Electronic Supplementary Information (ESI)

Thermally Responsive Shuttling Behavior of

Pillar[6]arene-based [2]Rotaxane

Tomoki Ogoshi*, Daiki Yamafuji, Takamichi Aoki and Tada-aki Yamagishi

Table of Contents

Figs. S1-S5 1 H and 13 C NMR spectraS7-S11Fig. S6 Job plot for a mixture of axle 1 and C2[5]S12Fig. S7 Job plot for a mixture of axle 1 and C2[6]S13Fig. S8 1 H NMR titration of axle 1 with C2[6] in CDCl ₃ S14Fig. S9 HRESIMS spectra of [2]rotaxane 3S15Fig. S10 HRESIMS spectra of [2]rotaxane 4S16Fig. S11 Variable-temperature 1 H NMR spectra of [2]rotaxane 3S17Fig. S12 Variable-temperature 1 H NMR spectra of [2]rotaxane 4S18Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at - 20 °CS19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at - 20 °CS20ReferencesS21	Experimental section	S2-S6
Fig. S6 Job plot for a mixture of axle 1 and C2[5]S12Fig. S7 Job plot for a mixture of axle 1 and C2[6]S13Fig. S8 1 H NMR titration of axle 1 with C2[6] in CDCl ₃ S14Fig. S9 HRESIMS spectra of [2]rotaxane 3S15Fig. S10 HRESIMS spectra of [2]rotaxane 4S16Fig. S11 Variable-temperature 1 H NMR spectra of [2]rotaxane 3S17Fig. S12 Variable-temperature 1 H NMR spectra of [2]rotaxane 4S18Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ CS19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ CS20ReferencesS21	Figs. S1-S5 ¹ H and ¹³ C NMR spectra	S7-S11
Fig. S7 Job plot for a mixture of axle 1 and C2[6]S13Fig. S8 1 H NMR titration of axle 1 with C2[6] in CDCl3S14Fig. S9 HRESIMS spectra of [2]rotaxane 3S15Fig. S10 HRESIMS spectra of [2]rotaxane 4S16Fig. S11 Variable-temperature 1 H NMR spectra of [2]rotaxane 3S17Fig. S12 Variable-temperature 1 H NMR spectra of [2]rotaxane 4S18Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ CS19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ CS20ReferencesS21	Fig. S6 Job plot for a mixture of axle 1 and C2[5]	S12
Fig. S8 1 H NMR titration of axle 1 with C2[6] in CDCl3S14Fig. S9 HRESIMS spectra of [2]rotaxane 3S15Fig. S10 HRESIMS spectra of [2]rotaxane 4S16Fig. S11 Variable-temperature 1 H NMR spectra of [2]rotaxane 3S17Fig. S12 Variable-temperature 1 H NMR spectra of [2]rotaxane 4S18Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ CS19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ CS20ReferencesS21	Fig. S7 Job plot for a mixture of axle 1 and C2[6]	S13
Fig. S9 HRESIMS spectra of [2]rotaxane 3S15Fig. S10 HRESIMS spectra of [2]rotaxane 4S16Fig. S11 Variable-temperature ¹ H NMR spectra of [2]rotaxane 3S17Fig. S12 Variable-temperature ¹ H NMR spectra of [2]rotaxane 4S18Fig. S13 2D ¹ H- ¹ H COSY NMR of [2]rotaxane 4 at -20 °CS19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at -20 °CS20ReferencesS21	Fig. S8 ¹ H NMR titration of axle 1 with C2[6] in CDCl ₃	S14
Fig. S10 HRESIMS spectra of [2]rotaxane 4S16Fig. S11 Variable-temperature ¹ H NMR spectra of [2]rotaxane 3S17Fig. S12 Variable-temperature ¹ H NMR spectra of [2]rotaxane 4S18Fig. S13 2D ¹ H- ¹ H COSY NMR of [2]rotaxane 4 at -20 °CS19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at -20 °CS20ReferencesS21	Fig. S9 HRESIMS spectra of [2]rotaxane 3	S15
Fig. S11 Variable-temperature 1 H NMR spectra of [2]rotaxane 3S17Fig. S12 Variable-temperature 1 H NMR spectra of [2]rotaxane 4S18Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at - 20 ${}^{\circ}$ CS19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at - 20 ${}^{\circ}$ CS20ReferencesS21	Fig. S10 HRESIMS spectra of [2]rotaxane 4	S16
Fig. S12 Variable-temperature ${}^{1}H$ NMR spectra of [2]rotaxane 4S18Fig. S13 2D ${}^{1}H{}^{-1}H$ COSY NMR of [2]rotaxane 4 at $-20 {}^{\circ}C$ S19Fig. S14 2D EXSY NMR of [2]rotaxane 4 at $-20 {}^{\circ}C$ S20ReferencesS21	Fig. S11 Variable-temperature ¹ H NMR spectra of [2]rotaxane 3	S17
Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ C S19 Fig. S14 2D EXSY NMR of [2]rotaxane 4 at - 20 $^{\circ}$ C S20 References S21	Fig. S12 Variable-temperature ¹ H NMR spectra of [2]rotaxane 4	S18
Fig. S14 2D EXSY NMR of [2]rotaxane 4 at - 20 °C S20 References S21	Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at -20 $^{\circ}$ C	S19
References S21	Fig. S14 2D EXSY NMR of [2]rotaxane 4 at -20 °C	S20
	References	S21

Experimental section

Materials. All solvents and reagents were used as supplied. Per-ethylated pillar[5]arene (**C2**[5]) and pillar[6]arene (**C2**[6]) were synthesized according to the previous papers.^{1,2}

Measurements. The ¹H NMR spectra were recorded at 500 MHz and ¹³C NMR spectra were recorded at 125 MHz with a JEOL-ECA500 spectrometer.

Determination of association constants. In axle 1-C2[5] complex in CDCl₃, chemical exchange between free and complexed species is slow on an NMR timescale. Thus, ¹H NMR spectra of mixtures of C2[5] and axle 1 in different ratio showed two sets of resonances for complexed and free axle 1. The association constant for axle 1-C2[5] complex was calculated from integrations of complexed (Fig. 2, blue peak g') and free signals (Fig. 2, blue peak g) of the pyridinium moiety of axle 1.

In axle 1-C2[6] complex in CDCl₃ and axle 1-C2[6] complex in CDCl₃, chemical exchange between free and complexed species was fast on an NMR timescale. Thus, NMR titrations were done with solutions which had a constant concentration of axles (1 mM) and varying concentrations of C2[6]. By the non-linear curve-fitting methods, the association constant for axle 1-C2[6] complex in CDCl₃ was estimated to be 19.1 ± 2.2 M⁻¹ for 1:1 stoichiometry. The non-linear curve-fitting was based on the equation:³

$$\Delta \delta_{\text{obs}} = \frac{\Delta \delta_{11}}{2\text{K}[\text{G}]_0} \left[1 + \text{K}[\text{H}]_0 + \text{K}[\text{G}]_0 - \{(1 + \text{K}[\text{H}]_0 + \text{K}[\text{G}]_0)^2 - 4\text{K}^2[\text{H}]_0[\text{G}]_0\}^{1/2}\right]$$

Where $\Delta \delta_{obs}$ is the chemical shift change of proton signal of pyridinium moiety of the axle (**Fig. 3**, blue peak g) at [H]₀, $\Delta \delta_{11}$ is the chemical shift change of the axle proton resonance when the axle is completely complexed, [G]₀ is the fixed initial concentration of the axle, and [H]₀ is the initial concentration of the host **C2[6]**.

Study of thermodynamic parameters by variable-temperature ¹H NMR measurements. The thermodynamic parameters such as ΔH , ΔS , ΔG , and equilibrium constant *K* were determined from the temperature dependence of *K* by the use of the linear van't Hoff plots:

$$\ln K = -\Delta H / RT + \Delta S / R$$

The ΔH and ΔS for the shuttling from station I to II were calculated from the slope and intercept by plotting ln *K* vs 1/T. ΔG was obtained according to the equation:

$$\Delta G = \Delta H - T \Delta S$$

Compounds for synthesis of C2[5]- and C2[6]-based [2]rotaxanes

Axle 1. To a solution of 1-(3-bromopropoxy)-4-(triphenylmethyl)benzene⁴ (1.25 g, 3.28 mmol) in N,N-dimethylformamide (10 mL), 4-(undec-10-yn-1-yloxy)pyridine⁵ (0.670 g, 2.74 mmol) was added. The mixture was heated at 100 °C for 72 h under nitrogen. The resulting solution was concentrated under vacuo. The obtained product was dissolved in the mixture of acetone (20 mL) and water (20 mL). To the mixture, NaPF₆ (2.30 g, 13.7 mmol) was added. The reaction mixture was stirred at 25 °C for 1 h. The resulting solution was concentrated under vacuo. The residue was poured into water and the precipitate was collected by filtration. Column chromatography (silica gel; dichloromethane : methanol = 8 : 1) afforded an white solid (axle 1, 630 mg, 0.821 mmol, Yield: 30%). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.40 (d, J = 6.3 Hz, 2H, pyridyl), 7.34 (d, J = 6.3 Hz, 2H, pyridyl), 7.16-7.25 (m, 15 H, phenyl), 7.12 (d, J = 7.4 Hz, 2H, phenyl), 6.76 (d, J = 7.4 Hz, 2H, phenyl), 4.49 (t, J = 5.6 Hz, 2H, methylene), 4.37 (t, J = 6.7 Hz, 2H, methylene), 4.11 (t, J = 5.6 Hz, 2H, methylene), 2.37 (q, J = 5.6Hz, 2H, methylene), 2.17 (m, 2H, methylene), 1.92 (s, 1H, terminal alkyne), 1.91 (m, 2H, methylene), 1.50 (q, J = 7.5 Hz, 2H, methylene), 1.37 (m, 2H, methylene), 1.27-1.32 (m, 8H, methylene). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 170.4, 156.3, 147.0, 145.3, 139.5, 132.3, 131.1, 127.5, 125.9, 114.1, 113.2 (C of phenyl and pyridyl),

84.7 (C of alkyne), 68.2 (C of methylene), 68.0 (C of alkyne), 64.3 (C of methylene),
63.1 (sp3 carbon of triryl), 60.6, 31.1, 29.1, 28.8, 28.6, 28.4, 18.3 (C of methylene).
HRFABMS: *m/z* Calcd for C₄₄H₄₈NO₂ [M–PF₆]⁺: 622.3680, found 622.3689.

Stopper 2. To a solution of 1-(3-bromopropoxy)-4-(triphenylmethyl)benzene (400 mg, 0.876 mmol) in *N*,*N*-dimethylformamide (10 mL), sodium azide (68.4 mg, 1.05 mmol) was added. The reaction mixture was heated at 50 °C for 5 h, cooled to room temperature and added to ethyl acetate. The solution was washed with water, and dried (Na₂SO₄). After evaporation of the solvent, the residue was purified by column chromatography (silica gel; hexane : ethyl acetate = 9 : 1) to give a white solid (stopper **2**, 340 mg, 0.810 mmol, Yield: 92%).¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.16-7.25 (m, 15H, phenyl), 7.10 (d, J = 7.4 Hz, 2H, phenyl), 6.77 (d, J = 7.4 Hz, 2H, phenyl), 4.01 (t, J = 5.8 Hz, 2H, methylene), 3.50 (t, J = 6.9 Hz, 2H, methylene), 2.03 (q, J = 6.3 Hz, 2H, methylene). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 156.6, 147.0, 139.3, 132.2, 131.1, 127.4, 125.4, 113.2 (C of phenyl), 64.3 (sp3 carbon of triryl), 48.3, 28.8 (C of methylene). HRFABMS: *m/z* Calcd for C₂₈H₂₆N₃O [M+H]⁺: 420.2076, found 420.2068.

Pillar[5]arene-based [2]rotaxane 3. To a solution of axle 1 (76.3 mg, 0.100 mmol), C2[5] (445 mg, 0.500 mmol) and stopper 2 (41.2 mg, 0.120 mmol) in chloroform (1 mL), tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA, 53.0 mg, 0.100 mmol) was added. The reaction mixture was stirred at 25 °C for 1 h. To the mixture, Cu(CH₃CN)₄PF₆ (37.2 mg, 0.100 mmol) was added, and the mixture was stirred at 25 °C for 24 h. The resulting solution was concentrated under vacuo. Column chromatography (silica gel; ethyl acetate : dichloromethane = 1 : 10 to 1 : 1) afforded a white solid (pillar[5]arene-based [2]rotaxane 3, 120 mg, 0.0601 mmol, Yield: 60%). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.42 (s, 1H, triazole), 7.16-7.26 (m, 30H, phenyl), 7.11-7.14 (m, 4H, phenyl), 6.95 (m, 2H, pyridinium), 6.93 (s, 5H, phenyl of C2[5] moiety), 6.82 (d, J = 7.5 Hz, 2H, phenyl), 6.77 (d, J = 7.5 Hz, 2H, phenyl), 6.68 (s, 5H, phenyl of C2[5] moiety), 5.98 (d, J = 5.8 Hz, 2H, pyridinium), 4.57 (m, 2H, methylene), 4.46 (m, 2H, methylene), 4.18 (m, 2H, methylene), 3.99 (m, 2H, methylene), 3.95-4.00 (m, 30H, methylene and methylene bridge of C2[5]), 2.76 (t, J = 6.9 Hz, 2H, methylene), 2.40 (m, 2H, methylene), 1.76 (m, 2H, methylene), 1.47 (t, J = 6.3 Hz, 15H, methyl of C2[5]), 1.44 (m, 2H, methylene), 1.34 (t, J = 6.3 Hz, 15H, methyl of C2[5]), 1.31 (m, 2H, methylene), 1.15 (m, 2H, methylene), 0.73 (m, 2H, methylene), 0.64 (m, 2H, methylene), -0.06 (m, 2H, methylene), -1.16 (m, 2H, methylene), ¹³C NMR (CDCl₃,

125 MHz, ppm): δ 169.1, 156.6, 156.4, 150.3, 149.4, 147.0, 144.0, 139.5, 139.3, 132.3, 131.1, 129.9, 129.2, 127.4, 125.9, 121.3, 116.2, 115.0, 113.2, 112.3 (C of phenyl, pyridinium and triazole), 68.2, 65.4 (C of methylene), 64.3 (sp3 carbon of triryl), 64.1, 63.5, 57.3, 47.1, 30.9, 30.1, 30.0, 29.8, 29.2, 29.0, 28.4, 27.7, 26.5, 25.8 (C of methylene), 15.5, 15.3 (C of methyl of **C2[5]**). HRESIMS: *m/z* Calcd for C₁₂₇H₁₄₃N₄O₁₃ [M–PF₆]⁺: 1932.0652, found 1932.06502.

Pillar[6]arene-based [2]rotaxane 4. To a solution of axle 1 (76.3 mg, 0.100 mmol), C2[6] (534 mg, 0.500 mmol) and stopper 2 (41.2 mg, 0.120 mmol) in chloroform (1 mL), TBTA (53.0 mg, 0.100 mmol) was added. The reaction mixture was stirred at 25 ^oC for 1 h. To the mixture, Cu(CH₃CN)₄PF₆ (37.2 mg, 0.100 mmol) was added, and the mixture was stirred at 25 °C for 24 h. The resulting solution was concentrated under vacuo. Column chromatography (silica gel; ethyl acetate : dichloromethane = 1 : 10 to 1 : 1) afforded a orange solid (Pillar[5]arene-based [2]rotaxane 4, 30.0 mg, 0.00138 mmol, Yield: 14%).¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.48 (s, 1H, triazole), 7.17-7.23 (m, 30H, phenyl), 7.14 (m, 2H, phenyl), 7.09 (m, 2H, phenyl), 6.76 (m, 2H, phenyl), 6.71 (br, 12H, phenyl of C2[6]), 6.69 (m, 2H, phenyl), 6.12 (br, 2H, pyridinium), 5.12 (d, J = 6.3 Hz, 2H, pyridinium), 4.54 (m, 2H, methylene), 3.97 (m, 2H, methylene), 3.93 (m, 2H, methylene), 3.89 (br, 36H, methylene and methylene bridge of C2[6]), 3.46 (br, 2H, methylene), 2.72 (m, 2H, methylene), 2.37 (m, 2H, methylene), 2.24 (br, 2H, methylene), 1.96 (br, 2H, methylene), 1.70 (m, 2H, methylene), 1.38 (br, 36H, methyl of C2[6]), 1.06-1.31 (m, 10H, methylene). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 168.4, 167.7, 156.6, 156.4, 150.7, 148.2, 147.0, 146.9, 143.1, 139.8, 139.2, 132.4, 132.2, 131.1, 129.4, 129.0, 127.5, 127.4, 125.9, 125.8, 121.5, 115.8, 113.3, 112.7, 111.5 (C of phenyl, pyridinium and triazole), 66.6, 65.7 (C of methylene), 64.3 (sp3 carbon of triryl), 62.8, 57.8, 47.1, 32.5, 31.9, 30.8, 30.2, 29.6, 29.4, 29.2, 29.1, 29.0, 28.6, 28.1, 27.3, 26.4, 25.7, 25.6 (C of methylene), 15.4 (C of methyl of C2[6]). HRESIMS: m/z Calcd for C₁₃₈H₁₅₇N₄O₁₅ [M-PF₆]⁺: 2110.1645, found 2110.1645.

Dumbbell 5. This compound was prepared using the same conditions as those used for the preparation of pillar[5]arene-based [2]rotaxane **3** in the absence of **C2[5]**. Column chromatography (silica gel; ethyl acetate) afforded an white solid (94.9 mg, 0.0802 mmol, Yield: 80%.). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 8.41 (d, J = 6.9 Hz, 2H, pyridinium), 7.33 (s, 1H, triazole), 7.31 (d, J = 6.9 Hz, 2H, pyridinium), 7.16-7.23 (m, 30H, phenyl), 7.01-7.11 (m, 4H, phenyl), 6.72-6.76 (m, 4H, phenyl), 4.51 (t, J = 6.6 Hz, 2H, methylene), 4.46 (t, J = 6.0 Hz, 2H, methylene), 4.37 (t, J = 7.5 Hz, 2H, methylene),

4.08 (t, J = 5.7 Hz, 2H, methylene), 3.92 (t, J = 5.5 Hz, 2H, methylene), 2.66 (t, J = 7.5 Hz, 2H, methylene), 2.29-2.38 (m, 4H, methylene), 1.88 (br, 2H, methylene), 1.60 (m, 2H, methylene), 1.18-1.38 (m, 10H, methylene). ¹³C NMR (acetone- d_6 , 125 MHz, ppm): δ 171.5, 157.8, 157.7, 148.0, 147.0, 140.0, 132.9, 131.8, 128.4, 126.8, 121.4, 114.9, 114.2 (C of phenyl, pyridinium and triazole), 68.9, 65.3, 65.1 (C of methylene), 64.5 (sp3 carbon of triryl), 60.8, 47.4, 31.7, 30.8, 26.5, 26.2 (C of methylene). HRESIMS: *m*/*z* Calcd for C₇₂H₇₃N₄O₃ [M–PF₆]⁺: 1041.5683, found 1041.5729.

Fig. S1 ¹H and ¹³C NMR spectra of axle 1 in CDCl₃ at 25 °C.

Fig. S3 ¹H and ¹³C NMR spectra of pillar[5]arene-based [2]rotaxane **3** in CDCl₃ at 25 °C.

¹H and ¹³C NMR spectra of pillar[6]arene-based [2]rotaxane 4

Fig. S4 ¹H and ¹³C NMR spectra of pillar[6]arene-based [2]rotaxane 4 in CDCl₃ at 25 °C.

Fig. S5 ¹H NMR spectrum of dumbbell **5** in CDCl₃ and ¹³C NMR spectrum of dumbbell **5** in acetone- d_6 at 25 °C.

Job plot for a mixture of axle 1 and C2[5]

Fig. S6 Job plot between axle 1 (guest) and C2[5] (host). The job plot was conducted by varying the mole fractions of the guest and host. Integration ratios between free and complexed pyridinium proton signals (Fig. 2, blue peaks g and g') were utilized. Concentration: [axle 1] + [C2[5]] = 10 mM. The plot indicates a 1:1 binding between the host and guest.

Job plot for a mixture of axle 1 and C2[6]

Fig. S7 Job plot between axle 1 (guest) and C2[6] (host) was collected by plotting the $\Delta\delta$ in chemical shift of the proton signal of pyridinium moiety (Fig. 3, blue peak g) of axle 1 observed by ¹H NMR spectroscopy against the change in the mole fraction of the guest ($X_{axle 1}$). Concentration: [axle 1] + [C2[6]] = 10 mM. The plot indicates a 1:1 binding between the host and guest.

¹H NMR titration of axle 1 with C2[6] in CDCl₃

Fig. S8 ¹H NMR titration of axle 1 (Fig. 3, pyridinium proton peak g) with C2[6] in $CDCl_3$ at 25 °C.

Fig. S9 HRESIMS spectra (CHCl₃) of [2]rotaxane 3.

Fig. S10 HRESIMS spectra (CHCl₃) of [2]rotaxane 4.

Variable-temperature ¹H NMR spectra of [2]rotaxane 3

Fig. S11 Variable-temperature ¹H NMR spectra of [2]rotaxane 3 (5 mM in CDCl₃). The signals of [2]rotaxane 3 hardly changed when the sample was cooled and heated, indicating that the shuttling of the C2[5] wheel along the axle did not take place in the temperature investigated.

Variable-temperature ¹H NMR spectra of [2]rotaxane 4

Fig. S12 Variable-temperature ¹H NMR spectra of [2]rotaxane 4 (5 mM in CDCl₃). The signals of [2]rotaxane 4 became sharp and split when the sample was cooled and heated, indicating shuttling of the C2[6] wheel along the axle.

2D ¹H-¹H COSY NMR of [2]rotaxane 4 at - 20 °C

Fig. S13 2D 1 H- 1 H COSY NMR of [2]rotaxane 4 at -20 $^{\circ}$ C in CDCl₃.

2D EXSY NMR of [2]rotaxane 4 at - 20 °C

Fig. S14 2D EXSY NMR of [2]rotaxane 4 at – 20 °C in CDCl₃.

References

(1) T. Ogoshi, K. Kitajima, T. Aoki, S. Fujinami, T. Yamagishi and Y. Nakamoto, *J. Org. Chem.*, 2010, **75**, 3268.

(2) D. Cao, Y. Kou, J. Liang, Z. Chen, L. Wang and H. Meier, Angew. Chem. Int. Ed., 2009, 48, 9721.

(3) P. R. Ashton, R. Ballardini, V. Balzani, M. Bělohradský, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931.

(4) Y. Leydeta, F. J. Romero-Salguerob, C. Jiménez-Sanchidriánb, D. M. Bassania, N. D. McClenaghan, *Inorg. Chim. Acta*, 2007, **360**, 987.

(5) T. Ogoshi, D. Yamafuji, T. Aoki, K. Kitajima, T. Yamagishi, Y. Hayashi and S. Kawauchi, *Chem. Eur. J.*, 2012, DOI: 101.1002/chem.201200122.