Hz, 1H), 4.45 (d, J = 18.6 Hz, 1H), 3.56 (d, J = 19.2 Hz, 1H), 3.10 (d, J = 19.3 Hz, 1H), 2.82 (d, J = 6.6 Hz, 1H), 2.55 (dd, J = 18.0, 7.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 210.1, 193.1, 172.4, 162.4, 145.3, 133.4, 131.7, 130.9, 129.3, 126.8, 124.1, 70.1, 51.1, 49.2, 33.4; IR (thin film): v_{max} (cm⁻¹) = 2920, 2852, 1762, 1634, 1444, 1380, 1093, 768, 694; MS (EI, *m*/z, rel. intensity) 279 ([M]⁺, 22), 251 (100), 223 (33), 167 (57); HRMS (EI) calcd for $C_{17}H_{13}NO_3([M]^+)$: 279.0895. Found: 279.0901.

X-ray of enantiopure (6aS,10aR)-2a

Table 1. Crystal data and struc	ture refinement for cd211527.	
Identification code	cd211527	
Empirical formula	C17 H12 I N O3	
Formula weight	405.18	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$	
Unit cell dimensions	a = 9.5004(5) A alpha = 90 deg.	
	b = 14.8567(7) A beta = 90 deg.	
	c = 21.8984(11) A gamma = 90 deg	
Volume	3090.8(3) A^3	
Z, Calculated density	8, 1.741 Mg/m^3	
Absorption coefficient	2.084 mm^-1	
F(000)	1584	
Crystal size	0.316 x 0.203 x 0.157 mm	
Theta range for data collection	1.66 to 26.00 deg.	
Limiting indices	-11<=h<=11, -18<=k<=16, -25<=l<=27	
Reflections collected / unique	18928 / 6087 [R(int) = 0.0283]	
Completeness to theta $= 26.00$	100.0 %	
Absorption correction	Empirical	
Max. and min. transmission	1.00000 and 0.49889	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6087 / 0 / 397	
Goodness-of-fit on F^2	1.061	
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0799	
R indices (all data)	R1 = 0.0408, wR2 = 0.0824	
Absolute structure parameter	-0.01(2)	
Largest diff. peak and hole	0.821 and -0.327 e.A^-3	

NMR and HPLC Spectra

2a

Peak No.	R. Time	Peak Height	Peak Area	Percent	
1	22.983	94982.844	5851248.500	49.8538	
2	30.005	66481.789	5885561.500	50.1462	
Total		161464.633	11736810.000	100.0000	

2b

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	24.382	6927.291	584525.813	49.4863
2	31.165	4500. 196	596660.188	50. 5137
Total		11427.487	1181186.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	26.417	215008.063	22605450.000	89.7579
2	34.927	15488. 554	2579474.750	10.2421
Total		230496.616	25184924.750	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	24.732	6095.193	518561.813	50.4839
2	30.143	3426.758	508621.563	49.5161
Total		9521.951	1027183.375	100.0000

30.093 5649.789 840012.438 14.3366 5859213.938 Total 64236.992 100.0000

2d

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	24.805	1344.226	175959.891	17.0314
2	29.878	2514.892	342507.219	33.1517
3	36.800	1776.848	324146.813	31.3746
4	41.292	937.688	190537.484	18.4424
Total		6573.655	1033151.406	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	22. 798	54999.484	5968632.500	41.3929
2	27.732	64398.902	7642182.000	52.9991
3	34.865	2293. 226	447360.344	3.1025
4	39.265	1888.032	361288.281	2.5056
Total		123579.645	14419463.125	100.0000

2e

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	28.982	28065.439	3116736.500	50.0637
2	35.198	19967.947	3108804.250	49.9363
Total		48033.387	6225540.750	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent	
1	30. 277	116635.992	14998557.000	92.0355	
2	38. 595	6902.286	1297934.750	7.9645	
Total		123538.278	16296491.750	100.0000	_

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	34.270	16280.342	2581356.000	49.8651
2	42.310	11641.716	2595319.250	50.1349
Total		27922.058	5176675.250	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	32.455	118558.094	18391662.000	92.8061
2	41.547	6509.462	1425629.375	7.1939
Total		125067.556	19817291.375	100.0000

2g

Peak No.	R. Time	Peak Height	Peak Area	Percent	
1	43. 500	24822.111	4342897.000	50.0326	
2	71.728	14445.268	4337233.500	49.9674	
Total		39267.379	8680130.500	100.0000	_

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	39.053	15117.240	2219172.500	87.4047
2	64.852	1371.756	319790.938	12.5953
Total		16488.996	2538963.438	100.0000

2h

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	50.332	15760.967	1917566.750	49.9181
2	68.198	9443.953	1923859.375	50.0819
Total		25204.920	3841426. 125	100.0000

2i

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	19.398	61906.191	3313582.000	50.4766
2	23.165	41490.691	3251013.250	49.5234
Total		103396.883	6564595.250	100.0000

25.001	15075.0	000
	233439.	129

Total

13793397.312

100.0000

2j

Total

Total

2k

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	22.823	22495.670	1512650.250	49.8480
2	29.123	15657.495	1521876. 250	50.1520
Total		38153.165	3034526.500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent	
1	23. 393	267421.938	19523174.000	96.2971	
2	30. 785	7280.936	750720.375	3.7029	
Total		274702.873	20273894.375	100.0000	

Peak No.	R. Time	Peak Height	Реак Area	Percent	
1	20.628	59790.543	5852300.500	50.4636	
2	27.788	41714.363	5744769.500	49.5364	
Total		101504.906	11597070.000	100.0000	

2 28.047 683.486 107812.367 0.8803 124393.236 12247600.367 100.0000 Total

2ab

1	19.227	14708.955	1284387.375	50. 5517
2	25.415	11064.061	1256354.750	49.4483
Total		25773.016	2540742.125	100.0000

2ac

