Electronic Supplementary Information for "Enantio- and diastereoselective hetero-Diels-Alder reactions between 2-aza-3-silyloxy-1,3-butadienes and aldehydes catalyzed by chiral dirhodium(II) carboxamidates"

Yudai Watanabe, Takuya Washio, Janagiraman Krishnamurthi, Masahiro Anada* and Shunichi Hashimoto*

General Methods--------------- S1
Experimental Section ------------- S1-S18
Copies of ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Spectra -------- S19-S42
Copies of Chromatogram------------S43-S62

General. Melting points were determined on a Yamato melting point apparatus model MP-21 and are uncorrected. IR spectra were recorded on a JASCO FT/IR-5300 spectrometer and absorbance bands are reported in wavenumber $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on JEOL JNM-ECX 400P (400 MHz) spectrometer. Chemical shifts are reported relative to internal standard (tetramethylsilane; $\delta_{\mathrm{H}} 0.00$ or $\mathrm{CDCl}_{3} ; \delta_{\mathrm{H}} 7.26$). Data are presented as follows: chemical shift $(\delta, p p m)$, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constant and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL JNM-ECX $400 \mathrm{P}(100 \mathrm{MHz})$ spectrometer. The following internal references were used $\left(\mathrm{CDCl}_{3} ; \delta 77.0\right)$. Optical rotations were measured on a JASCO P-1030 digital polarimeter at the sodium D line (589 nm). EI-MS spectra were obtained on a JEOL JMS-FABmate spectrometer, operating with ionization energy of 70 eV . ESI-MS spectra were obtained on a Thermo Scientific Exactive spectrometer. Column chromatography was carried out on Kanto silica gel 60 N (63-210 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel $60 \mathrm{~F}_{254}$ plates with visualization by UV light, anisaldehyde stain solution or phosphomolybdic acid stain solution. Analytical high performance liquid chromatography (HPLC) was performed on a JASCO PU-1580 intelligent HPLC pump with JASCO UV- 1575 intelligent UV/VIS detector. Detection was performed at 254 nm . Chiralcel OD-H and Chiralpak AD-H columns ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) from Daicel were used. Retention times (t_{R}) and peak ratios were determined with JASCO-Chrom NAV analysis system.
All non-aqueous reactions were carried out in flame-dried glassware under argon atmosphere unless otherwise noted. Reagents and solvents were purified by standard means. Dehydrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone, toluene and THF were purchased from Kanto Chemical Co., Inc. Diene 2a, $\mathbf{2 b}$ were prepared according to literature procedure. ${ }^{1,2}$

Experimental Section

Preparetion of 2-aza-3-triethylsilyloxy-1-phenyl-1,3-butadiene (2c)

To a solution of N-triethylsilylbenzylimine ($219 \mathrm{mg}, 1.0 \mathrm{mmol})^{3}$ and triethylamine (404 mg , $4.0 \mathrm{mmol})$ in ether $(1 \mathrm{~mL})$ was added dropwise a solution of acetyl chloride ($157 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in ether $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 2 h at room temperature, the precipitate was filtered through a plug of Celite, and the Celite filter cake was washed with ether (20 mL). The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (Wakogel C-200, $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane) to afford 2c ($221 \mathrm{mg}, 85 \%$) as a light yellow oil; TLC $R_{f}=0.78$ ($2 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane); IR (film) $2955,1623,1603 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.51\left(\mathrm{q}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.01\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right)$, 4.32 (s, 1H, C4-H), $4.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4-H), 7.43-7.44(\mathrm{~m}, 3 \mathrm{H}, ~ A r), 7.82-7.85(\mathrm{~m}, 2 \mathrm{H}, ~ A r), 8.56$ (s, $1 \mathrm{H}, \mathrm{C} 1-H) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.8\left(\mathrm{CH}_{2}\right), 6.4\left(\mathrm{CH}_{3}\right), 91.7\left(\mathrm{CH}_{2}\right), 128.6(\mathrm{CH})$, $129.0(\mathrm{CH}), 131.1(\mathrm{CH}), 135.9(\mathrm{C}), 156.5(\mathrm{CH}), 156.6(\mathrm{C})$; EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NOSi}$
$(\mathrm{M}+\mathrm{H})^{+} 262.16217$, found 262.16239 .

Preparetion of 2-aza-3-tert-butyldimethylsilyloxy-1-phenyl-1,3-pentadiene (2d)

According to the procedure for the preparation of 2c, 2d was prepared from N-tert-butyldimethylsilylbenzylimine ($439 \mathrm{mg}, 2.0 \mathrm{mmol})^{4}$, propionyl chloride ($370 \mathrm{mg}, 4.0$ mmol) and triethylamine ($809 \mathrm{mg}, 8.0 \mathrm{mmol}$). The crude product was purified by column chromatography (Wakogel C-200, $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane) to afford 2d ($513 \mathrm{mg}, 93 \%$) as a light yellow oil; TLC $R_{f}=0.81\left(2 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in hexane); IR (film) $2930,1647,1591 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.17\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, C5- H_{3}), $5.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-H), 7.41-7.43(\mathrm{~m}, 3 \mathrm{H}, ~ A r), 7.77-7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 8.37$ (s, $1 \mathrm{H}, \mathrm{C} 1-H) ; \delta-3.7\left(\mathrm{CH}_{3}\right), 12.0\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 25.9\left(\mathrm{CH}_{3}\right), 103.5(\mathrm{CH}), 128.4(\mathrm{CH})$, $128.6(\mathrm{CH}), 130.6(\mathrm{CH}), 136.1(\mathrm{C}), 152.7(\mathrm{C}), 153.4(\mathrm{CH})$; ESI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NOSi}$ $(\mathrm{M}+\mathrm{H})^{+} 276.17782$, found 276.17795 .

General procedure for asymmetric HDA reaction of 2-az a-3-silyloxydienes with aldehydes: (2S,6S)-2,6-Diphenyl-1,3-oxazinan-4-one (5a). ${ }^{5}$
To a solution of benzaldehyde (3a) $(47.7 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4$ mL) was added $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. Then the color of solution was changed from colorless to brown. After stirring for 5 min , a solution of 2-azadiene $\mathbf{2 a}$ ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ added at room temperature. After stirring at this temperature for 24 h , MeOH (ca. 0.1 mL) was added and the mixture was stirred for an additional 0.5 h . The mixture was concentrated in vacuo furnished the crude product (118 mg) as a purple solid, which was purified by column chromatography (silica gel, 9:1 $\mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to give 5a ($72.2 \mathrm{mg}, 95 \%$) as a white solid; mp 173.0-174.0 ${ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.32\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{20}-39.8\left(c \quad 1.03, \mathrm{CHCl}_{3}\right)$ for 98% ee; IR (KBr) $3242,1666,1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-H), 5.03(\mathrm{dd}, J=4.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.93(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C} 2-H$), 6.62 (br, $1 \mathrm{H}, \mathrm{N} H$), $7.31-7.53$ (m, $10 \mathrm{H}, \mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.1$ $\left(\mathrm{CH}_{2}\right), 76.6(\mathrm{CH}), 85.7(\mathrm{CH}), 125.7(\mathrm{CH}), 126.9(\mathrm{CH}), 128.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.9(\mathrm{CH})$, $130.0(\mathrm{CH}), 137.7(\mathrm{CH}), 139.6(\mathrm{C}), 168.8(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M})^{+}$ 253.1103, found 253.1099. The enantiomeric excess of $\mathbf{5 a}$ was determined to be 98% by HPLC with a Chiralpak AD-H column ($9: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}($ minor $)=15.3$ min for $(2 R, 6 R)$-enantiomer; t_{R} (major) $=17.4 \mathrm{~min}$ for $(2 S, 6 S)$-enantiomer. A sample for combustion analysis was obtained by recrystallizations from $i-\mathrm{PrOH}$ as colorless needles ($>99 \%$ ee); mp 173.5-174.5 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 75.87 ; H, 5.97; N, 5.53. Found: C, 75.99 ; H, 5.96 ; N, 5.56. In order to assign the stereochemistry at C 2 and C6, NOE studies were performed on $\mathbf{5 a}$. Irradiation of C2-H showed NOE with C6-H (12.2\%) and the
ortho proton of the phenyl group (6.0\%). Additionally, irradiation of C6-H exhibited NOE with $\mathrm{C} 2-\mathrm{H}(12.1 \%)$, $\mathrm{C} 5 \mathrm{eq}-\mathrm{H}(5.1 \%)$ and the ortho proton of the phenyl group (4.6\%). These data revealed cis relationship between $\mathrm{C} 2-\mathrm{H}$ and $\mathrm{C} 6-\mathrm{H}$.

Determination of absolute configuration of 5a:

Methyl (S)-3-hydroxy-3-phenyl-propionate (9a). ${ }^{6}$

$\mathrm{AcCl}(0.14 \mathrm{~mL}, 2 \mathrm{mmol})$ was added to $\mathrm{MeOH}(1 \mathrm{~mL})$. This solution was added to a solution of $\mathbf{5 a}\left(40.0 \mathrm{mg}, 0.14 \mathrm{mmol}, 98 \%\right.$ ee) in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at reflux temperature for 6 h , the reaction was quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water $(3 \mathrm{~mL})$ and brine ($2 \times 3 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give the crude product (41 mg) as a yellow oil, which was purified by column chromatography ($4: 1$ hexane/EtOAc) to afford $\mathbf{9 a}\left(26.6 \mathrm{mg}, 89 \%\right.$) as a colorless oil; TLC $R_{f}=$ $0.24(2: 1$ hexane $/ \mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{22}-51.6\left(c 0.95, \mathrm{CHCl}_{3}\right)$ for 97% ee $\left[\mathrm{lit} .,^{6}[\alpha]_{\mathrm{D}}{ }^{20}+46.9(c\right.$ 1.2, CHCl_{3}) for (R)-enantiomer]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.73(\mathrm{dd}, J=4.1,16.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} 2-H), 2.77(\mathrm{dd}, J=9.1,16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 3.21(\mathrm{~d}, J=3.6,1 \mathrm{H}, \mathrm{OH}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $5.15(\mathrm{ddd}, J=3.6,4.1,16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-H), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}, A r)$. This product 9a exhibited spectroscopic data identical to $(R)-9 \mathbf{a}^{6}$, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of $\mathbf{5 a}$ was determined to be $(2 S, 6 S)$.

NMR Analysis of 4a.

A solution of diene 2a ($52.3 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added to a solution of benzaldehyde (3a) ($23.3 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $\mathrm{Rh}_{2}(S-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(5.73 \mathrm{mg}, 0.004 \mathrm{mmol}$, $2 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{~mL})$. After stirring for 16 h , the reaction mixture was concentrated in vacuo to furnish the crude $\mathbf{4 a}(75 \mathrm{mg})$ as a purple solid; ${ }^{1} \mathrm{H}$ NMR showed exclusive formation of 4a; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.02$ (s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.14$ (ddd, $\left.J=2.3,4.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H\right), 2.20$ (ddd, $J=2.9,10.9,17.2$, $1 \mathrm{H}, \mathrm{C} 5-H), 4.40(\mathrm{dd}, J=4.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 5.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 7.07-7.32$ (m, 8H, $A r), 7.79-7.81(\mathrm{~m}, 2 \mathrm{H}, A r)$. In order to assign the stereochemistry at C 2 and C 6 , NOE studies were performed on $\mathbf{4 a}$. Irradiation of $\mathrm{C} 2-\mathrm{H}$ showed NOE with $\mathrm{C} 6-\mathrm{H}(12.6 \%)$. Additionally, irradiation of $\mathrm{C} 6-\mathrm{H}$ exhibited NOE with the $\mathrm{C} 2-\mathrm{H}$ (15.8\%). These data revealed cis relationship between $\mathrm{C} 2-\mathrm{H}$ and $\mathrm{C} 6-\mathrm{H}$.
(2S,6S)-6-(4-nitrophenyl)-2-phenyl-1,3-oxazinan-4-one (5b).
According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 b}$ was prepared from diene $\mathbf{2 a}$ $(78.4 \mathrm{mg}, 0.30 \mathrm{mmol}), p$-nitrobenzaldehyde ($\mathbf{3 b}$) ($68.0 \mathrm{mg}, 0.45 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{~S} \text {-BPTPI) })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$.
 The crude product was purified by column chromatography (silica gel, $1: 3$ hexane/EtOAc) to provide $\mathbf{5 b}(87.6 \mathrm{mg}, 98 \%)$ as a white solid; $\mathrm{mp} 134.0-135.0^{\circ} \mathrm{C}$; TLC $R_{f}=0.22(1: 3$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{19}-51.0\left(c 1.01, \mathrm{CHCl}_{3}\right.$) for $91 \% \mathrm{ee}$; $\mathrm{IR}(\mathrm{KBr}) 3176,1669,1602,1519$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.51(\mathrm{dd}, J=4.1,17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.72(\mathrm{dd}, J=11.0$, $17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 5.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 7.12(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H), 7.35-7.48$ (m, $7 \mathrm{H}, \mathrm{Ar}), 8.12-8.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.7\left(\mathrm{CH}_{2}\right), 75.3(\mathrm{CH})$, $85.6(\mathrm{CH}), 123.9(\mathrm{CH}), 126.2(\mathrm{CH}), 126.8(\mathrm{CH}), 128.9(\mathrm{CH}), 130.1(\mathrm{CH}), 137.2(\mathrm{C}), 146.8$ (C), 147.5 (C), $168.0(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}-\mathrm{H})^{+}$297.0954, found 297.0871. The enantiomeric excess of $\mathbf{5 b}$ was determined to be 91% by HPLC with a Chiralpak AD-H column ($1: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): t_{R} (minor) $=9.7 \mathrm{~min}$ for $(2 R$, $6 R$)-enantiomer; t_{R} (major) $=17.6 \mathrm{~min}$ for $(2 S, 6 S)$-enantiomer. The preferred absolute configuration of $\mathbf{5 b}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles (89% ee); mp $135.5-136.0{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 64.42; H, 4.73; N, 9.39. Found: C, 64.46; H, 4.70; N, 9.43.

Determination of absolute configuration of 5 b :

Methyl (S)-3-hydroxy-3-(4-nitrophenyl) propionate (9b). ${ }^{7}$

According to the procedure for the preparation of $\mathbf{9 a}, \mathbf{9 b}$ was prepared from $\mathbf{5 b}(40 \mathrm{mg}, 0.13$ $\mathrm{mmol}, 91 \% \mathrm{ee}), \mathrm{AcCl}(0.14 \mathrm{~mL}, 2 \mathrm{mmol})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$. The crude product was purified by column chromatography (silica gel, $2: 1$ hexane/EtOAc) to provide 9 b ($28.9 \mathrm{mg}, 96 \%$) as a colorless oil; TLC $R_{f}=0.56(1: 1$ hexane $/ \mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{19}-35.6\left(c 1.18, \mathrm{CHCl}_{3}\right)$ for 91% ee $\left[\right.$ lit., ${ }^{7}[\alpha]_{\mathrm{D}}{ }^{20}-37.1\left(c 1.01, \mathrm{CHCl}_{3}\right)$ for 94% ee $;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.68-2.79(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C} 2-H), 3.57(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.25$ (dd, $J=4.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-H$), $7.56-7.58(\mathrm{~m}, 2 \mathrm{H}, A r), 8.22-8.24(\mathrm{~m}, 2 \mathrm{H}, A r)$. This product 9b exhibited spectroscopic data identical to $(S)-\mathbf{9} \mathbf{b}^{7}$. Thus, the preferred absolute stereochemistry of $\mathbf{5 b}$ was determined to be ($2 S, 6 S$)
($2 S^{*}, 6 S^{*}$)-2-Phenyl-6-(4-trifluoromethylphenyl)-1,3-oxazinan-4-one (5c).
According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 c}$ was prepared from diene $\mathbf{2 a}$ $(78.4 \mathrm{mg}, 0.30 \mathrm{mmol})$, p-trifluoromethylbenzaldehyde ($\mathbf{3 c}$) $(78.3 \mathrm{mg}$, $0.45 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1$

mol \%). The crude product was purified by column chromatography (silica gel, 1:2 hexane/EtOAc) to provide $5 \mathbf{c}(92.5 \mathrm{mg}, 96 \%)$ as a white solid; mp $147.0-148.0^{\circ} \mathrm{C}$; TLC $R_{f}=$ 0.31 ($1: 3$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{19}-38.6\left(c 1.02, \mathrm{CHCl}_{3}\right)$ for 94% ee; IR (KBr) 3161, 1670, $1619 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.63(\mathrm{dd}, J=11.3,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.76(\mathrm{dd}, J$ $=3.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 5.04(\mathrm{dd}, J=3.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.37$ (br, 1H, NH), 7.32-7.58 (m, 9H, Ar); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 38.9\left(\mathrm{CH}_{2}\right), 75.8(\mathrm{CH})$, $85.7(\mathrm{CH}), 123.9$ (q, $J=271 \mathrm{~Hz}, \mathrm{C}), 125.6(\mathrm{q}, J=3.8 \mathrm{~Hz}, \mathrm{CH}), 125.8(\mathrm{CH}), 126.8(\mathrm{CH})$, $128.9(\mathrm{CH}), 130.0(\mathrm{CH}), 130.3(\mathrm{q}, ~ J=32.4 \mathrm{~Hz}, \mathrm{C}), 137.4$ (C), 143.6 (C), 168.4 (C=O); EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~F}_{3}(\mathrm{M}-\mathrm{H})^{+}$320.0977, found 320.0892. The enantiomeric excess of $\mathbf{5 c}$ was determined to be 94% by HPLC with a Chiralpak AD-H column (9:1 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=15.2 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=20.6 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 c}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from $i-\mathrm{PrOH}$ as colorless needles (93% ee); mp 148.0-148.5 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~F}_{3}$: C, 63.55; H, 4.39; N, 4.36. Found: C, 63.61; H, 4.37; N, 4.29.

(2S*,6S*)-6-(4-Mesylphenyl)-2-phenyl-1,3-oxazinan-4-one (5d).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 d}$ was prepared from diene $\mathbf{2 a}$ ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), 4-mesyloxybenzaldehyde ($\mathbf{3 d})^{8}(90.0 \mathrm{mg}, 0.45$ $\mathrm{mmol})$, and $\mathrm{Rh}_{2}(S-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$.
 The crude product was purified by column chromatography (silica gel, 1:3 hexane/EtOAc) to provide $5 \mathbf{d}$ ($101 \mathrm{mg}, 97 \%$) as a white solid; $\mathrm{mp} 141.0-142.5^{\circ} \mathrm{C}$; TLC $R_{f}=0.45$ (EtOAc); $[\alpha]_{\mathrm{D}}{ }^{19}-29.9\left(c 1.04, \mathrm{CHCl}_{3}\right)$ for 90% ee; IR (KBr) 3174, 1661, 1506, $1347 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.63(\mathrm{dd}, J=10.8,16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.76(\mathrm{dd}, J=4.0,16.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} 5-H), 3.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 5.02(\mathrm{dd}, J=4.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H)$, $7.07(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H), 7.32-7.58(\mathrm{~m}, 9 \mathrm{H}, ~ A r) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.3\left(\mathrm{CH}_{3}\right), 38.8$ $\left(\mathrm{CH}_{2}\right), 75.6(\mathrm{CH}), 85.6(\mathrm{CH}), 122.2(\mathrm{q}, J=271 \mathrm{~Hz}, \mathrm{C}), 126.8(\mathrm{CH}), 127.3(\mathrm{CH}), 128.8(\mathrm{CH})$, $129.9(\mathrm{CH}), 137.4(\mathrm{C}), 139.0(\mathrm{C}), 148.8(\mathrm{C}), 168.5(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}$ $(\mathrm{M}-\mathrm{H})^{+} 346.0827$, found 346.0746 . The enantiomeric excess of $\mathbf{5 d}$ was determined to be 90% by HPLC with a Chiralpak AD-H column ($1: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=11.7 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=20.4 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 d}$ was not determined. The preferred absolute configuration of $\mathbf{5 d}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles (92% ee); mp $141.5-142.5^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$: C, 58.78; H, 4.93; N, 4.03; S, 9.23. Found: C, 58.77; H, 4.86; N, 4.02; S, 9.20.
($2 S^{*}, 6 S^{*}$)-6-(4-Chlorophenyl)-2-phenyl-1,3-oxazinan-4-one (5e).
According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 e}$ was prepared from diene 2a ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), p-chlorobenzaldehyde ($\mathbf{3 e}$) ($78.3 \mathrm{mg}, 0.45 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude
 product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 e}$ ($79.6 \mathrm{mg}, 93 \%$) as a white solid; $\mathrm{mp} 149.0-150.0{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.27\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{20}-37.5\left(c 1.14, \mathrm{CHCl}_{3}\right)$ for 94% ee; IR (KBr) $3170,1662,1494 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.71(\mathrm{dd}, J=11.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.79(\mathrm{dd}, J=4.5,17.4 \mathrm{~Hz}, 1 \mathrm{H}$, C5-H), 5.02 (dd, $J=4.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.19(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H)$, 7.32-7.53 (m, 9H, $A r) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.0\left(\mathrm{CH}_{2}\right), 75.9(\mathrm{CH}), 85.7(\mathrm{CH})$, $126.8(\mathrm{CH}), 127.0(\mathrm{CH}), 128.82(\mathrm{CH}), 128.86(\mathrm{CH}), 130.0(\mathrm{CH}), 134.0(\mathrm{C}), 137.5(\mathrm{C}), 138.2$ (C), $168.5(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{M}-\mathrm{H})^{+}$286.0713, found 286.0631. The enantiomeric excess of $\mathbf{5 e}$ was determined to be 94% by HPLC with a Chiralpak AD-H column ($9: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=17.3 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=33.3 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 e}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from $i-\mathrm{PrOH}$ as colorless needles (99% ee); mp $149.5-150.0^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}$: C, $66.79 ; \mathrm{H}, 4.90$; N , 4.87; Cl, 12.32. Found: C, 67.00; H, 4.95; N, 4.89; Cl, 12.15.

(2S*,6S*)-6-(4-Methylphenyl)-2-phenyl-1,3-oxazinan-4-one (5f).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 f}$ was prepared from diene $\mathbf{2 a}$ ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), p-tolualdehyde ($\mathbf{3 f}$) $(54.1 \mathrm{mg}, 0.45 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{~S} \text {-BPTPI) })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude

$5 f$ product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 f}$ ($77.8 \mathrm{mg}, 97 \%$) as a white solid; mp $151.0-152.0{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.27\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{21}-28.3\left(c 1.04, \mathrm{CHCl}_{3}\right)$ for 96% ee; IR (KBr) $3247,1665,1632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H)$, $4.98(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.52(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.16-7.51(\mathrm{~m}, 9 \mathrm{H}, ~ A r)$; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1\left(\mathrm{CH}_{3}\right), 38.9\left(\mathrm{CH}_{2}\right), 76.3(\mathrm{CH}), 85.5(\mathrm{CH}), 125.6(\mathrm{CH})$, $126.7(\mathrm{CH}), 128.7(\mathrm{CH}), 129.2(\mathrm{CH}), 129.7(\mathrm{CH}), 136.7(\mathrm{C}), 137.8(\mathrm{C}), 138.0(\mathrm{C}), 169.1$ (C=O); EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}-\mathrm{H})^{+}$266.11810, found 266.11799. The enantiomeric excess of $\mathbf{5 f}$ was determined to be 96% by HPLC with a Chiralpak AD-H column ($9: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=15.1 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=23.1 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 f}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles (99% ee); mp $151.0-152.0^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.16; H, 6.25; N, 5.23.
($2 S^{*}, 6 S^{*}$)-6-(3-Methylphenyl)-2-phenyl-1,3-oxazinan-4-one (5g).
According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 g}$ was prepared from diene $\mathbf{2 a}$ $(78.4 \mathrm{mg}, 0.30 \mathrm{mmol}), m$-tolualdehyde $(\mathbf{3 g})(54.1 \mathrm{mg}, 0.45 \mathrm{mmol})$, and
 $\mathrm{Rh}_{2}(\mathrm{~S} \text { - } \mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 g}$ $(67.4 \mathrm{mg}, 84 \%)$ as a white solid; $\mathrm{mp} 123.0-124.0{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.27\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{22}-26.9\left(c 1.16, \mathrm{CHCl}_{3}\right)$ for 92% ee; IR (KBr) $3178,1679,1633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-H), 4.91(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.38(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H), 7.05-7.46(\mathrm{~m}, 9 \mathrm{H}, A r) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4\left(\mathrm{CH}_{3}\right), 39.0\left(\mathrm{CH}_{2}\right), 76.6(\mathrm{CH}), 85.7(\mathrm{CH}), 122.7(\mathrm{CH}), 126.3(\mathrm{CH})$, $126.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.7(\mathrm{CH}), 129.0(\mathrm{CH}), 129.9(\mathrm{CH}), 137.7(\mathrm{C}), 138.4(\mathrm{C}), 139.6(\mathrm{C})$, $169.0(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}-\mathrm{H})^{+} 266.11810$, found 266.11836. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles ($>99 \%$ ee); mp 123.5-124.5 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.20; H, 6.31; N, 5.17.

Determination of enantiomeric excess of 5 g :

Methyl (S)-3-hydroxy-3-(3-methylphenyl)propionate (9g). ${ }^{9}$

According to the procedure for the preparation of $\mathbf{9 a}, \mathbf{9 g}$ was prepared from $\mathbf{5 g}(72.4 \mathrm{mg}$, $0.27 \mathrm{mmol}), \mathrm{AcCl}(0.14 \mathrm{~mL}, 2 \mathrm{mmol})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$. The crude product was purified by column chromatography (silica gel, $6: 1$ hexane/EtOAc) to provide $\mathbf{9 g}(28.9 \mathrm{mg}, 96 \%)$ as a colorless oil; TLC $R_{f}=0.43$ ($2: 1$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{20}-43.7\left(c 1.00, \mathrm{CHCl}_{3}\right)$ for 92% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.71(\mathrm{dd}, J=3.6,16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 2.77$ (dd, $J=9.1,16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 3.17(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.11(\mathrm{dd}, J=3.6$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-H), 7.09-7.27(\mathrm{~m}, 4 \mathrm{H}, A r)$. The enantiomeric excess of 9 g was determined to be 92% by HPLC with a Chiralcel OD-H column ($19: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=$ 14.4 min for major enantiomer; $t_{\mathrm{R}}=24.7 \mathrm{~min}$ for minor enantiomer. The preferred absolute configuration of $\mathbf{5 g}$ was not determined.

($2 S^{*}, 6 S^{*}$)-6-(3-Chlorophenyl)-2-phenyl-1,3-oxazinan-4-one (5h).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5} \mathbf{h}$ was prepared from diene $\mathbf{2 a}$ ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), m-chlorobenzaldehyde ($\mathbf{3 h}$) ($78.3 \mathrm{mg}, 0.45 \mathrm{mmol}$),
 and $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude
product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5} \mathbf{h}$ ($79.0 \mathrm{mg}, 92 \%$) as a white solid; $\mathrm{mp} 144.0-145.0{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.27\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{20}-34.0\left(c 1.02, \mathrm{CHCl}_{3}\right)$ for 92% ee; IR (KBr) 3167, 1656, $1473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.71(\mathrm{dd}, J=11.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.79(\mathrm{dd}, J=4.5,17.4 \mathrm{~Hz}, 1 \mathrm{H}$, C5-H), $5.02(\mathrm{dd}, J=4.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.35(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $7.30-7.53(\mathrm{~m}, 9 \mathrm{H}, ~ A r) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 38.9\left(\mathrm{CH}_{2}\right), 75.8(\mathrm{CH}), 85.7(\mathrm{CH})$, $123.7(\mathrm{CH}), 125.8(\mathrm{CH}), 126.9(\mathrm{CH}), 128.4(\mathrm{CH}), 128.9(\mathrm{CH}), 129.94(\mathrm{CH}), 129.99(\mathrm{CH})$, 134.6 (C), 137.5 (C), 141.7 (C), 168.5 (C=O); EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{M}-\mathrm{H})^{+}$ 286.0713, found 286.0634 . The enantiomeric excess of $\mathbf{5 h}$ was determined to be 92% by HPLC with a Chiralpak AD-H column ($9: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=16.3 \mathrm{~min}$ for major enantiomer; $t_{\mathrm{R}}=17.4 \mathrm{~min}$ for minor enantiomer. The preferred absolute configuration of $\mathbf{5 h}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from 1:3 hexane/EtOAc as colorless needles (95% ee); mp $144.5-145.0^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}: \mathrm{C}, 66.79 ; \mathrm{H}, 4.90$; $\mathrm{N}, 4.87$; $\mathrm{Cl}, 12.32$. Found: C, 66.90 ; H , 4.87; N, 4.90; Cl, 12.12.

(2S*,6S*)-6-(4-Methylphenyl)-2-phenyl-1,3-oxazinan-4-one (5i).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 i}$ was prepared from diene $\mathbf{2 a}$ ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), p-anisaldehyde ($\mathbf{3 i}$) ($61.2 \mathrm{mg}, 0.45 \mathrm{mmol}$), and
 $\mathrm{Rh}_{2}(\mathrm{~S} \text {-BPTPI) })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $30^{\circ} \mathrm{C}$. The crude product was purified by column chromatography (silica gel, 1:2 hexane/EtOAc) to provide $5 \mathbf{5 i}(54.4 \mathrm{mg}, 64 \%)$ as a white solid; $\mathrm{mp} 140.5-141.5{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.53$ (1:3 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{21}-25.0\left(c 1.01, \mathrm{CHCl}_{3}\right.$) for 92% ee; IR (KBr) 3174, 1668, 1613, 1251 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.76-2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-H), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 4.98$ (dd, $J=4.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.20(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.89-6.92(\mathrm{~m}, 2 \mathrm{H}$, $A r), 7.32-7.52(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.9\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 76.3$ $(\mathrm{CH}), 85.6(\mathrm{CH}), 114.0(\mathrm{CH}), 126.8(\mathrm{CH}), 127.1(\mathrm{CH}), 128.7(\mathrm{CH}), 129.8(\mathrm{CH}), 131.7(\mathrm{C})$, 137.8 (C), $159.5(\mathrm{C}), 169.1(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}-\mathrm{H})^{+} 283.12084$, found 283.1062. The enantiomeric excess of $\mathbf{5 i}$ was determined to be 92% by HPLC with a Chiralpak AD-H column ($3: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=10.4 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=17.2 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 i}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles (91% ee); mp $141.0-142.0^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}$: C, 72.07; H, 6.05; N, 4.94. Found: C, 71.91; H, 5.93; N, 4.91.
(2S,6S)-2-Phenyl-6-phenylethynyl-1,3-oxazinan-4-one (5j).
According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 j}$ was prepared from diene $\mathbf{2 a}$ $(78.4 \mathrm{mg}, 0.30 \mathrm{mmol})$, phenylpropargylaldehyde ($\mathbf{3 j}$) $(58.6 \mathrm{mg}, 0.45$
 $\mathrm{mmol})$, and $\mathrm{Rh}_{2}(S-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The crude product was purified by column chromatography (silica gel, 9:1 $\mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 j}(82.1 \mathrm{mg}, 99 \%)$ as a white solid; $\mathrm{mp} 200-201^{\circ} \mathrm{C}$; $\operatorname{TLC} R_{f}=0.28$ ($2: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$); $[\alpha]_{\mathrm{D}}{ }^{21}-42.7\left(c\right.$ 1.02, CHCl_{3}) for 95% ee; IR (KBr) $2234,1672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.82(\mathrm{dd}, J=4.0,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.97(\mathrm{dd}, J=11.3,17.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 5-H), 4.98(\mathrm{dd}, J=4.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.20(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $7.28-7.36(\mathrm{~m}, 3 \mathrm{H}, A r), 7.43-7.52(\mathrm{~m}, 7 \mathrm{H}, ~ A r) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.0\left(\mathrm{CH}_{2}\right)$, $65.9(\mathrm{CH}), 85.1(\mathrm{C}), 85.7(\mathrm{CH}), 87.0(\mathrm{C}), 121.6(\mathrm{C}), 127.1(\mathrm{CH}), 128.3(\mathrm{CH}), 128.9(\mathrm{CH})$, $129.0(\mathrm{CH}), 130.2(\mathrm{CH}), 131.9(\mathrm{CH}), 137.0(\mathrm{C}), 167.8(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}_{2}$ $(\mathrm{M}-\mathrm{H})^{+}$276.1024, found 276.1015. The enantiomeric excess of $\mathbf{5 j}$ was determined to be 95% by HPLC with a Chiralcel OD-H column ($1: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): t_{R} (minor) $=8.2$ min for $(2 R, 6 R)$-enantiomer; t_{R} (major) $=14.1 \mathrm{~min}$ for $(2 S, 6 S)$-enantiomer. A sample for combustion analysis was obtained by recrystallizations from $i-\mathrm{PrOH}$ as colorless needles (98% ee); mp 208.0-209.0 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 77.96; H, 5.45; N, 5.05. Found: $\mathrm{C}, 77.96 ; \mathrm{H}, 5.48$; $\mathrm{N}, 5.00$. In order to assign the stereochemistry at C 2 and C 6 , NOE studies were performed on $\mathbf{5 j}$. Irradiation of $\mathrm{C} 2-\mathrm{H}$ showed NOE with C6-H (16.8\%) and the ortho proton of the phenyl group (9.8\%). Additionally, irradiation of C6-H exhibited NOE with C2-H (16.2\%) and C5eq-H (4.6\%). These data revealed cis relationship between C2-H and C6-H.

Determination of absolute configuration of $\mathbf{5 j}$:

Methyl (R)-3-hydroxy-5-phenylpentanoate (9p). ${ }^{10}$

$\mathrm{AcCl}(0.14 \mathrm{~mL}, 2 \mathrm{mmol})$ was added to $\mathrm{MeOH}(1 \mathrm{~mL})$. This solution was added to a solution of $\mathbf{5 j}\left(36.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 95 \%\right.$ ee) in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at reflux temperature for 15 h , the reaction was quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine ($2 \times 3 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give the crude product (40 mg) as a white solid, which was purified by column chromatography ($4: 1$ hexane/EtOAc) to afford $\mathbf{9 j}(26.0 \mathrm{mg}, 98 \%)$ as a colorless oil; TLC $R_{f}=$ 0.49 (2:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{22}+20.9\left(c 0.90, \mathrm{CHCl}_{3}\right)$ for 95% ee; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-H), 3.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.00(\mathrm{~m}, 1 \mathrm{H}$, C3-H), 7.29-7.33 (m, 3H, Ar), 7.42-7.44 (m, 2H, Ar).

To a solution of $\mathbf{9} \mathbf{j}$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$, and the resulting mixture was stirred under hydrogen at atmospheric pressure at $23^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then filtered through a plug of Celite, and the Celite filter cake was washed with MeOH (5 mL). The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, $4: 1$ hexane $/ \mathrm{EtOAc}$) to afford $\mathbf{9 p}(25.2 \mathrm{mg}, 97 \%)$ as a colorless oil; TLC $R_{f}=0.45(2: 1$ hexane/EtOAc $) ;[\alpha]_{\mathrm{D}}{ }^{22}+2.0\left(c 1.01, \mathrm{CHCl}_{3}\right)$ for 95% ee $\left[\right.$ lit., ${ }^{10}[\alpha]_{\mathrm{D}}-2.68$ (c $0.67, \mathrm{CHCl}_{3}$) for (S)-enantiomer]; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-H)$, $1.80-1.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 4-H), 2.46$ (dd, $J=8.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 2.51$ (dd, $J=3.6,16.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 2-H), 2.66-2.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.79-2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-H), 3.01(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.71(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.99-4.04 (m, 1H, C3-H), 7.17-7.22 (m, 2H, Ar), 7.26-7.31 (m, 2H, Ar), 7.37 (m, $1 \mathrm{H}, A r)$. This product $\mathbf{9 p}$ exhibited spectroscopic data identical to $(S)-9 \mathbf{p}^{10}$, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of $\mathbf{5 j}$ was determined to be $(2 S, 6 S)$.

(2S*,6S*)-6-(2-Heptynyl)-2-phenyl-1,3-oxazinan-4-one (5k)

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 k}$ was prepared from diene $\mathbf{2 a}$ ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), 2-octynal ($\mathbf{3 k}$) $(56.0 \mathrm{mg}, 0.45 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The
 crude product was purified by column chromatography (silica gel, $2: 1$ hexane/EtOAc) to provide $\mathbf{5 k}$ ($76.5 \mathrm{mg}, 94 \%$) as a white solid; $\mathrm{mp} 138.0-139.0{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.52(1: 3$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{22}-34.8\left(c 1.06, \mathrm{CHCl}_{3}\right.$) for $96 \% \mathrm{ee}$; IR (KBr) 2251, $1677 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.19-1.29(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.38-1.45 (m, 2H, C $\equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}$), $2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{2}\right), 2.49(\mathrm{dd}, J=2.3$, $17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.59(\mathrm{dd}, J=11.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 4.56(\mathrm{dd}, J=2.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} 6-H), 5.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 7.27-7.36(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NH}$ and $A r) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $13.8\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 65.4(\mathrm{CH}), 76.5(\mathrm{C})$, $85.2(\mathrm{CH}), 88.2(\mathrm{C}), 126.9(\mathrm{CH}), 128.6(\mathrm{CH}), 129.8(\mathrm{CH}), 137.1(\mathrm{C}) 168.3(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}-\mathrm{H})^{+} 270.14940$, found 270.14975. The enantiomeric excess of $\mathbf{5 k}$ was determined to be 96% by HPLC with a Chiralpak AD-H column (19:1 hexane $/ i-\mathrm{PrOH}$, $1.0 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=21.1 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=30.4 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 k}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from $i-\mathrm{PrOH}$ as colorless needles (98% ee); mp 139.0-139.5 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 75.25 ; $\mathrm{H}, 7.80$; N, 5.16. Found: C, 74.90; H, 7.59; N, 5.22.

(2S,6S)-6-Benzyloxymethyl-2-phenyl-1,3-oxazinan-4-one (5I).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 I}$ was prepared from diene 2a (78.4 $\mathrm{mg}, 0.30 \mathrm{mmol}$), benzyloxyacetaldehyde (3I) ($67.8 \mathrm{mg}, 0.45 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The crude

product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 1}$ $(65.7 \mathrm{mg}, 86 \%)$ as a white solid; mp $69.0-70.0^{\circ} \mathrm{C}$; TLC $R_{f}=0.23\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right) ;[\alpha]_{\mathrm{D}}{ }^{19}$ -19.6 (c 1.18, CHCl_{3}) for 97% ee; IR (KBr) $3256,1668,1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 2.48(\mathrm{dd}, J=4.1,17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.56(\mathrm{dd}, J=11.0,17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 3.57$ (dd, $J=4.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHHO}$), 3.65 (dd, $J=5.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHHO}$), 4.22 (m, $1 \mathrm{H}, \mathrm{C} 6-H), 4.55(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHPh}), 4.59(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHPh}), 5.76$ (s, $1 \mathrm{H}, \mathrm{C} 2-H), 6.19(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H), 7.28-7.47(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.8$ $\left(\mathrm{CH}_{2}\right), 71.6\left(\mathrm{CH}_{2}\right), 73.4\left(\mathrm{CH}_{2}\right), 74.2(\mathrm{CH}), 85.4(\mathrm{CH}), 126.8(\mathrm{CH}), 127.69(\mathrm{CH}), 127.74(\mathrm{CH})$, $128.4(\mathrm{CH}), 128.8(\mathrm{CH}), 129.8(\mathrm{CH}), 137.5(\mathrm{C}), 137.6(\mathrm{C}), 168.9(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}(\mathrm{M}-\mathrm{H})^{+}$296.1287, found 296.1272. The enantiomeric excess of $\mathbf{5 I}$ was determined to be 97% by HPLC with a Chiralcel OD-H column ($3: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): t_{R} $($ minor $)=14.9 \mathrm{~min}$ for $(2 R, 6 R)$-enantiomer; $t_{\mathrm{R}}($ major $)=21.4 \mathrm{~min}$ for $(2 S, 6 S)$-enantiomer. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles (92% ee); mp $70.5-71.5^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.58; H, 6.36; N, 4.70.

Determination of absolute configuration of 51:

Methyl (S)-4-benzyloxy-3-hydroxybutyrate (91). ${ }^{7}$

According to the procedure for the preparation of $\mathbf{9 a}, \mathbf{9 1}$ was prepared from $\mathbf{5 I}(49.8 \mathrm{mg}, 0.17$ $\mathrm{mmol}, 97 \% \mathrm{ee}), \mathrm{AcCl}(0.14 \mathrm{~mL}, 2 \mathrm{mmol})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$. The crude product was purified by column chromatography (silica gel, $4: 1$ hexane/EtOAc) to provide $91(30.3 \mathrm{mg}, 81 \%)$ as a colorless oil; TLC $R_{f}=0.40(1: 1$ hexane $/ \mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{19}-11.0\left(c 1.51, \mathrm{CHCl}_{3}\right)$ for 97% ee $\left[\right.$ lit., ${ }^{7}[\alpha]_{\mathrm{D}}{ }^{20}-9.49\left(c 1.00, \mathrm{CHCl}_{3}\right)$ for 86% ee]; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.56(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C} 2-H), 2.95(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.50$ (ddd, $J=5.9,9.5,15.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 4-H), 3.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-H), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar})$. This product 9 I exhibited spectroscopic data identical to (S)-917. Thus, the preferred absolute stereochemistry of 51 was determined to be $(2 S, 6 S)$.

(2S*,6S*)-6-Furyl-2-phenyl-1,3-oxazinan-4-one (5m).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 m}$ was prepared from diene 2a (78.4 $\mathrm{mg}, \quad 0.30 \mathrm{mmol})$, furfural ($\mathbf{3 m}$) $(43.2 \mathrm{mg}, \quad 0.45 \mathrm{mmol})$, and
 $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 m}$ $(67.8 \mathrm{mg}, 93 \%)$ as a white solid; $\mathrm{mp} 177.0-178.5^{\circ} \mathrm{C}$; TLC $R_{f}=0.51\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{21}+6.57\left(c 1.09, \mathrm{CHCl}_{3}\right)$ for 95% ee; IR (KBr) $3176,2923,1672,1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.73(\mathrm{dd}, J=3.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 3.09(\mathrm{dd}, J=11.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}$,

C5-H), $5.08(\mathrm{dd}, J=3.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.27(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H)$, 6.37-6.43 (m, 2H, Ar), 7.40-7.50 (m, 6H, Ar); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.0\left(\mathrm{CH}_{2}\right)$, $70.0(\mathrm{CH}), 85.7(\mathrm{CH}), 108.6(\mathrm{CH}), 110.4(\mathrm{CH}), 127.0(\mathrm{CH}), 128.9(\mathrm{CH}), 130.1(\mathrm{CH}), 137.3$ (C), $143.2(\mathrm{CH}), 151.3(\mathrm{C}), 168.5(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{3}(\mathrm{M}-\mathrm{H})^{+}$242.0895, found 242.0819. The enantiomeric excess of $\mathbf{5 m}$ was determined to be 95% by HPLC with a Chiralpak AD-H column ($9: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=32.9 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=37.9 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 m}$ was not determined.

(2S*,6S*)-2-Phenyl-6-(2-thienyl)-1,3-oxazinan-4-one (5n).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 n}$ was prepared from diene $\mathbf{2 a}$ (78.4 $\mathrm{mg}, 0.30 \mathrm{mmol}$), 2-thiophencarbaldehyde ($\mathbf{3 n}$) ($50.5 \mathrm{mg}, 0.45 \mathrm{mmol}$), and
 $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.30 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 n}$ ($63.1 \mathrm{mg}, 81 \%$) as a white solid; mp $159.0-160.0{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.51\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{21}+10.3\left(c 1.03, \mathrm{CHCl}_{3}\right)$ for 96% ee; IR (KBr) 3170, 2921, 1662, $1354 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.88(\mathrm{dd}, J=4.1,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 2.97(\mathrm{dd}, J=11.3,17.2 \mathrm{~Hz}, 1 \mathrm{H}$, C5-H), $5.28(\mathrm{dd}, J=4.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.24(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H)$, 6.99-7.09 (m, 2H, $A r$), 7.31-7.52 (m, 6H, $A r$); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.9\left(\mathrm{CH}_{2}\right)$, $72.7(\mathrm{CH}), 85.7(\mathrm{CH}), 125.0(\mathrm{CH}), 126.0(\mathrm{CH}), 126.8(\mathrm{CH}), 126.9(\mathrm{CH}), 128.9(\mathrm{CH}), 130.1$ (C), $137.4(\mathrm{CH}), 142.2(\mathrm{C}), 168.2(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{+}$258.0667, found 258.0587. The enantiomeric excess of $\mathbf{5 n}$ was determined to be 96% by HPLC with a Chiralpak AD-H column ($9: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=22.3 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=24.4 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 n}$ was not determined.

(2S,6S)-2-Phenyl-6-[(E)-2-phenylethenyl]-1,3-oxazinan-4-one (50)

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, 50 was prepared from diene 2a ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), (E)-cinnamaldehyde ($\mathbf{3 0}$) ($59.4 \mathrm{mg}, 0.45 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude
 product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 0}$ ($73.7 \mathrm{mg}, 88 \%$) as a white solid; $\mathrm{mp} 138.0-139.5{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.31\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{22}-21.2\left(c 1.17, \mathrm{CHCl}_{3}\right)$ for 96% ee; IR (KBr) $3179,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.66-2.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-H), 4.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.19(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{N} H$), 6.26 (dd, $J=6.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHPh}), 6.68(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C} H \mathrm{Ph})$, 7.24-7.28 (m, 1H, Ar), 7.30-7.34 (m, 2H, Ar), 7.38-7.40 (m, 2H, Ar), 7.43-7.45 (m, 3H, Ar), 7.49-7.52 (m, 2H, Ar); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.2\left(\mathrm{CH}_{2}\right), 75.2(\mathrm{CH}), 85.3(\mathrm{CH})$,
$126.5(\mathrm{CH}), 126.8(\mathrm{CH}), 126.9(\mathrm{CH}), 128.1(\mathrm{CH}), 128.5(\mathrm{CH}), 128.7(\mathrm{CH}), 129.8(\mathrm{CH}), 132.2$ (CH), 135.8 (C), $137.5(\mathrm{C}), 169.1(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{M})^{+}$279.1259, found 279.1255. The enantiomeric excess of $\mathbf{5 0}$ was determined to be 96% by HPLC with a Chiralpak AD-H column ($3: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): t_{R} (minor) $=8.2 \mathrm{~min}$ for $(2 R, 6 R)$-enantiomer; t_{R} (major) $=9.3 \mathrm{~min}$ for $(2 S, 6 S)$-enantiomer. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles (99% ee); mp 138.5-139.5 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, $77.40 ; \mathrm{H}, 6.13$; $\mathrm{N}, 5.01$. Found: C, 76.42; H, 6.10; N, 5.05.

Determination of absolute configuration of 50 :

Methyl (R)-3-hydroxy-5-phenylpentanoate (9p). ${ }^{10}$

$\mathrm{AcCl}(0.14 \mathrm{~mL}, 2 \mathrm{mmol})$ was added to $\mathrm{MeOH}(1 \mathrm{~mL})$. This solution was added to a solution of 50 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}, 96 \%$ ee) in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at reflux temperature for 3 h , the reaction was quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine $(2 \times 3 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give the crude product (40 mg) as yellow oil, which was purified by column chromatography (4:1 hexane/EtOAc) to afford $9 \mathrm{o}(7.5 \mathrm{mg}, 26 \%)$ as a colorless oil; TLC $R_{f}=0.24$ (2:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{18}-1.2\left(c 0.38, \mathrm{CHCl}_{3}\right)$ for $96 \% \mathrm{ee} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.56$ (dd, $J=5.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 2.71(\mathrm{dd}, J=8.2,15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.22 (ddd, $J=5.0,7.7,8.2, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-H), 6.07$ (dd, $J=7.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-H), 6.62(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 7.24-7.42(\mathrm{~m}, 5 \mathrm{H}, A r)$.
To a solution of $\mathbf{9 0}$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$, and the resulting mixture was stirred under hydrogen at atmospheric pressure at $23{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then filtered through a plug of Celite, and the Celite filter cake was washed with $\mathrm{MeOH}(5 \mathrm{~mL})$. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, $4: 1$ hexane/EtOAc) to afford $\mathbf{9 p}(7.4 \mathrm{mg}, 97 \%)$ as a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{22}+1.8\left(c 0.37, \mathrm{CHCl}_{3}\right)$ for 96% ee $\left[\right.$ lit., ${ }^{10}[\alpha]_{\mathrm{D}}-2.68\left(c 0.67, \mathrm{CHCl}_{3}\right)$ for (S)-enantiomer]. This product $\mathbf{9 p}$ exhibited spectroscopic data identical to $(S)-\mathbf{9} \mathbf{p}^{10}$, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of $\mathbf{5 0}$ was determined to be $(2 S, 6 S)$.

(2S,6R)-2-Phenyl-6-(2-phenylethyl)-1,3-oxazinan-4-one (5p).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 p}$ was prepared from diene 2a ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$), hydrocinnamaldehyde ($\mathbf{3 p}$) ($60.3 \mathrm{mg}, 0.45 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})(4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The crude

product was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}^{\text {) }}$) to provide $\mathbf{5 p}$ ($80.0 \mathrm{mg}, 95 \%$) as a white solid; $\mathrm{mp} 128.0-129.5{ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.36\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right)$; $[\alpha]_{\mathrm{D}}{ }^{22}+22.6\left(c 1.17, \mathrm{CHCl}_{3}\right)$ for 92% ee; IR (KBr) $3250,1664,1633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHCH}_{2} \mathrm{Ph}\right), 2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHCH} \mathrm{CH}_{2}\right), 2.40-2.50(\mathrm{~m}, 2 \mathrm{H}$, C5-H), 2.70-2.85 (m, 2H, CH2CH2Ph), $3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.20(\mathrm{br}, 1 \mathrm{H}$, NH), 7.17-7.23 (m, 3H, Ar), 7.28-7.32 (m, 2H, Ar), 7.43-7.49 (m, 5H, Ar); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.0\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 73.8(\mathrm{CH}), 85.4(\mathrm{CH}), 126.0(\mathrm{CH}), 126.7$ $(\mathrm{CH}), 128.36(\mathrm{CH}), 128.42(\mathrm{CH}), 128.8(\mathrm{CH}), 129.7(\mathrm{CH}), 137.9(\mathrm{C}), 141.0(\mathrm{C}), 169.3$ (C=O); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M})^{+}$281.1416, found 281.1409. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $76.84 ; \mathrm{H}, 6.81 ; \mathrm{N}, 4.98$. Found: C, $76.79 ; \mathrm{H}, 6.86 ; \mathrm{N}, 4.97$. A sample for combustion analysis was obtained by recrystallizations from $i-\mathrm{PrOH}$ as colorless needles (95% ee); mp $128.5-129.5^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $76.84 ; \mathrm{H}, 6.81 ; \mathrm{N}, 4.98$. Found: C, 76.75; H, 6.83; N, 5.01.

Determination of absolute configuration and enantiomeric excess of 5p: Methyl (R)-3-hydroxy-5-phenylpentanoate (9p). ${ }^{10}$

According to the procedure for the preparation of $\mathbf{9 a}, \mathbf{9} \mathbf{p}$ was prepared from $\mathbf{5 p}(40.0 \mathrm{mg}$, $0.14 \mathrm{mmol}, 92 \%$ ee $), \mathrm{AcCl}(0.14 \mathrm{~mL}, 2 \mathrm{mmol})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$. The crude product was purified by column chromatography (silica gel, $4: 1$ hexane/EtOAc) to provide $9 \mathbf{p}$ (23.6 mg , 83%) as a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{19}+1.9$ (c $1.09, \mathrm{CHCl}_{3}$) for 92% ee $\left[\right.$ lit., ${ }^{10}[\alpha]_{\mathrm{D}}-2.68(c 0.67$, CHCl_{3}) for (S)-enantiomer]. The enantiomeric excess of $\mathbf{9 p}$ was determined to be 92% by HPLC with a Chiralcel OD-H column ($19: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): t_{R} (minor) $=19.2$ \min for (S)-enantiomer; $t_{\mathrm{R}}($ major $)=21.4 \mathrm{~min}$ for (R)-enantiomer. This product $9 \mathbf{p}$ exhibited spectroscopic data identical to $(S)-9 \mathbf{p}^{10}$, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of $\mathbf{5 p}$ was determined to be $(2 S, 6 R)$.

($2 S^{*}, 6 R^{*}$)-2-Phenyl-6-propyl-1,3-oxazinan-4-one (5q).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 q}$ was prepared from diene $\mathbf{2 a}$ (78.4 $\mathrm{mg}, ~ 0.30 \mathrm{mmol})$, butyraldehyde ($\mathbf{3 q}$) ($64.9 \mathrm{mg}, 0.90 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) ($\left.4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%\right)$. The crude product
 was purified by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 q}(60.2$ $\mathrm{mg}, 92 \%)$ as a white solid; mp $92.0-93.0^{\circ} \mathrm{C}$; TLC $R_{f}=0.35\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}-16.7$ (c $1.22, \mathrm{CHCl}_{3}$) for 93% ee; IR (KBr) $3212,1658,1623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3}\right), 1.37-1.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H \mathrm{HCH}_{2}\right), 1.63-1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{2} \mathrm{CH}_{2}\right)$, 2.32-2.44 (m, 2H, C5-H), $3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H)$, 7.36-7.46 (m, 5H, Ar); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right)$,
$37.4\left(\mathrm{CH}_{2}\right), 74.5(\mathrm{CH}), 85.1(\mathrm{CH}), 126.6(\mathrm{CH}), 128.5(\mathrm{CH}), 129.4(\mathrm{CH}), 137.9(\mathrm{C}), 169.6$ (C=O); EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{M})^{+}$219.1259, found 219.1267. The enantiomeric excess of $\mathbf{5 q}$ was determined to be 93% by HPLC with a Chiralpak AD-H column (9:1 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=9.2 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=11.1 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 q}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from $i-\mathrm{PrOH}$ as colorless needles (93% ee); mp $93.0-94.0^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 71.21 ; H, 7.81; N, 6.39. Found: C, 71.19; H, 7.86; N, 6.37.
($2 S^{*}, 5 S^{*}, 6 S^{*}$)-5-Methyl-2-phenyl-6-phenylethynyl-1,3-oxazinan-4-one (5r).
According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 r}$ was prepared from diene $\mathbf{2 d}$ $(82.6 \mathrm{mg}, 0.30 \mathrm{mmol})$, phenylpropargylaldehyde ($\mathbf{3 j}$) $(58.6 \mathrm{mg}, 0.45$ $\mathrm{mmol})$, and $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) ($\left.4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%\right)$ at
 $0{ }^{\circ} \mathrm{C}$. The crude product was purified by column chromatography (silica gel, 9:1 $\mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to provide $\mathbf{5 r}(82.9 \mathrm{mg}, 95 \%)$ as a white solid; mp $173-175{ }^{\circ} \mathrm{C}$; $\operatorname{TLC} R_{f}=0.26$ (2:1 $\left.\mathrm{CHCl}_{3} / \mathrm{EtOAc}\right) ;[\alpha]_{\mathrm{D}}{ }^{21}-15.5\left(c 1.01, \mathrm{CHCl}_{3}\right)$ for 91% ee; $\mathrm{IR}(\mathrm{KBr}) 2236,1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.61\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right.$), $2.74(\mathrm{dq}, J=3.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, C5-H), $5.10(\mathrm{~d}, ~ J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.84$ (s, 1H, C2-H), 6.08 (br, 1H, NH), 7.29-7.36 (m, $3 \mathrm{H}, ~ A r), 7.42-7.51(\mathrm{~m}, 7 \mathrm{H}, A r) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7\left(\mathrm{CH}_{3}\right), 40.5(\mathrm{CH}), 69.4$ $(\mathrm{CH}), 83.8(\mathrm{C}), 85.5(\mathrm{CH}), 88.3(\mathrm{C}), 121.8(\mathrm{C}), 127.0(\mathrm{CH}), 128.2(\mathrm{CH}), 128.8(\mathrm{CH}), 128.9$ $(\mathrm{CH}), 130.0(\mathrm{CH}), 131.8(\mathrm{CH}), 137.3(\mathrm{C}), 172.5(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}(\mathrm{M})^{+}$ 291.1259, found 291.1259. The enantiomeric excess of $\mathbf{5 r}$ was determined to be 91% by HPLC with a Chiralcel OD-H column (1:1 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=7.2 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=13.9 \mathrm{~min}$ for major enantiomer. A sample for combustion analysis was obtained by recrystallizations from $4: 1$ hexane/EtOAc as colorless needles ($96 \% \mathrm{ee}$); mp 184.0-185.0 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 78.33 ; $\mathrm{H}, 5.88$; N, 4.81. Found: C, 78.27; H, 5.97; $\mathrm{N}, 4.78$. In order to assign the stereochemistry at $\mathrm{C} 2, \mathrm{C} 5$ and C 6, NOE studies were performed on $\mathbf{5 r}$. Irradiation of C2-H showed NOE with C6-H (15.4\%) and the ortho proton of the phenyl group (10.3\%). Irradiation of C5-H exhibited NOE with C6-H (8.4\%) and C5-Me (5.7\%). Irradiation of C6-H showed NOE with C2-H (15.4\%) and C5-H (8.6\%). These data revealed cis relationship between $\mathrm{C} 2-\mathrm{H}, \mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 6-\mathrm{H}$. The preferred absolute configuration of $\mathbf{5 r}$ was not determined.

($2 S^{*}, 5 S^{*}, 6 S^{*}$)-5-Methyl-2-phenyl-6-(1-heptenyl)-1,3-oxazinan-4-one (5s)

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, $\mathbf{5 s}$ was prepared from diene $\mathbf{2 d}$ ($82.6 \mathrm{mg}, 0.30 \mathrm{mmol}$), 2-octynal ($\mathbf{3 k}$) ($55.9 \mathrm{mg}, 0.45 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) $(4.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The
 crude product was purified by column chromatography (silica gel, 2:1 hexane/EtOAc) to
provide 5s (76.2 mg, 89\%) as a white solid; mp 109.5-110.5 ${ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.53(1: 3$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{20}-14.2$ (c 1.18, CHCl_{3}) for 92% ee; IR (KBr) 2236, $1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.28-1.39(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.50-1.54\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 2.24(\mathrm{dt}, J=1.8,7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{2}\right), 2.62(\mathrm{dq}, J=3.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H), 4.86(\mathrm{dt}, J=1.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-H)$, $5.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 5.85(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.40-7.47(\mathrm{~m}, 5 \mathrm{H}, A r) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $13.5\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 40.5(\mathrm{CH}), 69.0$ $(\mathrm{CH}), 74.9(\mathrm{C}), 85.3(\mathrm{CH}), 89.6(\mathrm{C}), 126.9(\mathrm{CH}), 128.6(\mathrm{CH}), 129.8(\mathrm{CH}), 137.4(\mathrm{C}), 172.8$ (C=O); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}-\mathrm{H})^{+} 284.16505$, found 284.16485; The enantiomeric excess of $\mathbf{5 s}$ was determined to be 92% by HPLC with a Chiralcel OD-H column (9:1 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=10.3 \mathrm{~min}$ for minor enantiomer; $t_{\mathrm{R}}=14.3 \mathrm{~min}$ for major enantiomer. The preferred absolute configuration of $\mathbf{5 s}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from 4:1 hexane/EtOAc as colorless needles (97% ee); mp $110.0-110.5^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 75.76; H, 8.12; $\mathrm{N}, 4.91$. Found: C, 75.56; H, 7.89; N, 4.93.

($2 R^{*}, 5 R^{*}, 6 R^{*}$)-5-Methyl-2-phenyl-6-(1-propynyl)-1,3-oxazinan-4-one (5t)

To a solution of diene $\mathbf{2 d}(110 \mathrm{mg}, 0.40 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(R-\mathrm{BPTPI})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (8) $(5.7 \mathrm{mg}, 0.004 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added $c a .1 .5 \mathrm{M}$ solution of 2-butynal $(\mathbf{3 r})^{11}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ added at $-10{ }^{\circ} \mathrm{C}$. After stirring at this temperature for $24 \mathrm{~h}, \mathrm{MeOH}$ (ca. 0.1 mL) was added and the
 mixture was stirred for an additional 0.5 h . The mixture was concentrated in vacuo furnished the crude product (150 mg) as a purple solid, which was purified by column chromatography (silica gel, 9:1 $\mathrm{CHCl}_{3} / \mathrm{EtOAc}$) to give $\mathbf{5 t}\left(83.5 \mathrm{mg}, 91 \%\right.$) as a white solid; $\mathrm{mp} 196.0-197.5{ }^{\circ} \mathrm{C}$; $\operatorname{TLC} R_{f}=0.43\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right) ;[\alpha]_{\mathrm{D}}{ }^{17}+13.2\left(c 1.08, \mathrm{CHCl}_{3}\right)$ for 93% ee; IR (KBr) 3169, $1675,1480 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 1.87(\mathrm{~d}, J$ $\left.=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{3}\right), 2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-H), 4.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-H), 6.64$ (br, 1H, NH), 7.38-7.45 (m, 5H, Ar); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.7\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$, $40.6(\mathrm{CH}), 69.2(\mathrm{CH}), 74.1(\mathrm{C}), 85.3(\mathrm{C}), 85.4(\mathrm{CH}), 128.0(\mathrm{CH}), 128.8(\mathrm{CH}), 130.0(\mathrm{CH})$, 137.3 (C), $172.7(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}(\mathrm{M}-\mathrm{H})^{+}$228.1103, found 228.1020. The enantiomeric excess of $\mathbf{5 t}$ was determined to be 93% by HPLC with a Chiralpak AD-H column ($9: 1$ hexane $/ i-\operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=11.0 \mathrm{~min}$ for major enantiomer; $t_{\mathrm{R}}=20.3 \mathrm{~min}$ for minor enantiomer. The preferred absolute configuration of $\mathbf{5 t}$ was not determined. A sample for combustion analysis was obtained by recrystallizations from i - PrOH as colorless needles (91% ee); mp $196.5-197.5^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 73.34; H, 6.59; $\mathrm{N}, 6.11$. Found: C, 73.57; H, 6.64; N, 6.15. In order to assign the stereochemistry at $\mathrm{C} 2, \mathrm{C} 5$ and C 6 , NOE studies were performed on $\mathbf{5 t}$. Irradiation of C2-H showed NOE with C6-H (9.1\%) and the ortho proton of the phenyl group (4.2\%). Irradiation of C5-H exhibited NOE with C6-H (5.2\%) and C5-Me (4.6\%). Irradiation of C6-H showed NOE with C2-H (6.6\%) and C5-H (6.0\%). These data revealed cis relationship between $\mathrm{C} 2-\mathrm{H}, \mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 6-\mathrm{H}$.
(2S*,3S*)-3-Hydroxy-2-methyl-N-(2-propenyl)hexanamide (7).

To a solution of $\mathbf{5 t}(70.0 \mathrm{mg}, 0.31 \mathrm{mmol})$ in EtOAc (2 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(35 \mathrm{mg})$, and the resulting mixture was stirred under hydrogen at atmospheric pressure at $23^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then filtered through a plug of Celite, and the Celite filter cake was washed with EtOAc (5 mL). The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, $1: 1$ hexane/EtOAc) to afford $\mathbf{1 0}(65.4 \mathrm{mg}$, $94 \%)$ as a white solid; mp 78.5-80.0 ${ }^{\circ} \mathrm{C}$; TLC $R_{f}=0.47\left(1: 3\right.$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{19}+1.02(c$ $1.03, \mathrm{CHCl}_{3}$) for 93% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{CH}_{3}\right.$), $1.25-1.69\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} 5-\mathrm{CH}_{3}\right), 2.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-H), 3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-H), 5.73$ (s, 1H, C2-H), 6.06 (br, 1H, NH), 7.40-7.45 (m, 5H, Ar).
To a suspension of $\mathrm{NaH}(10.8 \mathrm{mg}, 0.45 \mathrm{~mol})$ in DMF (1 mL) was added a solution of $\mathbf{1 0}$ $(64.0 \mathrm{mg}, 0.27 \mathrm{mmol})$ and allyl bromide ($54.4 \mathrm{mg}, 0.45 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine (2 $\times 3 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo followed by column chromatography (silica gel, 3:1 hexane/EtOAc) provided 11 ($70.8 \mathrm{mg}, 96 \%$) as a colorless oil; TLC $R_{f}=0.46$ (2:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{21}-69.3\left(c 1.05, \mathrm{CHCl}_{3}\right)$ for 93% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{CH}_{3}\right), 1.32-1.64(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{CH}_{3}$ and $\mathrm{C} 5-\mathrm{CH}_{3}$), 2.54 (ddd, $J=2.3,7.2,14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-H$), 3.03 (ddt, $J=1.4,7.2$, $15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CHH}), 3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-H), 4.38$ (ddt, $J=1.8,4.5,15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH} H)$, $4.88\left(\mathrm{dd}, J=1.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH} H\right), 5.04(\mathrm{dd}, J=1.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CHH}$), $5.61-5.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$ and $\left.\mathrm{C} 2-H\right), 7.35-7.41(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar})$.
To a solution of $\mathbf{1 1}(65.0 \mathrm{mg}, 0.24 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added a 2 N aqueous $\mathrm{HCl}(1$ mL). After stirring at $70{ }^{\circ} \mathrm{C}$ for 7 h , the reaction was quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the whole was extracted with EtOAc $(20 \mathrm{~mL})$. The organic layer was washed with water $(3 \mathrm{~mL})$ and brine $(2 \times 3 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo followed by column chromatography (silica gel, $9: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}$) provided 7 (40.4 $\mathrm{mg}, 91 \%)$ as a white solid; $\mathrm{mp} 120.0-121.5{ }^{\circ} \mathrm{C} ; \mathrm{TLC}_{f}=0.44\left(1: 1 \mathrm{CHCl}_{3} / \mathrm{EtOAc}\right) ;[\alpha]_{\mathrm{D}}{ }^{18}$ -11.2 (c 1.12, CHCl_{3}) for 93% ee; IR (KBr) $3354,1639,1550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 5-H), 1.18\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 1.31-1.36(\mathrm{~m}, 2 \mathrm{H}$, C5-H), 1.47-1.52 (m, 2H, C5-H), 2.32 (ddd, $J=2.9,7.4,14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-H), 3.88-3.91$ (m, $3 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$ and NCH_{2}), $5.14-5.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.99 (br, $1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.4\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{2}\right), 35.6$ $\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 44.5(\mathrm{CH}), 71.6(\mathrm{CH}), 116.2\left(\mathrm{CH}_{2}\right), 134.0(\mathrm{CH}), 176.5(\mathrm{C}=\mathrm{O})$; EI-HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M})^{+}$185.14158, found 185.14163. A sample for combustion analysis
was obtained by recrystallizations from $1: 2$ hexane/EtOAc as colorless needles; mp $120.5-121.5{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $64.83 ; \mathrm{H}, 10.34 ; \mathrm{N}, 7.56$. Found: C, 64.53 ; H, 10.30; N, 7.58.

References

1) P. Bayard and L. Ghosez, Tetrahedron Lett., 1988, 29, 6115.
2) L. Ghosez, P. Bayard, V. Nshimymukiza, F. Gouverneur, R. Sainte, M. Beaudegnies, M. Rivera, A.-M. Frisque-Hesbain and C. Wynants, Tetrahedron, 1995, 51, 11021.
3) E. W. Colvin, D. McGarry and M. J. Nugent, Tetrahedron, 1988, 44, 4157.
4) F. Duboudin, E. Frainnet, G. Vincon and F. Dabescat, J. Organomet. Chem. 1974, 82, 41.
5) M. Panunzio, E. Tamanini, E. Bandini, E. Campana, A. D'Aurizio and P. Vicennati, Tetrahedron, 2006, 62, 12270.
6) C. Xu and C. Yuan, Tetrahedron, 2005, 61, 2169.
7) T. Washio, S. Nakamura, M. Anada and S. Hashimoto, Heterocycles, 2005, 66, 567.
8) J. H. Looker and C. H. Hayes, J. Am. Chem. Soc., 1957, 79, 745.
9) S. V. Raders and J. G. Verkade, J. Org. Chem., 2009, 74, 5417.
10) I. Obadalova, T. Pilarcik, M. Slavikova and J. Hajicek, Chirality, 2005, 17, S109.
11) B. Carmer, H. Harrer, K. Nakamura, D. Uemura and H.-U. Humpf, Bioorg. Med. Chem., 2010, 18, 343.

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .0 \quad 70.060 .050 .040 .0 \quad 30.0 \quad 20.010 .0 \quad 0.0$

言筑哴
璃

DFILE
COMNT
DATIM
OBNUC
EXMOD
EXMOD
OBFRQ
OBFRQ
OBSET
OBSET
OBFIN
OBFIN
POINT
FREQU
FREQU
SCANS
SCANS
ACQTM

PD
PW1

PW1
IRNUC
CTEMP
SLVNT
SLVNT
EXREF
EXREF
RGAIN
ESdiene．als
21－04－2012 15：33：51
21－04
1 H
single pulse．ex2
391.78 MHz
8.51 KHz
8.51 KHz
3.34 Hz
${ }_{13107}^{3.34 \mathrm{~Hz}}$
5882.26 Hz

16
2.2282 sec
5.0000 sec
5.62 usec

CDCL 3 ． 19
CDCL3
0.00 ppm
0.12 Hz

TESdiene，13C－1．als
DFILE
COMNT
COMNT
DATIM
DATIM
OBNUC
OBNUC
EXMOD
OBFRQ
OBSET
OBSET
OBFIN
OBFIN
POINT
FREQU
SCANS
SCANS
ACQTM
PD
PD
PW1
IRNUC
IRNUC
CTEMP
CTEMP
SLVNT EXREF BF
RGAIN
$10-01$
13 C
single
single＿pulse dec
99.55 MHz
5.13 KHz
0.98 Hz

26214
24999.62 Hz

412
1.0486 sec
2.0000 sec

1 H
CDCL3 ${ }^{18.8}$
77.00 ppm
1.20 Hz 60

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .070 .060 .0 \begin{array}{llllllllll}50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

DFILE COMNT
DATIM DATIM OBNUC
EXMOD EXMOD OBFRQ OBSET
OBFIN
POINT OBFIN
POINT
FREQU FREQU SCANS
ACQTM PD IRNUC CTEMP
SLVNT SLVNT
EXREF BF RGAIN
Me, TBSdiene.als
12-01-2012 19:30:52 1 H single pulse.ex2
395.88 MHz 395.88 MHz
6.28 KHz 6.28 KHz
0.87 Hz ${ }_{13107}^{0.87 \mathrm{~Hz}}$ 5938.15 Hz
2.2073 sec
5.0000 sec
1 H
CDCL3 ${ }^{19.2 \mathrm{c}}$
7.26 ppm
${ }_{36}^{0.12} \mathrm{~Hz}$

Me, TBSdiene, 13C-1.als
12-01-2012 20:13:35
$12-01$
13 C
single
single pulse_dec
99.55 MHz
5.13 KHz
5.13 KHz
0.98 Hz

26214
24999.62 Hz

425
1.0486 sec
2.0000 sec

1H
$\mathrm{CDCL}^{19.3}$

77.00 ppm

${ }_{60}^{0.12 \mathrm{~Hz}}$

$$
\begin{aligned}
& 6.28 \mathrm{KHz} \\
& 0.87 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{gathered}
0.87 \mathrm{~Hz} \\
13107
\end{gathered}
$$

$$
5938.15 \mathrm{~Hz}
$$

$$
\begin{aligned}
& 16 \\
& 2.2073 \mathrm{sec}
\end{aligned}
$$

$$
5.0000 \mathrm{sec}
$$

1H

$$
\begin{array}{r}
5.000 \mathrm{sec} \\
5.65 \mathrm{usec}
\end{array}
$$

CDCL. $^{19.6 \mathrm{c}}$
CDCL3
0.00 ppm
${ }_{40}^{0.12} \mathrm{~Hz}$

5 a

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
Ph, 13C.als
26-01-2008 00:04:18
13 C
single_pulse_dec
99.55 MHz
5.13 KHz
5.13 KHz
0.98 Hz
${ }_{26214}^{0.98 ~ H z}$
24999.62 Hz

2200
1.0486 sec
2.0000 sec
3.17

1 H
$\operatorname{CDCL}^{18.3 \mathrm{c}}$
77.00 ppm
${ }_{58}^{0.12 \mathrm{~Hz}}$

5a
20. $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .0 \quad 70.060 .050 .040 .0 \quad 30.0 \quad 20.0 \quad 10.0 \quad 0.0$

DFILE COMNT OBNUC 1H EXMOD OBFRQ
OBSET OBSET
OBFIN
OBFIN
POINT
FREQU
FREQU
SCANS
ACQTM
PD
PW1
PW1
IRNUC
CTEMP
SLVNT SLVNT
EXREF
RGAIN
intermediate.als
13-03-2012 08:52:36
single.pulse.ex2
500.16 MHz
2.41 KHz
2.41 KHz
6.01 Hz
${ }_{13107}^{6.01 \mathrm{~Hz}}$
7507.39 Hz
1.7459 sec
3.0000 sec

1 H
C6D6 ${ }^{19.2 \mathrm{c}}$
${ }^{6} 66.20 \mathrm{ppm}$
7.20 pp
0.12 Hz
42

$$
\begin{gathered}
\text { yw08175, C2-H-1.als } \\
\mathrm{C} 2-\mathrm{H} \\
13-03-201211: 05: 46 \\
1 \mathrm{H} \\
\text { differencenoe_1 } \\
395.88 \mathrm{MHz} \\
6.28 \mathrm{KHz} \\
0.87 \mathrm{~Hz} \\
13107 \\
5938.15 \mathrm{~Hz} \\
256 \\
2.2073 \mathrm{sec} \\
1.000 \mathrm{sec} \\
12.50 \mathrm{usec} \\
1 \mathrm{H} \\
19.0 \mathrm{c} \\
\mathrm{C} 6 \mathrm{D} 6 \\
4.39 \mathrm{ppm} \\
0.12 \mathrm{~Hz} \\
36
\end{gathered}
$$

DFILE DATIM OBNUC
EXMOD EXMOD OBFRQ OBSET OBFIN
POINT FREQU
SCANS SCANS

ACQTM | ACQ |
| :--- |
| PW1 | PW1 IRNUC

CTEMP CTEMP
SLVNT EXREF
$B F$
RGAIN
p-nitro-1.als
02-11-2011 12:08:60 1 H single pulse.ex2 395.88 MHz
6.28 KHz 6.28 KHz
0.87 Hz ${ }_{13107}^{0.87 \mathrm{~Hz}}$ 5938.15 Hz
2.2073 sec
5.0000 sec

H 6.25 usec
20.5 c

CDCL3
0.00 ppm
0.12 Hz
${ }_{36}^{0.12} \mathrm{H}$

DFILE
COMNT
COMNT
DATIM
OBNUC
OBNUC
EXMOD
EXMOD OBSET OBFIN POINT FREQU
SCANS SCANS
ACQTM ACQTM
PD PD PWNUC
IRNU IRNUC
CTEMP CTEMP
SLVNT SLVNT
EXREF BF
RGAIN
p-nitro, 13C-1.als
02-11-2011 12:25:37
13C
single.pulse_dec 99.55 MHz
5.13 KHz 0.98 Hz 26214 $\underset{24999.62 \mathrm{~Hz}}{ }$ ${ }_{309} 3 \mathrm{~Hz}$ 1.0486 sec 2.0000 sec

1H
CDCL3 ${ }^{20.2 \mathrm{c}}$
77.00 ppm
0.12 Hz

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .070 .060 .0 \quad 50.040 .030 .0 \quad 20.0 \quad 10.0 \quad 0.0$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
p-trifluoromethyl, 13C2-1.als
11-11-2011 15:06:59
13 C
single_pulse dec
99.55 MHz
5.13 KHz
0.98 Hz

26214
24999.62 Hz

413
1.0486 sec
1.0486 sec
2.0000 sec

1H
$\mathrm{CDCL}^{20.0 \mathrm{c}}$
77.00 ppm 0.12 Hz

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .0 \quad 70.060 .050 .040 .0 \quad 30.0 \quad 20.0 \quad 10.0 \quad 0.0$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
p-mesyl, 13C.als
12-11-2011 16:12:54
$12-1$
13 C
single
single_pulse_dec
98.52 MHz 4.64 KHz 8.74 Hz
${ }^{2} 6214$ 26214 24630.17 Hz 324
1.0643 sec 1.0643 sec 2.0000 sec

1 H
CDCL3 ${ }^{19.7}$

77.00 ppm

0.12 Hz

DFILE COMNT DATIM
OBNUC
1 H EXMOC OXMOD OBFRQ OBSET
OBFIN
POINT OBFIN
POINT
FREQU
SCANS FREQU
SCANS

ACQTM | PD |
| :--- |
| PW1 | PW1

IRNUC IRNUC
CTEMP
SLVNT SLVNT
EXREF EXREF
$B F$
RGAIN
4-Cl.als
13-03-2012 15:30:07
1 H
single
single.pulse.ex2
391.78 MH
391.78 MHz
8.51 KHz
8.51 KHz
3.34 Hz

13107 Hz
5882.26 Hz
2.2282 sec
5.0000 sec

1 H
CDCL3 ${ }^{19.9 \mathrm{c}}$
DCL3
0.00 ppm
${ }_{50}^{0.12} \mathrm{~Hz}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
4-Cl, 13C-1.als 13-03-2012 16:07:60
$13-03$
single
single_pulse_dec
99.55 MHz
5.13 KHz
0.98 Hz

26214
24999.62 Hz

413
1.0486 sec
1.0486 sec
2.0000 sec

1 H
CDCL3 ${ }^{18.7}$
77.00 ppm
${ }_{60}^{0.12 \mathrm{~Hz}}$

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .0880070 .060 .0 \quad 50.0 \quad 40.0 \quad 30.0 \quad 20.0 \quad 10.0 \quad 0.0$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
p-methyl, 13C-1.als
24-11-2011 16:45:26
13 C
single_pulse_dec
99.55 MHz
5.13 KHz 0.98 Hz ${ }_{26214}^{262}$
24999.62 Hz

254
1.0486 sec
2.0000 sec

1 H
CDCL ${ }^{19.2 \mathrm{c}}$
77.00 ppm
${ }_{60}^{0.12 \mathrm{~Hz}}$

 220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .0

m-methyl, 13C-1.als
04-11-2011 11:17:30
13 C
single_pulse_dec
99.55 MHz
5.13 KHz
0.98 Hz

26214
24999.62 Hz

282
1.0486 sec
2.0000 sec

1 H
$\operatorname{CDCL}_{3}{ }^{20.1}$
77.00 ppm
0.12 Hz

5 g
 $\begin{array}{llllllllllllllllllllll}220.0 & 209.0 & 198.0 & 187.0 & 176.0 & 165.0 & 154.0 & 143.0 & 1320 & 121.0 & 110.0 & 99.0 & 88.0 & 77.0 & 66.0 & 55.0 & 44.0 & 33.0 & 22.0 & 11.0 & 0.0\end{array}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
3-Cl, 13C-1.als
13-03-2012 18:27:16
13C
single_pulse_dec
99.55 MHz
5.13 KHz
0.98 Hz
${ }_{26214}^{26}$
24999.62 Hz

330
1.0486 sec
2.0000 sec

1 H
CDCL3 ${ }^{19.3}$
${ }_{77.00} \mathrm{ppm}$
0.12 Hz

5h

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
p-anis, 13C-1.als
08-12-2011 11:19:40
13 C
single_pulse_dec
99.55 MHz 5.13 KHz 0.98 Hz 26214 24999.62 Hz 723
1.0486 sec 1.0486 sec 2.0000 sec

1 H
$C^{18.9}$
CDCL3 77.00 ppm
${ }_{60} 0.12 \mathrm{~Hz}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
EXMOD
OBFRQ
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
SCANS
ACQTM

PD
PW1

PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
PhCC.als
17-04-2007 20:01:53
1 H
single pulse.ex2
395.88 MHz
6.28 KHz
6.28 KHz
0.87 Hz
${ }_{13107}^{0.87}$
5938.15 Hz
2.2073 sec
5.0000 sec

H $\quad 5.65$ usec
$\mathrm{CDCL}^{19.5 \mathrm{c}}$
CDCL3
0.00 ppm
${ }_{40}^{0.12} \mathrm{~Hz}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
PhCC, 13C.als
10-05-2007 08:59:14
13 C
single_pulse_dec 99.55 MHz
5.13 KHz
5.98 Hz
${ }_{26214}^{0.98}$
24999.62 Hz

9821
1.0486 sec
2.0000 sec
3.17

1 H
CDCL3 ${ }^{19.9}$
77.00 ppm
0.12 Hz

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .0 \quad 70.060 .0 \quad 50.040 .0 \quad 30.0 \quad 20.0 \quad 10.0 \quad 0.0$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
nC5H11CC, 13 C .als
14-12-2011 16:13:52
13C
single_pulse $99 . \mathrm{dec}$
99.55 MHz
5.13 KHz
0.98 Hz
26214
24999.62 Hz
337
1.0486 sec
2.0000 sec
3.33 usec
19.5 c
1H
CDCL3
77.00 ppm
0.12 Hz
60

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .0 \quad 80.070 .060 .050 .040 .0 \quad 30.0 \quad 20.010 .0 \quad 0.0$

DFILE
COMMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
BnOCH 2 .als
25-01-2008 15:09:58
1 H
singl
single pulse.ex2
395.88 MHz
6.28 KHz
$\quad \begin{aligned} & 6.28 \mathrm{KHz} \\ & 0.87 \mathrm{~Hz}\end{aligned}{ }^{2} \mathrm{l}$
${ }_{13107}^{0.87 \mathrm{~Hz}}$
5938.15 Hz
2.2073 sec
5.0000 sec

1H 5.65 usec
1H
CDCL3 ${ }^{18.1 \mathrm{c}}$
0.00 ppm
0.00 ppm
0.12 Hz
${ }_{34}^{0.12 \mathrm{~Hz}}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
$\mathrm{BnOCH} 2,13 \mathrm{C}$.als
30-01-2008 19:52:40
13 C
single
single pulse dec 99.55 MHz
5.13 KHz
5.13 KHz
0.98 Hz
0.98 Hz

26214
24999.62 Hz
$\underset{619}{24999.62 \mathrm{~Hz}}$
619
1.0486 sec
1.0486 sec
2.0000 sec
2.0000 sec

1 H
CDCL3.9 c
77.00 ppm
${ }_{56}{ }_{56} .12 \mathrm{~Hz}$

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .0 \quad 70.060 .050 .040 .0 \quad 30.0 \quad 20.010 .0 \quad 0.0$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
furyl, 13C-1.als 17-04-2012 18:26:38
13 C
single
single pulse dec 99.55 MHz
5.13 KHz 0.98 Hz 26214
24999.62 Hz

419
1.0486 sec 2.0000 sec

1H 406.6 c
CDCL3 ${ }^{406.6}$
77.00 ppm
${ }_{60}=.12 \mathrm{~Hz}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
thienyl，13C－1．als 24－04－2012 16：57：50 13 C
single single pulse dec 99.55 MHz
5.13 KHz 5.13 KHz
0.98 Hz 26214 24999.62 Hz 245920
1.0486 1.0486 sec
2.0000 sec 2.0000 sec

1 H
CDCL $3{ }^{20.4}$
77.00 ppm ${ }_{60} 0.12 \mathrm{~Hz}$

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .0880 .070 .060 .0 \begin{array}{llllllll}50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0.0\end{array}$

ゅただ通

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
$\mathrm{PhC}=\mathrm{C}, 13 \mathrm{C} . \mathrm{als}$ 22-01-2008 23:10:09 13 C single pulse dec 99.55 MHz 5.13 KHz 0.9814 26214 24999.62 Hz 1028 1.0486 sec 2.0000 sec 1 H
$\mathrm{CDCL}^{18.3}$
CDCL3 77.00 ppm
0.12 Hz

DFILE
DATIM
OBNUC
OBNUC
EXMOD
EXMOD
OBFRQ
OBSET
OBSET
OBFIN
POINT
FREQU
SCANS
SCANS
PD
PWI
IRNUC
IRNUC
CTEMP
CTEMP
SLVNT EXREF BF
RGAIN

Pr. 13C.als
23-01-2008 22:47:02
13 C
single
single pulse_dec 99.55 MHz
5.13 KHz 5.13 KHz
0.98 Hz ${ }_{26214}$ 24999.62 Hz 260 1.0486 sec 2.0000 sec

1 H
$\operatorname{CDCL}^{18.3 \mathrm{c}}$
77.00 ppm
${ }_{58}{ }_{5}^{7.012 \mathrm{~Hz}}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
Me, PhCC, 13C.als
09-05-2007 23:26:58
13 C
single_pulse_dec
99.55 MHz
5.13 KHz
0.98 Hz

26214
24999.62 Hz

512
1.0486 sec
1.0486 sec
2.0000 sec

1 H
CDCL3 ${ }^{19.5}$
77.00 ppm
77.12 ppm
0.12 Hz
0.12

 $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .090 .080 .0 \quad 70.060 .050 .040 .0 \quad 30.0 \quad 20.0 \quad 10.0 \quad 0.0$

DFILE
Me, octyl.als
10-12-2011 15:13.45

DATIM
OBNUC
EXMOD EXMOD
OBFRQ OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
SCANS
ACQTM

PD
PW1

PW1
IRNUC
IRNUC
CTEMP
SLVNT
SLVNT
EXREF
BF
RGAIN

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
Me, octyl, 13C-1.als
10-12-2011 15:44:05
$10-12$
13 C
single
single_pulse_dec 99.55 MHz
5.13 KHz 5.13 KHz
0.9 Hz 26214 24999.62 Hz 377
1.0486 sec 1.0486 sec 2.0000 sec

1 H
CDCL3 ${ }^{19.2 \mathrm{c}}$
CDCL3 77.00 ppm
${ }_{60} 0.12 \mathrm{~Hz}$

(1nin $220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .0100 .0 \quad 90.0 \quad 80.0 \quad 70.0 \quad 60.0 \quad 50.0 \quad 40.0 \quad 30.0 \quad 20.0 \quad 10.0 \quad 0.0$

㝶

 220.0210 .0200 .0190 .0180 .0170 .0160 .0150 .0140 .0130 .0120 .0110 .01100 .0 90.0 80.0780 .060 .050 .040 .030 .020 .010 .00 .0

DFILE
DFILE
COMNT
DATMM
DATIM
OBNUC
OBNUC
EXMOD
EXMOD
OBSET
OBFIN
POINT
OBFIN
POINT
FREOU
FREQU
SCANS
SCANS
PD
PW1
PW1
IRNUC
IRNUC
CTEMP
CTEMP
SLVNT SLVNT
EXREF BF
RGAIN

Me, $\mathrm{CH} 3 \mathrm{CC}, 13 \mathrm{C}-1$.als 13 C
single_pulse_dec 99.55 MHz
5.13 KHz 5.13 KHz
0.98 Hz 26214 24999.62 Hz 390 1.0486 sec 2.0000 sec

1 H
CDCL3 ${ }^{18.9}$
77.00 ppm
0.12 Hz

DFILE COMNT
DATIM
OBNUC 1 H EXMOD
OBFRQ OBFRQ OBSET OBFIN
POINT
FREQU
SCANS
SCANS
ACQTM

PD
PW1

PW1
IRNUC
CTEMP
SLVNT SLVNT
EXREF EXR
BF
RGAIN
06－01－2012 14：22：01
1 H
single
single．pulse．ex2
500.16 MHz
500.16 MHz
2.41 KHz
2.41 KHz
6.01 Hz
${ }^{6.01 \mathrm{~Hz}}$
13107
7507.39 Hz
1.7459 sec
3.0000 sec
6.50 usec

1H
CDCL3 ${ }^{18.7 \mathrm{c}}$
0.00 ppm
0.00 ppm
0.12 Hz
${ }_{46}^{0.12 \mathrm{~Hz}}$

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
SCANS
ACQTM
PD
PD
PW1
IRNUC
IRNUC
CTEMP
CTEMP
SLVNT EXREF BF
RGAIN
amide， 13 C．als
07－01－2012 19：04：26
13 C
single pulse dec
99.55 MHz
5.13 KHz
0.98 Hz
${ }_{26214}^{0.98 \mathrm{~Hz}}$
24999．62 Hz
361
1.0486 sec
2.0000 sec

1 H
$\operatorname{CDCL} 3^{19.6}$
77.00 ppm
${ }_{60}^{0.12 \mathrm{~Hz}}$

が心

5a (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	15.18	618563	49.83
2	17.28	622652	50.17

5a

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	15.31	2416	1.06
2	17.36	226185	98.94

5b (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	9.63	6837382	50.28
2	17.68	6761453	49.72

5b

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	9.72	574974	4.58
2	17.56	11987345	95.42

5c (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	15.76	334578	49.75
2	21.48	337952	50.25

5c

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	15.18	16738	2.88
2	20.63	564681	97.12

5d (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	11.33	128712	50.23
2	20.79	127514	49.77

5d

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	11.71	28601	5.05
2	20.43	538002	94.95

5e (racemate)

PeakNo.	Time (min)	Area [m V. Sec]	Area \%
1	17.04	1748875	50.00
2	32.35	1748212	50.00

5e

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	17.28	21161	2.94
2	33.29	699008	97.06

5f (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	15.09	432413	49.85
2	24.13	434893	50.15

$5 f$

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	15.05	34666	2.22
2	23.13	1526881	97.78

9g (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	14.48	446570	50.76
2	24.21	433125	49.24

9 g

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	14.39	878008	4.06
2	24.66	37155	95.94

5h (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	15.92	1142620	50.00
2	17.15	1142401	50.00

5h

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	16.33	1854828	95.97
2	17.40	77886	4.03

$5 \mathbf{i}$ (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	10.06	254511	49.80
2	16.62	256513	50.20

$5 i$

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	10.37	28062	3.99
2	17.18	674969	96.01

5j (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	7.57	4556110	49.97
2	12.43	4561453	50.03

5j

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	8.17	53782	2.68
2	14.06	1952977	97.32

5k (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	21.12	111894	50.15
2	31.17	111237	49.85

5k

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	21.06	18751	2.00
2	30.43	916885	98.00

51 (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	14.24	542287	49.93
2	21.92	543770	50.07

51

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	14.89	2633	1.39
2	21.37	186845	98.61

5m (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	32.03	182366	49.58
2	21.92	185412	50.42

5m

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	32.88	9442	2.70
2	37.87	340778	97.30

5n (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	22.42	441738	49.33
2	24.93	453638	50.67

5n

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	22.33	46226	1.98
2	24.43	2291619	98.02

50 (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	8.15	1313541	50.21
2	9.28	1302371	49.79

50

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	8.16	60080	2.04
2	9.28	2881232	97.96

9p (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	19.03	399044	50.32
2	21.40	393938	49.68

9p

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	19.21	66123	3.87
2	21.42	1642780	96.13

5q (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	9.20	1244922	50.47
2	11.13	1221583	49.53

5q

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	9.23	36717	3.44
2	11.09	1030646	96.56

5r (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	6.92	4177546	49.89
2	12.82	4196476	50.11

5r

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	7.17	92105	4.41
2	13.86	1996462	95.59

5s (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	10.34	253278	50.06
2	14.58	252574	49.94

5s

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	10.29	47637	3.77
2	14.30	1217429	96.23

5t (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	11.13	557353	50.28
2	19.92	551208	49.72

$5 t$

Peak No.	Time (min)	Area [m V. Sec]	Area \%
1	10.98	333129	96.46
2	20.28	12213	3.54

