SUPPORTING INFORMATION

Planar P_6E_6 (E = S, Se) Macrocycles Incorporating P_2N_2 Scaffolds^{**}

Andreas Nordheider, Tristram Chivers,^{*} Ramalingam Thirumoorthi, Ignacio Vargas-Baca, and J. Derek Woollins

Experimental Section

NMR spectra were recorded using a BRUKER Avance II 400 spectrometer (¹H, ¹³C, ³¹P, ⁷⁷Se) on samples dissolved in a deuterated solvent or by using the reaction mixture at ambient temperature. 85 % H₃PO₄/D₂O was employed as external standard for ³¹P NMR, TMS was used for ¹H and ¹³C NMR and Ph₂Se was the external standard for ⁷⁷Se NMR. The solid-state ³¹P NMR spectra were recorded at 298 K using a Bruker AMX300 or a 400 MHz Bruker Avance III spectrometer at B_0 0f 7.05 T or 9.4 T corresponding to the ³¹P Larmor frequency of 121.5 or 161.9 MHz. The experiments were carried out using Bruker 4 mm (outside diameter) zirconia rotors with a MAS rate of 14 and 10 KHz. The pulse sequence used was cross-polarisation magic-angle spinning (CP-MAS); the spectra were referenced to NaH₂PO₄. The MALDI TOF mass spectrum was obtained on a Bruker Autoflex II MALDI-Tof/Tof with Smartbeam laser system using *trans*-2-[3-(4*-tert*-butylphenyl)-2-methyl-2-propylidene]malonitrile as the matrix and Ag[OOCCF₃] as the marker. Infrared spectroscopy was performed using a Nicolet Nexus 470 with CsI windows, FT-IR and ATR accessory. Raman spectra were recorded on a Perkin-Elmer FT-IR/Raman System 2000 spectrophotometer in the range of 4000-400 cm⁻¹.

The crystallographic data for **2a**, **2b** and **3** were obtained by using a Bruker-Nonius Kappa CCD diffractometer. All data were collected with graphite-monochromated *Mo-Ka* radiation ($\lambda = 0.71073$ Å) and corrected for Lorentz and polarization effects. The crystal structures were solved by using direct methods¹ and expanded using Fourier techniques.² The non-hydrogen atoms were refined anisotropically, hydrogen atoms were refined using the riding model. All calculations were performed using CrystalStructure³ crystallographic software package and SHELXL-97.⁴ In **2a** one of the *tert*-butyl groups

containing carbon atoms (C5, C6 and C7) was disordered (50:50 and 55:45) in the final refinement. CCDC-867162, 876357 and 867163 contain the supplementary crystallographic data for **2a**, **2b** and **3**, and, respectively. These data can be obtained from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

2a: A cold (-78 °C) solution of I_2 (0.152 g, 0.600 mmol) in THF (15 mL) was added dropwise over 15 min by cannula to a solution of $[Na(THF)_2]_2[^tBuN(Se)P(\mu$ - $NtBu_{2}P(Se)N^{t}Bu_{1}^{5}$ (0.500 g, 0.60 mmol) in THF (20 mL) cooled to -78 °C. The reaction mixture was stirred at -78 °C for 30 min and then allowed to reach room temperature and stirred for an additional 1 h. The precipitate was removed by filtration, dried under vacuum and then treated with dry THF (40 mL) followed by warming to 50 °C prior to filtration to remove the remaining traces of NaI. Drying in vacuo afforded an orange solid. Yield: 35 %. Mp 169 °C. Elemental analysis calcd (%) for C₈H₁₈N₂PSe: C 38.10, H 7.19, N 11.11; found: C 38.00, H 6.99, N 10.48. ¹H{³¹P} NMR (C₆D₆, 25 °C): $\delta = 1.56$ (s, 54H, tBu), 1.39 (s, 54H, tBu); ³¹P{¹H} NMR (d_{δ} -toluene, 25 °C): $\delta = -67.3$ (s, ${}^{1}J(P,Se) = 429$ Hz, ${}^{2}J(P,P) = 19.5$ Hz); ${}^{77}Se$ NMR (d_{8} -toluene, 25 °C): $\delta = 408.6$ $({}^{1}J(P,Se) = 429 \text{ Hz})$. The ${}^{31}P$ NMR spectrum showed that the filtrate contained some additional 2a. but this could not be separated from $[(HN^{t}Bu)Se=P(\mu N^{t}Bu_{2}P = Se(HN^{t}Bu) [(H_{2}1a) [\delta(^{31}P) = 26.7, ^{1}J(P,Se) = 880 Hz)]^{5}$ and the tetraselenide 3, which was identified on the basis of ${}^{31}P{}^{1}H{}$ and ${}^{77}Se$ NMR spectra (*vide infra*).

2b: Compound **2b** was obtained from the reaction of $[Na(THF)_2]_2[^tBuN(S)P(\mu-N^tBu)_2P(S)N^tBu)]^5$ (0.500 g, 0.68 mmol) with I₂ (0.173 g, 0.68 mmol) in benzene (30 mL) by using a procedure similar to that described for **2a**. After filtration of the

benzene solution and removal of the solvent, the material was washed with hexane and dried under vacuum resulting in a yellow solid (0.062 g, 22 %). Mp 129 °C. MS (EI, *m/z*); 1231 [M+H]⁺. Elemental analysis calcd (%) for C₈H₁₈N₂PS: C 46.81, H 8.84, N 13.65; found: C 46.69, H 8.91, N 13.59. ¹H{³¹P} NMR (C₆D₆, 25 °C): 1.50 (s, 54H, 'Bu), 1.31 (s, 54H, 'Bu); ³¹P{¹H} NMR (C₆D₆, 25 °C): $\delta = -48.7$ (s). ³¹P NMR (161.9 MHz, solid state, 25 °C): -61.0 (s), -34.2(s). [(HN^tBu)S=P(μ -N^tBu)₂P=S(HN^tBu)] (H₂**1b**)⁶ was identified as a major by-product in the synthesis of **2b**: ¹H{³¹P} NMR (C₆D₆, 25 °C): 1.72 (s, 18H, *t*Bu), 1.22 (s, 18H, *t*Bu); ³¹P{¹H} NMR (C₆D₆, 25 °C): $\delta = 40.0$ (s); ³¹P NMR (161.9 MHz, solid state, 25 °C): δ [ppm] = 38.3 (s).

3: A cold (-78 °C) solution of Se₂Cl₂ (0.137 g, 0.60 mmol) in toluene (15 mL) was added dropwise (by cannula (15 min.) to a solution of $[Na(THF)_2]_2['BuN(Se)P(\mu-N'Bu)_2P(Se)N'Bu)]^5$ (0.500 g, 0.60 mmol) in toluene (20 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 3 h and then allowed to warm to room temperature and stirred for a further 2 h. The precipitate (NaCl) was removed by filtration and solvent was removed from the filtrate under vacuum to give an orange solid, which was dissolved in *n*-hexane and stored at -40 °C. The deposited crystals of (H₂1a) were removed from the cold solution by filtration. The filtrate was reduced in volume until precipitation was visible and the filtrate was stored at -40 °C overnight. The orange solid was filtered off and recrystallized from hexane to give **3** as bright orange crystals. The repeated crystallization of the mother liquids yielded additional batches of **3**. Yield 56 %. Mp. 142 °C (dec.). Elemental analysis calcd (%) for C₁₆H₃₆N₄P₂Se₄: C 29.02, H, 5.48, N, 8.46; found: C, 29.16, H, 5.48, N, 8.51. MS (Cl⁺, *m/z*), 665 [M+H]⁺. Accurate mass measurement 664.9155 [M+H]⁺. ¹H{³¹P} NMR (C₆D₆, 25 °C): $\delta = 1.61$ (s, 18H, *t*Bu),

4

1.34 (s, 18H, *t*Bu); ³¹P{¹H} NMR (*d*₈-toluene, 25 °C): $\delta = -50.8$ (s, ¹*J*(P,Se) = 524 Hz, ²*J*(P,P) = 10.0 Hz); ⁷⁷Se NMR (*d*₈-toluene, 25 °C): $\delta = 673.0$ (t, ²*J*(P,Se) = 20.0 Hz, ²*J*(P,P) = 13 Hz), 336.7 (dd, ¹*J*(P,Se) = 524 Hz, ³*J*(P,Se) = 6 Hz).

IR and Raman Data

2a: IR (KBr): $v [cm^{-1}] = 2969$ (s), 1457 (m), 1364 (s, b), 1249 (m), 1218 (s), 1199 (s), 1047 (s), 930 (m), 899 (s), 849 (w), 822 (s) 737 (w), 703 (w), 658 (w), 595 (s), 542 (m), 515 (w), 485 (m), 434 (w). Raman: $v [cm^{-1}] = 2974$ (m), 2928 (m), 1448 (m), 1383 (m), 1245 (w), 1220 (m), 1185 (w), 1131 (w), 1029 (w), 909 (m), 849 (w), 812 (w), 703 (m), 606 (m), 549 (m), 439 (w), 425 (w), 371 (w), 348 (w), 294 (vs), 224 (s), 179 (m).

2b: IR (KBr): $v [cm^{-1}] = 3384.7$ (m), 3311.7 (w), 3269.4 (w), 3161.6(w), 2967.0 (s), 2928.1 (s), 2869.2 (m), 2712.5 (w), 2365.9 (w), 2035.9 (w), 1862.3 (w), 1463.3 (m), 1385.2 (s), 1364.6 (s), 1252.1 (m), 1221.7 (s), 1199.2 (s), 1129.4 (w), 1050.7 (s), 1028.6(s), 929.0 (m), 907.9 (vs), 851.2 (m), 838.2 (m), 818.5 (m), 756.7 (m), 704.9 (w), 656.0(m), 611.5 (w), 570.4 (w), 522.4 (m), 499.5 (w), 444.7 (w), 429.4 (w), 409.1 (w), 362.1(w). Raman: $v [cm^{-1}] = 3379.7$ (w), 2973.8 (vs), 2931.5 (vs), 2715.6 (w), 1463.3 (s), 1377.7 (m), 1242.2 (w), 1221.2 (m), 1191.0 (w), 1139.7 (w), 1034.3 (w), 919.7 (m), 840.6 (w), 815.8 (m), 760.8 (w), 732.3 (w), 710.1 (m), 664.0 (w), 626.9 (w), 586.2 (s), 552.5 (s), 521.5 (m), 499.5 (m), 464.2 (m), 447.5 (m), 391.0 (m), 359.2 (w), 322.0 (s), 271.2 (s), 242.4 (m), 217.1 (s), 182.6 (m).

3: IR (KBr) v [cm⁻¹] = 2965 (s), 2891 (m), 2856 (m), 2370 (w), 2329 (w), 1454 (m), 1389 (s), 1378 (s), 1360 (s), 1246 (m), 1218 (m), 1196 (s), 1051 (s), 930 (w), 898 (s), 848 (w),

822 (m), 738 (w), 655 (w), 602 (s), 549 (m), 464 (w), 425 (m). Raman v [cm⁻¹] = 2969 (m), 2925 (m), 2899 (m), 2767, 2704 (w), 2693 (w), 1459 (m), 1445 (m), 1412 (m), 1381 (m), 1220 (m), 1185 (w), 1134 (w), 1025 (w), 911 (w), 853 (w), 811 (w), 708 (w), 655 (w), 604 (m), 552 (w), 426 (w), 371 (w), 354 (w), 274 (vs), 209 (s), 183 (m).

DFT calculations were performed using the ADF⁷ package. Molecular geometries were fully optimized but vibrational calculations were not performed given the large expense of the numerical method with the hybrid potentials.

1 SIR 97: A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Giagliardi, A. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115.

2 DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. De Gelder,

R. Israel and J. M. M. Smits, The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1999.

3 CrystalStructure 3.8.1: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2006). 9009 New Trails Dr. The Woodlands, TX 77381, USA

4 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.

5 T. Chivers, M. Krahn, M. Parvez and G. Schatte, Inorg. Chem., 2001, 40, 2547.

6 T. G. Hill, R. C. Haltiwanger, M. L. Thompson, S. A. Katz and A. D. Norman, *Inorg. Chem.*, 1994, **33**, 1770.

7 (a) ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com; (b) C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, *Theor. Chem. Acc.*, 1998, 99, 391; (c) G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders and T. Ziegler, *J. Comp. Chem.* 2001, 22, 931.

	2a	2b	3
Identification code	RTAN1	RTAN10	RTAN9
Empirical formula	C48 H108 N12 P6 Se6	C48 H108 N12 P6 S6	C16 H36 N4 P2 Se4
Formula weight	1513.04	1309.75	662.27
Temperature (K)	173(2)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	trigonal	trigonal	monoclinic
Space group	P 63/m	P 63/m	P 21/a
a (Å), alpha (deg)	16.643(2), 90	16.5400(7), 90	11.2800(5), 90
b (Å), beta (deg)	16.643(2), 90	16.5400(7), 90	14.7500(5), 95.3030(17)
c (Å), gamma (deg)	15.319(3), 120	15.330(4), 120	15.5840(7), 90
Volume (Å ³)	3674.7(11)	3680.1(2)	2581.77(18)
Ζ	2	2	4
Calculated density (mg/m ³)	1.367	1.182	1.704
Absorption coefficient (mm ⁻¹)	3.155	0.358	5.817
F(000)	1548	1416	1304
Crystal size (mm ³)	0.19 x 0.13 x 0.05	0.25 x 0.22 x 0.15	0.24 x 0.22 x 0.13
Theta range (deg.)	1.9 to 27.50	1.9 to 27.40	1.9 to 27.5
Limiting indices	-19<=h<=19, -16<=	-19<=h<=19, -16<=	-13<=h<=13, -17<=
	k<=16, -18 <=l<=11	k<=16, -14 <=1<=18	k<=15, -18 <=l<=18
Reflections collected/unique	7081 / 2244 [R(int) =	7147 / 2249 [R(int) =	7279 / 4181 [R(int) =
	0.0547]	0.0678]	0.0867]
Completeness to theta	99.6 %	99.5 %	97.4 %
Max. and min. transmission	0.8582 and 0.5855	0.9483 and 0.9159	0.5185 and 0.3358
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F2	squares on F2	squares on F2
Data / restraints / parameters	2244 / 0 / 121	2249 / 0 / 133	4181 / 0 / 247
Goodness-of-fit on F ²	1.084	1.076	1.151
R1, wR2 [I>2sigma(I)]	0.0606, 0.1553	0.0807, 0.1912	0.0798, 0.1465
R1, wR2 (all data)	0.0916, 0.1780	0.1082, 0.2134	0.1259, 0.1728
Largest diff. peak and hole	0.925 and -0.700	0.561 and -0.357	0.787 and -0.676
(e.Å ⁻³)			

Table 1. Crystallographic data for **2a**, **2b** and **3**

Table 2. Dolla les	ngths and angles for 2	20 and 5		
P1-N1	1.507(8)	<u> </u>	1.462(11)	
P1–N2	1.695(5)	C8–N3	1.468(10)	
P2-N2	1.695(6)	P1–Se1	2.253(2)	
P2–N3	1.501(7)	P2–Se2	2.262(2)	
C4–N2	1.469(10)	Se1–Se2	2.3217(14)	
C4-N2 C8-N3	1.468(10)	501 502	2.5217(14)	
<u>C4–N2–P1</u>	132.1(4)	N3-P2-N2	118.6(3)	
C4-N2-P2	131.4(4)	N3-P2-N2	83.8(4)	
P1–N2–P2	96.0(3)	N3-P2-Se2	111.1(3)	
N1–P1–N2	126.2(3)	N3-12-302 N2-P2-Se2	111.1(3)	
N1-P1-N2 N2-P1-N2	83.8(4)	P1–Se1–Se2	97.79(7)	
N1–P1–Se1	104.2(3)	P2–Se2–Se1	98.63(7)	
N1-P1-Se1 N2-P1-Se1	107.05(19)	12-502-501	J0.05(7)	
<u>107.05(19)</u> 2b				
P1-N1	1.680(4)	<u>C8–N3</u>	1.465(8)	
P1–N2	1.500(6)	C1-N1	1.494(7)	
P2–N1	1.690(4)	P1-S1	2.127(2)	
P2–N3	1.501(6)	P2-S2	2.124(3)	
C5–N2	1.451(9)	S1–S2	2.121(2)	
N2-P1-N1	125.7(2)	C1–N1–P1	132.3(4)	
N2–P1–S1	106.6(2)	C5–N2–P1	145.7(5)	
N1-P1-N1'	83.5(3)	C8–N3–P2	144.9(5)	
N3–P2–N1'	119.2(2)	S2-S1-P1	98.83(9)	
N3–P2–S2'	109.9(2)	S1'-S2'-P2	100.88(10)	
N1-P2-S2'	111.62(16)			
3				
P1-N3	1.503(10)	Se1–Se3	2.3371(19)	
P1-N2	1.686(10)	Se2–Se4	2.3317(19)	
P1-N1	1.698(9)	Se3–Se4	2.321(2)	
P1–Se1	2.280(3)	N1-C1	1.496(14)	
P2-N4	1.494(10)	N2-C5	1.494(15)	
P2-N1	1.685(9)	N3-C9	1.457(14)	
P2-N2	1.694(10)	N4-C13	1.468(16)	
P2–Se2	2.275(3)			
N3-P1-N2	117.0(5)	N4-P2-Se2	113.3(4)	
N3-P1-N1	123.0(5)	N1-P2-Se2	108.2(3)	
N2-P1-N1	84.1(5)	N2-P2-Se2	107.9(4)	
N3-P1-Se1	112.8(4)	P1-Se1-Se3	103.68(10)	
N2-P1-Se1	108.2(4)	P2-Se2-Se4	104.65(10)	
N1-P1-Se1	108.0(3)	Se4-Se3-Se1	103.20(7)	
N4-P2-N1	116.6(5)	Se3–Se4–Se2	103.41(7)	
N4-P2-N2	122.9(5)	P2-N1-P1	95.3(5)	
N1-P2-N2	84.2(5)	P1-N2-P2	95.4(5)	

Table 2. Bond lengths and angles for **2a**, **2b** and **3**

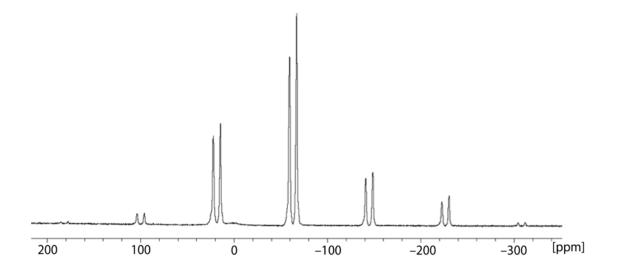
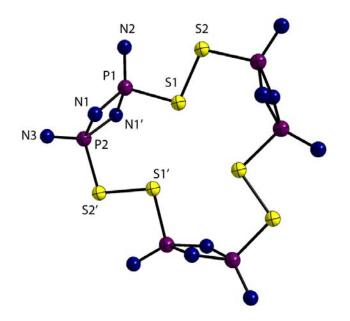
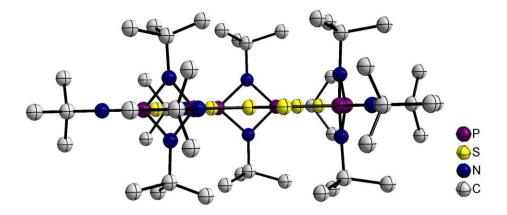




Fig S1. ³¹P CP-MAS NMR (7.05 T) of **2a** recorded at a MAS rate of 10.0 kHz

Fig. S2 Molecular structure of **2b**. Hydrogen atoms have been omitted for clarity View from on top showing the atomic numbering scheme

Fig. S3 Molecular structure of 2b; side-on view showing the planarity of the P_6S_6 framework

Crystal data for **2a**: C48H108N12P6Se6, M = 1513.04, trigonal, space group P63/m, a = b = 16.643(2), c = 15.319(3) Å, $\alpha = \beta = 90.00$, $\gamma = 120.000$, V = 3674.7(11) Å3, Z = 2, pcalcd = 1.367 g cm-3, $\mu = 3.155$ mm-1, T = 173(2) K, 7081 reflections collected (θ range 1.9 - 27.50), 2244 unique (Rint = 0.0547), R1 = 0.0606 for 1628 reflections with I > 2 σ (I)] and wR2 = 0.1553 (for all data).

Crystal data for **2b**. C6H6: C54H114N12P6S6, M = 1309.75, trigonal, space group P63/m, a = b = 16.5400(7), c = 15.5330(4) Å, $\alpha = \beta = 90.00$, $\gamma = 120.000$, V = 3680.1(2) Å3, Z = 2, pcalcd = 1.182 g cm-3, $\mu = 0.358$ mm-1, T = 173(2) K, 2249 reflections collected (θ range 1.9 -27.50), 1706 unique (Rint = 0.0678), R1 = 0.0807 for 1706 reflections with I > 2 σ (I)] and wR2 = 0.1912 (for all data).

Crystal data for **3**: C16H36N4P2Se4, M = 662.27, monoclinic, space group P21/a, a = 11.2800(5), b = 14.7500(5), c = 15.5840(7) Å, $\alpha = \gamma = 90.00$, $\beta = 95.303(2)$ o, V = 2581.8(2) Å3, Z = 4, pcalcd = 1.704 g cm-3, $\mu = 5.817$ mm-1, T = 173(2) K, 7279 reflections collected (θ range 1.9 -27.50), 4181 unique (Rint = 0.0867), R1 = 0.0798 for 2888 reflections with I > 2 σ (I)] and wR2 = 0.1465 (for all data).