Electronic Supplementary Information for "Enantio- and diastereoselective hetero-Diels–Alder reactions between 2-aza-3-silyloxy-1,3-butadienes and aldehydes catalyzed by chiral dirhodium(II) carboxamidates"

Yudai Watanabe, Takuya Washio, Janagiraman Krishnamurthi, Masahiro Anada* and Shunichi Hashimoto*

General Methods—————————	S1
Experimental Section —————————	S1-S18
Copies of ¹ H/ ¹³ C NMR Spectra —————	S19–S42
Copies of Chromatogram———————	-S43–S62

General. Melting points were determined on a Yamato melting point apparatus model MP-21 and are uncorrected. IR spectra were recorded on a JASCO FT/IR-5300 spectrometer and absorbance bands are reported in wavenumber (cm⁻¹). ¹H NMR spectra were recorded on JEOL JNM-ECX 400P (400 MHz) spectrometer. Chemical shifts are reported relative to internal standard (tetramethylsilane; $\delta_{\rm H}$ 0.00 or CDCl₃; $\delta_{\rm H}$ 7.26). Data are presented as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant and integration. ${}^{13}C$ NMR spectra were recorded on JEOL JNM-ECX 400P (100 MHz) spectrometer. The following internal references were used (CDCl₃; δ 77.0). Optical rotations were measured on a JASCO P-1030 digital polarimeter at the sodium D line (589 nm). EI-MS spectra were obtained on a JEOL JMS-FABmate spectrometer, operating with ionization energy of 70 eV. ESI-MS spectra were obtained on a Thermo Scientific Exactive spectrometer. Column chromatography was carried out on Kanto silica gel 60 N (63-210 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F₂₅₄ plates with visualization by UV light, anisaldehyde stain solution or phosphomolybdic acid stain solution. Analytical high performance liquid chromatography (HPLC) was performed on a JASCO PU-1580 intelligent HPLC pump with JASCO UV-1575 intelligent UV/VIS detector. Detection was performed at 254 nm. Chiralcel OD-H and Chiralpak AD-H columns (0.46 cm \times 25 cm) from Daicel were used. Retention times (t_R) and peak ratios were determined with JASCO-Chrom NAV analysis system. All non-aqueous reactions were carried out in flame-dried glassware under argon atmosphere

unless otherwise noted. Reagents and solvents were purified by standard means. Dehydrated CH_2Cl_2 , acetone, toluene and THF were purchased from Kanto Chemical Co., Inc. Diene **2a**, **2b** were prepared according to literature procedure.^{1,2}

Experimental Section

Preparetion of 2-aza-3-triethylsilyloxy-1-phenyl-1,3-butadiene (2c)

To a solution of *N*-triethylsilylbenzylimine (219 mg, 1.0 mmol)³ and triethylamine (404 mg, 4.0 mmol) in ether (1 mL) was added dropwise a solution of acetyl chloride (157 mg, 2.0 mmol) in ether (1 mL) at 0 °C. After stirring for 2 h at room temperature, the precipitate was filtered through a plug of Celite, and the Celite filter cake was washed with ether (20 mL). The filtrate was concentrated *in vacuo*, and the residue was purified by column chromatography (Wakogel C-200, 2% Et₃N in hexane) to afford **2c** (221 mg, 85%) as a light yellow oil; TLC R_f = 0.78 (2% Et₃N in hexane); IR (film) 2955, 1623, 1603 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.51 (q, *J* = 8.2 Hz, 6H, SiC*H*₂CH₃), 1.01 (t, *J* = 8.2 Hz, 9H, SiCH₂CH₃), 4.32 (s, 1H, C4–*H*), 4.64 (s, 1H, C4–*H*), 7.43–7.44 (m, 3H, *Ar*), 7.82–7.85 (m, 2H, *Ar*), 8.56 (s, 1H, C1–*H*); ¹³C NMR (100 MHz, CDCl₃) δ 4.8 (CH₂), 6.4 (CH₃), 91.7 (CH₂), 128.6 (CH), 129.0 (CH), 131.1 (CH), 135.9 (C), 156.5 (CH), 156.6 (C); EI-HRMS calcd for C₁₅H₂₄NOSi

 $(M+H)^+$ 262.16217, found 262.16239.

Preparetion of 2-aza-3-tert-butyldimethylsilyloxy-1-phenyl-1,3-pentadiene (2d)

According to the procedure for the preparation of **2c**, **2d** was prepared from *N-tert*-butyldimethylsilylbenzylimine (439 mg, 2.0 mmol)⁴, propionyl chloride (370 mg, 4.0 mmol) and triethylamine (809 mg, 8.0 mmol). The crude product was purified by column chromatography (Wakogel C-200, 2% Et₃N in hexane) to afford **2d** (513 mg, 93%) as a light yellow oil; TLC $R_f = 0.81$ (2% Et₃N in hexane); IR (film) 2930, 1647, 1591 cm⁻¹,¹H NMR (400 MHz, CDCl₃) δ 0.17 (s, 6H, Si(CH₃)₂), 1.04 (s, 9H, SiC(CH₃)₃), 1.74 (d, *J* = 7.2 Hz, 3H, C5–*H*₃), 5.10 (q, *J* = 7.2 Hz, 1H, C4–*H*), 7.41–7.43 (m, 3H, *Ar*), 7.77–7.78 (m, 2H, *Ar*), 8.37 (s, 1H, C1–*H*); δ –3.7 (CH₃), 12.0 (CH₃), 18.4 (C), 25.9 (CH₃), 103.5 (CH), 128.4 (CH), 128.6 (CH), 130.6 (CH), 136.1 (C), 152.7 (C), 153.4 (CH); ESI-HRMS calcd for C₁₅H₂₆NOSi (M+H)⁺ 276.17782, found 276.17795.

General procedure for asymmetric HDA reaction of 2-az a-3-silyloxydienes with aldehydes: (2*S*,6*S*)-2,6-Diphenyl-1,3-oxazinan-4-one (5a).⁵

To a solution of benzaldehyde (3a) (47.7 mg, 0.45 mmol) in CH₂Cl₂ (0.4 mL) was added Rh₂(S-BPTPI)₄·3H₂O (1) (4.3 mg, 0.003 mmol, 1 mol %). HN Then the color of solution was changed from colorless to brown. After stirring for 5 min, a solution of 2-azadiene 2a (78.4 mg, 0.30 mmol) in CH₂Cl₂ (0.2 mL) added at room temperature. After stirring at this temperature for 24 h, MeOH (ca. 0.1 mL) was added and the mixture was stirred for an additional 0.5 h. The mixture was concentrated in vacuo furnished the crude product (118 mg) as a purple solid, which was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to give 5a (72.2 mg, 95%) as a white solid; mp 173.0–174.0 °C; TLC $R_f = 0.32$ (1:1 CHCl₃/EtOAc); $\left[\alpha\right]_{D}^{20}$ -39.8 (c 1.03, CHCl₃) for 98% ee; IR (KBr) 3242, 1666, 1631 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.77 (m, 2H, C5–H), 5.03 (dd, J = 4.6, 7.3 Hz, 1H, C6–H), 5.93 (s, 1H, C2-H), 6.62 (br, 1H, NH), 7.31-7.53 (m, 10H, Ar); ¹³C NMR (100 MHz, CDCl₃) & 39.1 (CH₂), 76.6 (CH), 85.7 (CH), 125.7 (CH), 126.9 (CH), 128.3 (CH), 128.7 (CH), 128.9 (CH), 130.0 (CH), 137.7 (CH), 139.6 (C), 168.8 (C=O); EI-HRMS calcd for $C_{16}H_{15}NO_2$ (M)⁺ 253.1103, found 253.1099. The enantiomeric excess of 5a was determined to be 98% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): t_R (minor) = 15.3 min for (2R,6R)-enantiomer; t_R (major) = 17.4 min for (2S,6S)-enantiomer. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles *ortho* proton of the phenyl group (6.0%). Additionally, irradiation of C6–H exhibited NOE with C2–H (12.1%), C5eq–H (5.1%) and the *ortho* proton of the phenyl group (4.6%). These data revealed *cis* relationship between C2–H and C6–H.

Determination of absolute configuration of 5a: Methyl (S)-3-hydroxy-3-phenyl-propionate (9a).⁶

AcCl (0.14 mL, 2 mmol) was added to MeOH (1 mL). This solution was added to a solution of **5a** (40.0 mg, 0.14 mmol, 98% ee) in MeOH (1 mL) at 0 °C. After stirring at reflux temperature for 6 h, the reaction was quenched with saturated NaHCO₃ (2 mL), and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine (2 × 3 mL), and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* to give the crude product (41 mg) as a yellow oil, which was purified by column chromatography (4:1 hexane/EtOAc) to afford **9a** (26.6 mg, 89%) as a colorless oil; TLC R_f = 0.24 (2:1 hexane/EtOAc); $[\alpha]_D^{22}$ –51.6 (*c* 0.95, CHCl₃) for 97% ee [lit.,⁶ $[\alpha]_D^{20}$ +46.9 (*c* 1.2, CHCl₃) for (*R*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 2.73 (dd, *J* = 4.1, 16.3 Hz, 1H, C2–*H*), 2.77 (dd, *J* = 9.1, 16.3 Hz, 1H, C2–*H*), 3.21 (d, *J* = 3.6, 1H, O*H*), 3.73 (s, 3H, OCH₃), 5.15 (ddd, *J* = 3.6, 4.1, 16.3 Hz, 1H, C3–*H*), 7.28–7.40 (m, 5H, *Ar*). This product **9a** exhibited spectroscopic data identical to (*R*)-**9a**⁶, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of **5a** was determined to be (2*S*,6*S*).

NMR Analysis of 4a.

A solution of diene **2a** (52.3 mg, 0.20 mmol) in CH₂Cl₂ (0.2 mL) was added to a solution of benzaldehyde (**3a**) (23.3 mg, 0.22 mmol) and Rh₂(*S*-BPTPI)₄·3H₂O (**1**) (5.73 mg, 0.004 mmol, 2 mol %) in CH₂Cl₂ (0.05 mL). After stirring for 16 h, the reaction mixture was concentrated *in vacuo* to furnish the crude **4a** (75 mg) as a purple solid; ¹H NMR showed exclusive formation of **4a**; ¹H NMR (400 MHz, C₆D₆) δ 0.35 (s, 3H, SiCH₃), 0.47 (s, 3H, SiCH₃), 1.02 (s, 9H, SiC(CH₃)₃), 2.14 (ddd, *J* = 2.3, 4.6, 17.2 Hz, 1H, C5–*H*), 2.20 (ddd, *J* = 2.9, 10.9, 17.2, 1H, C5–*H*), 4.40 (dd, *J* = 4.6, 10.9 Hz, 1H, C2–*H*), 5.95 (s, 1H, C2–*H*), 7.07–7.32 (m, 8H, *Ar*), 7.79–7.81 (m, 2H, *Ar*). In order to assign the stereochemistry at C2 and C6, NOE studies were performed on **4a**. Irradiation of C2–H showed NOE with C6–H (12.6%). Additionally, irradiation of C6–H exhibited NOE with the C2–H (15.8%). These data revealed *cis* relationship between C2–H and C6–H.

(2S,6S)-6-(4-nitrophenyl)-2-phenyl-1,3-oxazinan-4-one (5b).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5b** was prepared from diene **2a** (78.4 mg, 0.30 mmol), *p*-nitrobenzaldehyde (**3b**) (68.0 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %) at 0 °C.

The crude product was purified by column chromatography (silica gel, 1:3 hexane/EtOAc) to provide **5b** (87.6 mg, 98%) as a white solid; mp 134.0–135.0 °C; TLC $R_f = 0.22$ (1:3 hexane/EtOAc); $[\alpha]_D^{19}$ –51.0 (*c* 1.01, CHCl₃) for 91% ee; IR (KBr) 3176, 1669, 1602, 1519 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.51 (dd, J = 4.1, 17.4 Hz, 1H, C5–*H*), 2.72 (dd, J = 11.0, 17.4 Hz, 1H, C5–*H*), 5.06 (dd, 1H, C6–*H*), 5.87 (s, 1H, C2–*H*), 7.12 (br, 1H, N*H*), 7.35–7.48 (m, 7H, *Ar*), 8.12–8.15 (m, 2H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 38.7 (CH₂), 75.3 (CH), 85.6 (CH), 123.9 (CH), 126.2 (CH), 126.8 (CH), 128.9 (CH), 130.1 (CH), 137.2 (C), 146.8 (C), 147.5 (C), 168.0 (C=O); EI-HRMS calcd for C₁₇H₁₃N₂O₄ (M–H)⁺ 297.0954, found 297.0871. The enantiomeric excess of **5b** was determined to be 91% by HPLC with a Chiralpak AD-H column (1:1 hexane/*i*-PrOH, 1.0 mL/min): *t*_R (minor) = 9.7 min for (2*R*, 6*R*)-enantiomer; *t*_R (major) = 17.6 min for (2*S*, 6*S*)-enantiomer. The preferred absolute configuration of **5b** was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (89% ee); mp 135.5–136.0 °C; Anal. Calcd for C₁₇H₁₄N₂O₄: C, 64.42; H, 4.73; N, 9.39. Found: C, 64.46; H, 4.70; N, 9.43.

Determination of absolute configuration of 5b: Methyl (S)-3-hydroxy-3-(4-nitrophenyl) propionate (9b).⁷

According to the procedure for the preparation of **9a**, **9b** was prepared from **5b** (40 mg, 0.13 mmol, 91% ee), AcCl (0.14 mL, 2 mmol) and MeOH (2 mL). The crude product was purified by column chromatography (silica gel, 2:1 hexane/EtOAc) to provide **9b** (28.9 mg, 96%) as a colorless oil; TLC $R_f = 0.56$ (1:1 hexane/EtOAc); $[\alpha]_D^{19} - 35.6$ (*c* 1.18, CHCl₃) for 91% ee [lit.,⁷ $[\alpha]_D^{20} - 37.1$ (*c* 1.01, CHCl₃) for 94% ee]; ¹H NMR (400 MHz, CDCl₃) δ 2.68–2.79 (m, 2H, C2–*H*), 3.57 (br, 1H, O*H*), 3.75 (s, 3H, OC*H*₃), 5.25 (dd, *J* = 4.1, 8.2 Hz, 1H, C3–*H*), 7.56–7.58 (m, 2H, *Ar*), 8.22–8.24 (m, 2H, *Ar*). This product **9b** exhibited spectroscopic data identical to (*S*)-**9b**⁷. Thus, the preferred absolute stereochemistry of **5b** was determined to be (2*S*,6*S*)

(2S*,6S*)-2-Phenyl-6-(4-trifluoromethylphenyl)-1,3-oxazinan-4-one (5c).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5c** was prepared from diene **2a** (78.4 mg, 0.30 mmol), *p*-trifluoromethylbenzaldehyde (**3c**) (78.3 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1

mol %). The crude product was purified by column chromatography (silica gel, 1:2 hexane/EtOAc) to provide **5c** (92.5 mg, 96%) as a white solid; mp 147.0–148.0 °C; TLC R_f = 0.31 (1:3 hexane/EtOAc); [α]_D¹⁹ –38.6 (*c* 1.02, CHCl₃) for 94% ee; IR (KBr) 3161, 1670, 1619 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (dd, *J* = 11.3, 17.2 Hz, 1H, C5–*H*), 2.76 (dd, *J* = 3.6, 17.2 Hz, 1H, C5–*H*), 5.04 (dd, *J* = 3.6, 11.3 Hz, 1H, C6–*H*), 5.88 (s, 1H, C2–*H*), 6.37 (br, 1H, N*H*), 7.32–7.58 (m, 9H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 38.9 (CH₂), 75.8 (CH), 85.7 (CH), 123.9 (q, *J* = 271 Hz, C), 125.6 (q, *J* = 3.8 Hz, CH), 125.8 (CH), 126.8 (CH), 128.9 (CH), 130.0 (CH), 130.3 (q, *J* = 32.4 Hz, C), 137.4 (C), 143.6 (C), 168.4 (C=O); EI-HRMS calcd for C₁₇H₁₃NO₂F₃ (M–H)⁺ 320.0977, found 320.0892. The enantiomeric excess of **5c** was determined to be 94% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): *t*_R = 15.2 min for minor enantiomer; *t*_R = 20.6 min for major enantiomer. The preferred absolute configuration of **5c** was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (93% ee); mp 148.0–148.5 °C; Anal. Calcd for C₁₇H₁₄NO₂F₃: C, 63.55; H, 4.39; N, 4.36. Found: C, 63.61; H, 4.37; N, 4.29.

(2S*,6S*)-6-(4-Mesylphenyl)-2-phenyl-1,3-oxazinan-4-one (5d).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5d** was prepared from diene **2a** (78.4 mg, 0.30 mmol), 4-mesyloxybenzaldehyde (**3d**)⁸ (90.0 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %).

The crude product was purified by column chromatography (silica gel, 1:3 hexane/EtOAc) to provide **5d** (101 mg, 97%) as a white solid; mp 141.0–142.5 °C; TLC $R_f = 0.45$ (EtOAc); $[\alpha]_D^{19} -29.9$ (*c* 1.04, CHCl₃) for 90% ee; IR (KBr) 3174, 1661, 1506, 1347 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (dd, J = 10.8, 16.9 Hz, 1H, C5–H), 2.76 (dd, J = 4.0, 16.9 Hz, 1H, C5–H), 3.11 (s, 3H, SO₂CH₃), 5.02 (dd, J = 4.0, 10.8 Hz, 1H, C6–H), 5.89 (s, 1H, C2–H), 7.07 (br, 1H, NH), 7.32–7.58 (m, 9H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 37.3 (CH₃), 38.8 (CH₂), 75.6 (CH), 85.6 (CH), 122.2 (q, J = 271 Hz, C), 126.8 (CH), 127.3 (CH), 128.8 (CH), 129.9 (CH), 137.4 (C), 139.0 (C), 148.8 (C), 168.5 (C=O); EI-HRMS calcd for C₁₇H₁₆NO₅S (M–H)⁺ 346.0827, found 346.0746. The enantiomeric excess of **5d** was determined to be 90% by HPLC with a Chiralpak AD-H column (1:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 11.7$ min for minor enantiomer; $t_R = 20.4$ min for major enantiomer. The preferred absolute configuration of **5d** was not determined. The preferred absolute configuration sfrom *i*-PrOH as colorless needles (92% ee); mp 141.5–142.5 °C; Anal. Calcd for C₁₇H₁₇NO₅S: C, 58.78; H, 4.93; N, 4.03; S, 9.23. Found: C, 58.77; H, 4.86; N, 4.02; S, 9.20.

(2S*,6S*)-6-(4-Chlorophenyl)-2-phenyl-1,3-oxazinan-4-one (5e).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5e** was prepared from diene **2a** (78.4 mg, 0.30 mmol), *p*-chlorobenzaldehyde (**3e**) (78.3 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5e** (79.6 mg, 93%) as a white solid; mp 149.0–150.0 °C; TLC $R_f = 0.27$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{20}$ –37.5 (*c* 1.14, CHCl₃) for 94% ee; IR (KBr) 3170, 1662, 1494 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.71 (dd, J = 11.2, 17.4 Hz, 1H, C5–*H*), 2.79 (dd, J = 4.5, 17.4 Hz, 1H, C5–*H*), 5.02 (dd, J = 4.5, 11.2 Hz, 1H, C6–*H*), 5.93 (s, 1H, C2–*H*), 6.19 (br, 1H, N*H*), 7.32–7.53 (m, 9H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 39.0 (CH₂), 75.9 (CH), 85.7 (CH), 126.8 (CH), 127.0 (CH), 128.82 (CH), 128.86 (CH), 130.0 (CH), 134.0 (C), 137.5 (C), 138.2 (C), 168.5 (C=O); EI-HRMS calcd for C₁₆H₁₃NO₂Cl (M–H)⁺ 286.0713, found 286.0631. The enantiomeric excess of **5e** was determined to be 94% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 17.3$ min for minor enantiomer; $t_R = 33.3$ min for major enantiomer. The preferred absolute configuration of **5e** was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (99% ee); mp 149.5–150.0 °C; Anal. Calcd for C₁₆H₁₄NO₂Cl: C, 66.79; H, 4.90; N, 4.87; Cl, 12.32. Found: C, 67.00; H, 4.95; N, 4.89; Cl, 12.15.

(2S*,6S*)-6-(4-Methylphenyl)-2-phenyl-1,3-oxazinan-4-one (5f).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5f** was prepared from diene **2a** (78.4 mg, 0.30 mmol), *p*-tolualdehyde (**3f**) (54.1 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5f** (77.8 mg, 97%) as a white solid; mp 151.0–152.0 °C; TLC $R_f = 0.27$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{21}$ –28.3 (*c* 1.04, CHCl₃) for 96% ee; IR (KBr) 3247, 1665, 1632 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H, Ar–CH₃), 2.73 (s, 1H, C5–H), 2.76 (d, J = 7.6 Hz, 1H, C5–H), 4.98 (t, J = 1.4 Hz, 1H, C6–H), 5.90 (s, 1H, C2–H), 6.52 (br, 1H, NH), 7.16–7.51 (m, 9H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.1 (CH₃), 38.9 (CH₂), 76.3 (CH), 85.5 (CH), 125.6 (CH), 126.7 (CH), 128.7 (CH), 129.2 (CH), 129.7 (CH), 136.7 (C), 137.8 (C), 138.0 (C), 169.1 (C=O); EI-HRMS calcd for C₁₇H₁₆NO₂ (M–H)⁺ 266.11810, found 266.11799. The enantiomeric excess of **5f** was determined to be 96% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 15.1$ min for minor enantiomer; $t_R = 23.1$ min for major enantiomer. The preferred absolute configuration of **5f** was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (99% ee); mp 151.0–152.0 °C; Anal. Calcd for C₁₇H₁₇NO₂: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.16; H, 6.25; N, 5.23.

(2S*,6S*)-6-(3-Methylphenyl)-2-phenyl-1,3-oxazinan-4-one (5g).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5g** was prepared from diene **2a** (78.4 mg, 0.30 mmol), *m*-tolualdehyde (**3g**) (54.1 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5g** (67.4 mg, 84%) as a white solid; mp 123.0–124.0 °C; TLC $R_f = 0.27$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{22}$ –26.9 (*c* 1.16, CHCl₃) for 92% ee; IR (KBr) 3178, 1679, 1633 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.28 (s, 3H, Ar–CH₃), 2.68 (s, 1H, C5–*H*), 2.69 (s, 1H, C5–*H*), 4.91 (t, *J* = 7.6 Hz, 1H, C6–*H*), 5.84 (s, 1H, C2–*H*), 6.38 (br, 1H, N*H*), 7.05–7.46 (m, 9H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (CH₃), 39.0 (CH₂), 76.6 (CH), 85.7 (CH), 122.7 (CH), 126.3 (CH), 126.9 (CH), 128.5 (CH), 128.7 (CH), 129.0 (CH), 129.9 (CH), 137.7 (C), 138.4 (C), 139.6 (C), 169.0 (C=O); EI-HRMS calcd for C₁₇H₁₆NO₂ (M–H)⁺ 266.11810, found 266.11836. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (>99% ee); mp 123.5–124.5 °C; Anal. Calcd for C₁₇H₁₇NO₂: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.20; H, 6.31; N, 5.17.

Determination of enantiomeric excess of 5g: Methyl (S)-3-hydroxy-3-(3-methylphenyl)propionate (9g).⁹

According to the procedure for the preparation of **9a**, **9g** was prepared from **5g** (72.4 mg, 0.27 mmol), AcCl (0.14 mL, 2 mmol) and MeOH (2 mL). The crude product was purified by column chromatography (silica gel, 6:1 hexane/EtOAc) to provide **9g** (28.9 mg, 96%) as a colorless oil; TLC $R_f = 0.43$ (2:1 hexane/EtOAc); $[\alpha]_D^{20}$ –43.7 (*c* 1.00, CHCl₃) for 92% ee; ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H, Ar–CH₃), 2.71 (dd, J = 3.6, 16.3 Hz, 1H, C2–H), 2.77 (dd, J = 9.1, 16.3 Hz, 1H, C2–H), 3.17 (br, 1H, OH), 3.74 (s, 3H, OCH₃), 5.11 (dd, J = 3.6, 9.1 Hz, 1H, C3–H), 7.09–7.27 (m, 4H, *Ar*). The enantiomeric excess of **9g** was determined to be 92% by HPLC with a Chiralcel OD-H column (19:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 14.4$ min for major enantiomer; $t_R = 24.7$ min for minor enantiomer. The preferred absolute configuration of **5g** was not determined.

(2S*,6S*)-6-(3-Chlorophenyl)-2-phenyl-1,3-oxazinan-4-one (5h).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5h** was prepared from diene **2a** (78.4 mg, 0.30 mmol), *m*-chlorobenzaldehyde (**3h**) (78.3 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5h** (79.0 mg, 92%) as a white solid; mp 144.0–145.0 °C; TLC $R_f = 0.27$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{20}$ –34.0 (*c* 1.02, CHCl₃) for 92% ee; IR (KBr) 3167, 1656, 1473 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.71 (dd, J = 11.2, 17.4 Hz, 1H, C5–*H*), 2.79 (dd, J = 4.5, 17.4 Hz, 1H, C5–*H*), 5.02 (dd, J = 4.5, 11.2 Hz, 1H, C6–*H*), 5.92 (s, 1H, C2–*H*), 6.35 (br, 1H, N*H*), 7.30–7.53 (m, 9H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 38.9 (CH₂), 75.8 (CH), 85.7 (CH), 123.7 (CH), 125.8 (CH), 126.9 (CH), 128.4 (CH), 128.9 (CH), 129.94 (CH), 129.99 (CH), 134.6 (C), 137.5 (C), 141.7 (C), 168.5 (C=O); EI-HRMS calcd for C₁₆H₁₃NO₂Cl (M–H)⁺ 286.0713, found 286.0634. The enantiomeric excess of **5h** was determined to be 92% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 16.3$ min for major enantiomer; $t_R = 17.4$ min for minor enantiomer. The preferred absolute configuration of **5h** was not determined. A sample for combustion analysis was obtained by recrystallizations from 1:3 hexane/EtOAc as colorless needles (95% ee); mp 144.5–145.0°C; Anal. Calcd for C₁₆H₁₄NO₂Cl: C, 66.79; H, 4.90; N, 4.87; Cl, 12.32. Found: C, 66.90; H, 4.87; N, 4.90; Cl, 12.12.

(2S*,6S*)-6-(4-Methylphenyl)-2-phenyl-1,3-oxazinan-4-one (5i).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5i** was prepared from diene **2a** (78.4 mg, 0.30 mmol), *p*-anisaldehyde (**3i**) (61.2 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)_4·3H_2O (1) (4.30 mg, 0.003 mmol, 1 mol %) at 30 °C. The

crude product was purified by column chromatography (silica gel, 1:2 hexane/EtOAc) to provide **5i** (54.4 mg, 64%) as a white solid; mp 140.5–141.5 °C; TLC $R_f = 0.53$ (1:3 hexane/EtOAc); $[\alpha]_D^{21}$ –25.0 (*c* 1.01, CHCl₃) for 92% ee; IR (KBr) 3174, 1668, 1613, 1251 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.76–2.80 (m, 2H, C5–*H*), 3.80 (s, 3H, ArOC*H*₃), 4.98 (dd, *J* = 4.5, 10.4 Hz, 1H, C6–*H*), 5.92 (s, 1H, C2–*H*), 6.20 (br, 1H, N*H*), 6.89–6.92 (m, 2H, *Ar*), 7.32–7.52 (m, 7H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 38.9 (CH₂), 55.2 (CH₃), 76.3 (CH), 85.6 (CH), 114.0 (CH), 126.8 (CH), 127.1 (CH), 128.7 (CH), 129.8 (CH), 131.7 (C), 137.8 (C), 159.5 (C), 169.1 (C=O); EI-HRMS calcd for C₁₇H₁₆NO₃ (M–H)⁺ 283.12084, found 283.1062. The enantiomeric excess of **5i** was determined to be 92% by HPLC with a Chiralpak AD-H column (3:1 hexane/*i*-PrOH, 1.0 mL/min): *t*_R = 10.4 min for minor enantiomer; *t*_R = 17.2 min for major enantiomer. The preferred absolute configuration of **5i** was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (91% ee); mp 141.0–142.0 °C; Anal. Calcd for C₁₇H₁₈NO₃: C, 72.07; H, 6.05; N, 4.94. Found: C, 71.91; H, 5.93; N, 4.91.

(2S,6S)-2-Phenyl-6-phenylethynyl-1,3-oxazinan-4-one (5j).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5j** was prepared from diene **2a** (78.4 mg, 0.30 mmol), phenylpropargylaldehyde (**3j**) (58.6 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %) at

0 °C. The crude product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide 5j (82.1 mg, 99%) as a white solid; mp 200–201 °C; TLC $R_f = 0.28$ $(2:1 \text{ CHCl}_3/\text{EtOAc}); [\alpha]_D^{21} - 42.7 (c \ 1.02, \text{ CHCl}_3) \text{ for } 95\% \text{ ee; IR (KBr) } 2234, 1672 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (400 MHz, CDCl₃) δ 2.82 (dd, J = 4.0, 11.3 Hz, 1H, C5–H), 2.97 (dd, J = 11.3, 17.2 Hz, 1H, C5–H), 4.98 (dd, J = 4.0, 17.2 Hz, 1H, C6–H), 5.82 (s, 1H, C2–H), 6.20 (br, 1H, NH), 7.28–7.36 (m, 3H, Ar), 7.43–7.52 (m, 7H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 38.0 (CH₂), 65.9 (CH), 85.1 (C), 85.7 (CH), 87.0 (C), 121.6 (C), 127.1 (CH), 128.3 (CH), 128.9 (CH), 129.0 (CH), 130.2 (CH), 131.9 (CH), 137.0 (C), 167.8 (C=O); EI-HRMS calcd for C₁₈H₁₄NO₂ $(M-H)^+$ 276.1024, found 276.1015. The enantiomeric excess of 5j was determined to be 95% by HPLC with a Chiralcel OD-H column (1:1 hexane/*i*-PrOH, 1.0 mL/min): t_R (minor) = 8.2 min for (2R,6R)-enantiomer; t_R (major) = 14.1 min for (2S,6S)-enantiomer. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (98% ee); mp 208.0–209.0 °C; Anal. Calcd for C₁₈H₁₅NO₂: C, 77.96; H, 5.45; N, 5.05. Found: C, 77.96; H, 5.48; N, 5.00. In order to assign the stereochemistry at C2 and C6, NOE studies were performed on 5j. Irradiation of C2-H showed NOE with C6-H (16.8%) and the ortho proton of the phenyl group (9.8%). Additionally, irradiation of C6-H exhibited NOE with C2-H (16.2%) and C5eq-H (4.6%). These data revealed *cis* relationship between C2-H and С6-Н.

Determination of absolute configuration of 5j: Methyl (*R*)-3-hydroxy-5-phenylpentanoate (9p).¹⁰

AcCl (0.14 mL, 2 mmol) was added to MeOH (1 mL). This solution was added to a solution of **5j** (36.0 mg, 0.13 mmol, 95% ee) in MeOH (1 mL) at 0 °C. After stirring at reflux temperature for 15 h, the reaction was quenched with saturated NaHCO₃ (2 mL), and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine (2 × 3 mL), and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* to give the crude product (40 mg) as a white solid, which was purified by column chromatography (4:1 hexane/EtOAc) to afford **9j** (26.0 mg, 98%) as a colorless oil; TLC R_f = 0.49 (2:1 hexane/EtOAc); [α]_D²² +20.9 (*c* 0.90, CHCl₃) for 95% ee; ¹H NMR (400 MHz, CDCl₃) δ 2.87 (m, 2H, C2–*H*), 3.12 (d, *J* = 6.3 Hz, 1H, O*H*), 3.77 (s, 3H, OC*H*₃), 5.00 (m, 1H, C3–*H*), 7.29–7.33 (m, 3H, *Ar*), 7.42–7.44 (m, 2H, *Ar*).

To a solution of **9j** in MeOH (2 mL) was added 10% Pd/C (10 mg), and the resulting mixture was stirred under hydrogen at atmospheric pressure at 23 °C for 2 h. The reaction mixture was then filtered through a plug of Celite, and the Celite filter cake was washed with MeOH (5 mL). The filtrate was concentrated *in vacuo*, and the residue was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to afford **9p** (25.2 mg, 97%) as a colorless oil; TLC $R_f = 0.45$ (2:1 hexane/EtOAc); $[\alpha]_D^{22} + 2.0$ (*c* 1.01, CHCl₃) for 95% ee [lit.,¹⁰ $[\alpha]_D - 2.68$ (*c* 0.67, CHCl₃) for (*S*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 1.74 (m, 1H, C4–*H*), 1.80–1.90 (m, 2H, C4–*H*), 2.46 (dd, *J* = 8.6, 16.8 Hz, 1H, C2–*H*), 2.51 (dd, *J* = 3.6, 16.8 Hz, 1H, C2–*H*), 2.66–2.74 (m, 1H, C5–*H*), 2.79–2.86 (m, 1H, C5–*H*), 3.01 (br, 1H, OH), 3.71 (s, 3H, OCH₃), 3.99–4.04 (m, 1H, C3–*H*), 7.17–7.22 (m, 2H, *Ar*), 7.26–7.31 (m, 2H, *Ar*), 7.37 (m, 1H, *Ar*). This product **9p** exhibited spectroscopic data identical to (*S*)-**9p**¹⁰, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of **5j** was determined to be (2*S*,6*S*).

(2*S**,6*S**)-6-(2-Heptynyl)-2-phenyl-1,3-oxazinan-4-one (5k)

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5k** was prepared from diene **2a** (78.4 mg, 0.30 mmol), 2-octynal (**3k**) (56.0 mg, 0.45 mmol), and $Rh_2(S-BPTPI)_4\cdot 3H_2O$ (**1**) (4.3 mg, 0.003 mmol, 1 mol %) at 0 °C. The

crude product was purified by column chromatography (silica gel, 2:1 hexane/EtOAc) to provide 5k (76.5 mg, 94%) as a white solid; mp 138.0–139.0 °C; TLC $R_f = 0.52$ (1:3 hexane/EtOAc); $[\alpha]_{D}^{22}$ -34.8 (c 1.06, CHCl₃) for 96% ee; IR (KBr) 2251, 1677 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, J = 7.2 Hz, 3H, CH₂CH₃), 1.19–1.29 (m, 4H, $CH_2CH_2CH_3$), 1.38–1.45 (m, 2H, C \equiv CCH₂CH₂), 2.11 (m, 2H, C \equiv CCH₂), 2.49 (dd, J = 2.3, 17.1 Hz, 1 H, C5–*H*), 2.59 (dd, *J* = 11.3, 17.1 Hz, 1H, C5–*H*), 4.56 (dd, *J* = 2.2, 11.3 Hz, 1H, C6–*H*), 5.59 (s, 1H, C2–*H*), 7.27–7.36 (m, 6H, N*H* and *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 13.8 (CH₃), 18.5 (CH₂), 22.0 (CH₂), 27.8 (CH₂), 30.8 (CH₂), 38.1 (CH₂), 65.4 (CH), 76.5 (C), 85.2 (CH), 88.2 (C), 126.9 (CH), 128.6 (CH), 129.8 (CH), 137.1 (C) 168.3 (C=O); EI-HRMS calcd for $C_{17}H_{20}NO_2$ (M–H)⁺ 270.14940, found 270.14975. The enantiomeric excess of **5**k was determined to be 96% by HPLC with a Chiralpak AD-H column (19:1 hexane/i-PrOH, 1.0 mL/min): $t_R = 21.1$ min for minor enantiomer; $t_R = 30.4$ min for major enantiomer. The preferred absolute configuration of 5k was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (98% ee); mp 139.0–139.5 °C; Anal. Calcd for C₁₇H₂₁NO₂: C, 75.25; H, 7.80; N, 5.16. Found: C, 74.90; H, 7.59; N. 5.22.

(2S,6S)-6-Benzyloxymethyl-2-phenyl-1,3-oxazinan-4-one (5l).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **51** was prepared from diene **2a** (78.4 mg, 0.30 mmol), benzyloxyacetaldehyde (**31**) (67.8 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.3 mg, 0.003 mmol, 1 mol %) at 0 °C. The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **51** (65.7 mg, 86%) as a white solid; mp 69.0–70.0 °C; TLC $R_f = 0.23$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{19}$ –19.6 (*c* 1.18, CHCl₃) for 97% ee; IR (KBr) 3256, 1668, 1642 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.48 (dd, J = 4.1, 17.4 Hz, 1H, C5–*H*), 2.56 (dd, J = 11.0, 17.4 Hz, 1H, C5–*H*), 3.57 (dd, J = 4.1, 10.5 Hz, 1H, CHC*HHO*), 3.65 (dd, J = 5.9, 10.5 Hz, 1H, CHC*HHO*), 4.22 (m, 1H, C6–*H*), 4.55 (d, J = 12.4 Hz, 1H, OC*H*HPh), 4.59 (d, J = 12.4 Hz, 1H, OC*HH*Ph), 5.76 (s, 1H, C2–*H*), 6.19 (br, 1H, N*H*), 7.28–7.47 (m, 10H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 33.8 (CH₂), 71.6 (CH₂), 73.4 (CH₂), 74.2 (CH), 85.4 (CH), 126.8 (CH), 127.69 (CH), 127.74 (CH), 128.4 (CH), 128.8 (CH), 129.8 (CH), 137.5 (C), 137.6 (C), 168.9 (C=O); EI-HRMS calcd for C₁₈H₁₈NO₃ (M–H)⁺ 296.1287, found 296.1272. The enantiomeric excess of **51** was determined to be 97% by HPLC with a Chiralcel OD-H column (3:1 hexane/*i*-PrOH, 1.0 mL/min): *t*_R (minor) = 14.9 min for (2*R*,6*R*)-enantiomer; *t*_R (major) = 21.4 min for (2*S*,6*S*)-enantiomer. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (92% ee); mp 70.5–71.5 °C; Anal. Calcd for C₁₈H₁₉NO₃: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.58; H, 6.36; N, 4.70.

Determination of absolute configuration of 51: Methyl (S)-4-benzyloxy-3-hydroxybutyrate (91).⁷

According to the procedure for the preparation of **9a**, **9l** was prepared from **5l** (49.8 mg, 0.17 mmol, 97% ee), AcCl (0.14 mL, 2 mmol) and MeOH (2 mL). The crude product was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to provide **9l** (30.3 mg, 81%) as a colorless oil; TLC $R_f = 0.40$ (1:1 hexane/EtOAc); $[\alpha]_D^{19} - 11.0$ (*c* 1.51, CHCl₃) for 97% ee [lit.,⁷ $[\alpha]_D^{20} - 9.49$ (*c* 1.00, CHCl₃) for 86% ee]; ¹H NMR (400 MHz, CDCl₃) δ 2.56 (d, J = 6.3 Hz, 2H, C2–*H*), 2.95 (br, 1H, O*H*), 3.50 (ddd, J = 5.9, 9.5, 15.4 Hz, 2H, C4–*H*), 3.70 (s, 3H, OC*H*₃), 4.25 (m, 1H, C3–*H*), 4.56 (s, 2H, PhC*H*₂O), 7.28–7.38 (m, 5H, *Ar*). This product **9l** exhibited spectroscopic data identical to (*S*)-**9l**⁷. Thus, the preferred absolute stereochemistry of **5l** was determined to be (2*S*,6*S*).

(2*S**,6*S**)-6-Furyl-2-phenyl-1,3-oxazinan-4-one (5m).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5m** was prepared from diene **2a** (78.4 mg, 0.30 mmol), furfural (**3m**) (43.2 mg, 0.45 mmol), and $\mathbb{R}h_2(S\text{-BPTPI})_4$ ·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5m** (67.8 mg, 93%) as a white solid; mp 177.0–178.5 °C; TLC $R_f = 0.51$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{21}$ +6.57 (*c* 1.09, CHCl₃) for 95% ee; IR (KBr) 3176, 2923, 1672, 1396 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.73 (dd, J = 3.6, 17.2 Hz, 1H, C5–H), 3.09 (dd, J = 11.8, 17.2 Hz, 1H,

C5–*H*), 5.08 (dd, J = 3.6, 11.8 Hz, 1H, C6–*H*), 5.92 (s, 1H, C2–*H*), 6.27 (br, 1H, N*H*), 6.37–6.43 (m, 2H, *Ar*), 7.40–7.50 (m, 6H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 35.0 (CH₂), 70.0 (CH), 85.7 (CH), 108.6 (CH), 110.4 (CH), 127.0 (CH), 128.9 (CH), 130.1 (CH), 137.3 (C), 143.2 (CH), 151.3 (C), 168.5 (C=O); EI-HRMS calcd for C₁₄H₁₂NO₃ (M–H)⁺ 242.0895, found 242.0819. The enantiomeric excess of **5m** was determined to be 95% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): *t*_R = 32.9 min for minor enantiomer; *t*_R = 37.9 min for major enantiomer. The preferred absolute configuration of **5m** was not determined.

(2S*,6S*)-2-Phenyl-6-(2-thienyl)-1,3-oxazinan-4-one (5n).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5n** was prepared from diene **2a** (78.4 mg, 0.30 mmol), 2-thiophencarbaldehyde (**3n**) (50.5 mg, 0.45 mmol), and Rh₂(*S*-BPTPI)₄·3H₂O (**1**) (4.30 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5n** (63.1 mg, 81%) as a white solid; mp 159.0–160.0 °C; TLC $R_f = 0.51$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{21}$ +10.3 (*c* 1.03, CHCl₃) for 96% ee; IR (KBr) 3170, 2921, 1662, 1354 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.88 (dd, J = 4.1, 17.2 Hz, 1H, C5–*H*), 2.97 (dd, J = 11.3, 17.2 Hz, 1H, C5–*H*), 5.28 (dd, J = 4.1, 11.3 Hz, 1H, C6–*H*), 5.94 (s, 1H, C2–*H*), 6.24 (br, 1H, N*H*), 6.99–7.09 (m, 2H, *Ar*), 7.31–7.52 (m, 6H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 38.9 (CH₂), 72.7 (CH), 85.7 (CH), 125.0 (CH), 126.0 (CH), 126.8 (CH), 126.9 (CH), 128.9 (CH), 130.1 (C), 137.4 (CH), 142.2 (C), 168.2 (C=O); EI-HRMS calcd for C₁₄H₁₂NO₂S (M–H)⁺ 258.0667, found 258.0587. The enantiomeric excess of **5n** was determined to be 96% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 22.3$ min for minor enantiomer; $t_R = 24.4$ min for major enantiomer. The preferred absolute configuration of **5n** was not determined.

(2S,6S)-2-Phenyl-6-[(E)-2-phenylethenyl]-1,3-oxazinan-4-one (50)

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **50** was prepared from diene **2a** (78.4 mg, 0.30 mmol), (*E*)-cinnamaldehyde (**30**) (59.4 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.3 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **50** (73.7 mg, 88%) as a white solid; mp 138.0–139.5 °C; TLC $R_f = 0.31$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{22}$ –21.2 (*c* 1.17, CHCl₃) for 96% ee; IR (KBr) 3179, 1670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.66–2.68 (m, 2H, C5–*H*), 4.67 (m, 1H, C6–*H*), 5.86 (s, 1H, C2–*H*), 6.19 (br, 1H, N*H*), 6.26 (dd, *J* = 6.3, 15.9 Hz, 1H, C*H*=CHPh), 6.68 (d, *J* = 15.9 Hz, 1H, CH=C*H*Ph), 7.24–7.28 (m, 1H, *Ar*), 7.30–7.34 (m, 2H, *Ar*), 7.38–7.40 (m, 2H, *Ar*), 7.43–7.45 (m, 3H, *Ar*), 7.49–7.52 (m, 2H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 37.2 (CH₂), 75.2 (CH), 85.3 (CH),

126.5 (CH), 126.8 (CH), 126.9 (CH), 128.1 (CH), 128.5 (CH), 128.7 (CH), 129.8 (CH), 132.2 (CH), 135.8 (C), 137.5 (C), 169.1 (C=O); EI-HRMS calcd for $C_{18}H_{17}NO_2$ (M)⁺ 279.1259, found 279.1255. The enantiomeric excess of **50** was determined to be 96% by HPLC with a Chiralpak AD-H column (3:1 hexane/*i*-PrOH, 1.0 mL/min): t_R (minor) = 8.2 min for (2*R*,6*R*)-enantiomer; t_R (major) = 9.3 min for (2*S*,6*S*)-enantiomer. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (99% ee); mp 138.5–139.5 °C; Anal. Calcd for $C_{18}H_{17}NO_2$: C, 77.40; H, 6.13; N, 5.01. Found: C, 76.42; H, 6.10; N, 5.05.

Determination of absolute configuration of 50: Methyl (*R*)-3-hydroxy-5-phenylpentanoate (9p).¹⁰

AcCl (0.14 mL, 2 mmol) was added to MeOH (1 mL). This solution was added to a solution of **50** (40 mg, 0.13 mmol, 96% ee) in MeOH (1 mL) at 0 °C. After stirring at reflux temperature for 3 h, the reaction was quenched with saturated NaHCO₃ (2 mL), and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine (2 × 3 mL), and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* to give the crude product (40 mg) as yellow oil, which was purified by column chromatography (4:1 hexane/EtOAc) to afford **90** (7.5 mg, 26%) as a colorless oil; TLC $R_f = 0.24$ (2:1 hexane/EtOAc); $[\alpha]_D^{18}$ –1.2 (*c* 0.38, CHCl₃) for 96% ee; ¹H NMR (400 MHz, CDCl₃) δ 2.56 (dd, J = 5.0, 15.0 Hz, 1H, C2–H), 2.71 (dd, J = 8.2, 15.0 Hz, 1H, C2–H), 3.70 (s, 3H, OCH₃), 4.22 (ddd, J = 5.0, 7.7, 8.2, Hz, 1H, C3–H), 6.07 (dd, J = 7.7, 15.8 Hz, 1H, C4–H), 6.62 (d, J = 15.8 Hz, 1H, C5–H), 7.24–7.42 (m, 5H, Ar).

To a solution of **90** in MeOH (2 mL) was added 10% Pd/C (10 mg), and the resulting mixture was stirred under hydrogen at atmospheric pressure at 23 °C for 2 h. The reaction mixture was then filtered through a plug of Celite, and the Celite filter cake was washed with MeOH (5 mL). The filtrate was concentrated *in vacuo*, and the residue was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to afford **9p** (7.4 mg, 97%) as a colorless oil; $[\alpha]_D^{22}$ +1.8 (*c* 0.37, CHCl₃) for 96% ee [lit.,¹⁰ $[\alpha]_D$ –2.68 (*c* 0.67, CHCl₃) for (*S*)-enantiomer]. This product **9p** exhibited spectroscopic data identical to (*S*)-**9p**¹⁰, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of **50** was determined to be (2*S*,6*S*).

(2S,6R)-2-Phenyl-6-(2-phenylethyl)-1,3-oxazinan-4-one (5p).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5p** was prepared from diene **2a** (78.4 mg, 0.30 mmol), hydrocinnamaldehyde (**3p**) (60.3 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.3 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5p** (80.0 mg, 95%) as a white solid; mp 128.0–129.5 °C; TLC $R_f = 0.36$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{22}$ +22.6 (*c* 1.17, CHCl₃) for 92% ee; IR (KBr) 3250, 1664, 1633 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.89 (m, 1H, C*H*HCH₂Ph), 2.04 (m, 1H, CH*H*CH₂Ph), 2.40–2.50 (m, 2H, C5–*H*), 2.70–2.85 (m, 2H, CH₂C*H*₂Ph), 3.90 (m, 1H, C6–*H*), 5.69 (s, 1H, C2–*H*), 6.20 (br, 1H, N*H*), 7.17–7.23 (m, 3H, *Ar*), 7.28–7.32 (m, 2H, *Ar*), 7.43–7.49 (m, 5H, *Ar*); ¹³C NMR (100 MHz, CDCl₃) δ 31.0 (CH₂), 36.8 (CH₂), 37.3 (CH₂), 73.8 (CH), 85.4 (CH), 126.0 (CH), 126.7 (CH), 128.36 (CH), 128.42 (CH), 128.8 (CH), 129.7 (CH), 137.9 (C), 141.0 (C), 169.3 (C=O); EI-HRMS calcd for C₁₈H₁₉NO₂ (M)⁺ 281.1416, found 281.1409. Anal. Calcd for C₁₈H₁₉NO₂: C, 76.84; H, 6.81; N, 4.98. Found: C, 76.79; H, 6.86; N, 4.97. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (95% ee); mp 128.5–129.5 °C; Anal. Calcd for C₁₈H₁₉NO₂: C, 76.84; H, 6.81; N, 4.98. Found: C, 76.75; H, 6.83; N, 5.01.

Determination of absolute configuration and enantiomeric excess of 5p: Methyl (*R*)-3-hydroxy-5-phenylpentanoate (9p).¹⁰

According to the procedure for the preparation of **9a**, **9p** was prepared from **5p** (40.0 mg, 0.14 mmol, 92% ee), AcCl (0.14 mL, 2 mmol) and MeOH (2 mL). The crude product was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to provide **9p** (23.6 mg, 83%) as a colorless oil; $[\alpha]_D^{19}$ +1.9 (*c* 1.09, CHCl₃) for 92% ee [lit.,¹⁰ $[\alpha]_D$ –2.68 (*c* 0.67, CHCl₃) for (*S*)-enantiomer]. The enantiomeric excess of **9p** was determined to be 92% by HPLC with a Chiralcel OD-H column (19:1 hexane/*i*-PrOH, 1.0 mL/min): t_R (minor) = 19.2 min for (*S*)-enantiomer; t_R (major) = 21.4 min for (*R*)-enantiomer. This product **9p** exhibited spectroscopic data identical to (*S*)-**9p**¹⁰, except for the sign of optical rotation. Thus, the preferred absolute stereochemistry of **5p** was determined to be (2*S*,6*R*).

(2S*,6R*)-2-Phenyl-6-propyl-1,3-oxazinan-4-one (5q).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5q** was prepared from diene **2a** (78.4 mg, 0.30 mmol), butyraldehyde (**3q**) (64.9 mg, 0.90 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.3 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5q** (60.2 mg, 92%) as a white solid; mp 92.0–93.0 °C; TLC R_f = 0.35 (1:1 CHCl₃/EtOAc); [α]_D²² –16.7 (*c* 1.22, CHCl₃) for 93% ee; IR (KBr) 3212, 1658, 1623 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, *J* = 7.4 Hz, 3H, CH₃), 1.37–1.58 (m, 3H, CHHCH₂), 1.63–1.73 (m, 1H, CHHCH₂), 2.32–2.44 (m, 2H, C5–H), 3.94 (m, 1H, C6–H), 5.72 (s, 1H, C2–H), 6.65 (br, 1H, NH),

7.36–7.46 (m, 5H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.7 (CH₃), 18.0 (CH₂), 37.2 (CH₂),

37.4 (CH₂), 74.5 (CH), 85.1 (CH), 126.6 (CH), 128.5 (CH), 129.4 (CH), 137.9 (C), 169.6 (C=O); EI-HRMS calcd for $C_{13}H_{17}NO_2$ (M)⁺ 219.1259, found 219.1267. The enantiomeric excess of **5q** was determined to be 93% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): t_R = 9.2 min for minor enantiomer; t_R = 11.1 min for major enantiomer. The preferred absolute configuration of **5q** was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (93% ee); mp 93.0–94.0 °C; Anal. Calcd for $C_{13}H_{17}NO_2$: C, 71.21; H, 7.81; N, 6.39. Found: C, 71.19; H, 7.86; N, 6.37.

(2S*,5S*,6S*)-5-Methyl-2-phenyl-6-phenylethynyl-1,3-oxazinan-4-one (5r).

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5r** was prepared from diene **2d** (82.6 mg, 0.30 mmol), phenylpropargylaldehyde (**3j**) (58.6 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.3 mg, 0.003 mmol, 1 mol %) at

0 °C. The crude product was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to provide **5r** (82.9 mg, 95%) as a white solid; mp 173–175 °C; TLC $R_f = 0.26$ $(2:1 \text{ CHCl}_3/\text{EtOAc}); [\alpha]_{D}^{21} - 15.5 (c 1.01, \text{ CHCl}_3) \text{ for } 91\% \text{ ee}; \text{ IR (KBr) } 2236, 1665 \text{ cm}^{-1}; ^{1}\text{H}$ NMR (400 MHz, CDCl₃) δ 1.61 (d, *J* = 7.2 Hz, 3H, C5–CH₃), 2.74 (dq, *J* = 3.2, 7.2 Hz, 1H, C5-H), 5.10 (d, J = 3.2 Hz, 1H, C6-H), 5.84 (s, 1H, C2-H), 6.08 (br, 1H, NH), 7.29-7.36 (m, 3H, Ar), 7.42–7.51 (m, 7H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.7 (CH₃), 40.5 (CH), 69.4 (CH), 83.8 (C), 85.5 (CH), 88.3 (C), 121.8 (C), 127.0 (CH), 128.2 (CH), 128.8 (CH), 128.9 (CH), 130.0 (CH), 131.8 (CH), 137.3 (C), 172.5 (C=O); EI-HRMS calcd for $C_{19}H_{17}NO_2 (M)^+$ 291.1259, found 291.1259. The enantiomeric excess of 5r was determined to be 91% by HPLC with a Chiralcel OD-H column (1:1 hexane/*i*-PrOH, 1.0 mL/min): $t_{\rm R} = 7.2$ min for minor enantiomer; $t_{\rm R} = 13.9$ min for major enantiomer. A sample for combustion analysis was obtained by recrystallizations from 4:1 hexane/EtOAc as colorless needles (96% ee); mp 184.0–185.0 °C; Anal. Calcd for C₁₉H₁₇NO₂: C, 78.33; H, 5.88; N, 4.81. Found: C, 78.27; H, 5.97; N, 4.78. In order to assign the stereochemistry at C2, C5 and C6, NOE studies were performed on 5r. Irradiation of C2-H showed NOE with C6-H (15.4%) and the ortho proton of the phenyl group (10.3%). Irradiation of C5-H exhibited NOE with C6-H (8.4%) and C5-Me (5.7%). Irradiation of C6-H showed NOE with C2-H (15.4%) and C5-H (8.6%). These data revealed *cis* relationship between C2–H, C5–H and C6–H. The preferred absolute configuration of 5r was not determined.

(2S*,5S*,6S*)-5-Methyl-2-phenyl-6-(1-heptenyl)-1,3-oxazinan-4-one (5s)

According to the general procedure for asymmetric HDA reaction of 2-aza-3-silyloxydienes with aldehydes, **5s** was prepared from diene **2d** (82.6 mg, 0.30 mmol), 2-octynal (**3k**) (55.9 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (**1**) (4.3 mg, 0.003 mmol, 1 mol %) at 0 °C. The crude product was purified by column chromatography (silica gel 2:1

crude product was purified by column chromatography (silica gel, 2:1 hexane/EtOAc) to

provide **5s** (76.2 mg, 89%) as a white solid; mp 109.5–110.5 °C; TLC $R_f = 0.53$ (1:3 hexane/EtOAc); $[\alpha]_D^{20}$ –14.2 (*c* 1.18, CHCl₃) for 92% ee; IR (KBr) 2236, 1665 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, J = 6.7 Hz, 3H, CH₂CH₃), 1.28–1.39 (m, 4H, CH₂CH₂CH₂CH₃), 1.50–1.54 (m, 5H, C5–CH₃ and C=CCH₂CH₂), 2.24 (dt, J = 1.8, 7.1 Hz, 2H, C=CCH₂), 2.62 (dq, J = 3.5, 10.8 Hz, 1H, C5–H), 4.86 (dt, J = 1.8, 3.5 Hz, 1H, C6–H), 5.77 (s, 1H, C2–H), 5.85 (br, 1H, NH), 7.40–7.47 (m, 5H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.5 (CH₃), 13.9 (CH₃), 18.6 (CH₂), 22.0 (CH₂), 27.9 (CH₂), 30.9 (CH₂), 40.5 (CH), 69.0 (CH), 74.9 (C), 85.3 (CH), 89.6 (C), 126.9 (CH), 128.6 (CH), 129.8 (CH), 137.4 (C), 172.8 (C=O); EI-HRMS calcd for C₁₈H₂₂NO₂ (M-H)⁺ 284.16505, found 284.16485; The enantiomeric excess of **5s** was determined to be 92% by HPLC with a Chiralcel OD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 10.3$ min for minor enantiomer; $t_R = 14.3$ min for major enantiomer. The preferred absolute configuration of **5s** was not determined. A sample for combustion analysis was obtained by recrystallizations from 4:1 hexane/EtOAc as colorless needles (97% ee); mp 110.0–110.5 °C; Anal. Calcd for C₁₈H₂₃NO₂: C, 75.76; H, 8.12; N, 4.91. Found: C, 75.56; H, 7.89; N, 4.93.

(2*R**,5*R**,6*R**)-5-Methyl-2-phenyl-6-(1-propynyl)-1,3-oxazinan-4-one (5t)

To a solution of diene **2d** (110 mg, 0.40 mmol) and $Rh_2(R$ -BPTPI)₄·3H₂O (8) (5.7 mg, 0.004 mmol, 1 mol %) in CH₂Cl₂ (0.4 mL) was added *ca*. 1.5 M solution of 2-butynal (**3r**)¹¹ in CH₂Cl₂ (0.4 mL) added at -10 °C. After stirring at this temperature for 24 h, MeOH (ca. 0.1 mL) was added and the

mixture was stirred for an additional 0.5 h. The mixture was concentrated in vacuo furnished the crude product (150 mg) as a purple solid, which was purified by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) to give **5t** (83.5 mg, 91%) as a white solid; mp 196.0–197.5 °C; TLC $R_f = 0.43$ (1:1 CHCl₃/EtOAc); $[\alpha]_D^{17} + 13.2$ (*c* 1.08, CHCl₃) for 93% ee; IR (KBr) 3169, 1675, 1480 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (d, J = 7.2 Hz, 3H, C5–CH₃), 1.87 (d, J= 2.3 Hz, 3H, C \equiv CCH₃), 2.54 (m, 1H, C5–H), 4.80 (m, 1H, C6–H), 5.74 (s, 1H, C2–H), 6.64 (br, 1H, NH), 7.38–7.45 (m, 5H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 3.7 (CH₃), 13.6 (CH₃), 40.6 (CH), 69.2 (CH), 74.1 (C), 85.3 (C), 85.4 (CH), 128.0 (CH), 128.8 (CH), 130.0 (CH), 137.3 (C), 172.7 (C=O); EI-HRMS calcd for $C_{14}H_{14}NO_2 (M-H)^+$ 228.1103, found 228.1020. The enantiomeric excess of 5t was determined to be 93% by HPLC with a Chiralpak AD-H column (9:1 hexane/*i*-PrOH, 1.0 mL/min): $t_R = 11.0$ min for major enantiomer; $t_R = 20.3$ min for minor enantiomer. The preferred absolute configuration of 5t was not determined. A sample for combustion analysis was obtained by recrystallizations from *i*-PrOH as colorless needles (91% ee); mp 196.5–197.5 °C; Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.57; H, 6.64; N, 6.15. In order to assign the stereochemistry at C2, C5 and C6, NOE studies were performed on 5t. Irradiation of C2-H showed NOE with C6-H (9.1%) and the ortho proton of the phenyl group (4.2%). Irradiation of C5-H exhibited NOE with C6-H (5.2%) and C5-Me (4.6%). Irradiation of C6-H showed NOE with C2-H (6.6%) and C5-H (6.0%). These data revealed *cis* relationship between C2–H, C5–H and C6–H.

(2S*,3S*)-3-Hydroxy-2-methyl-N-(2-propenyl)hexanamide (7).

To a solution of **5t** (70.0 mg, 0.31 mmol) in EtOAc (2 mL) was added 10% Pd/C (35 mg), and the resulting mixture was stirred under hydrogen at atmospheric pressure at 23 °C for 1 h. The reaction mixture was then filtered through a plug of Celite, and the Celite filter cake was washed with EtOAc (5 mL). The filtrate was concentrated *in vacuo*, and the residue was purified by column chromatography (silica gel, 1:1 hexane/EtOAc) to afford **10** (65.4 mg, 94%) as a white solid; mp 78.5–80.0 °C; TLC $R_f = 0.47$ (1:3 hexane/EtOAc); $[\alpha]_D^{19} +1.02$ (*c* 1.03, CHCl₃) for 93% ee; ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, J = 7.2 Hz, 3H, CH₂H₂CH₃), 1.25–1.69 (m, 7H, CH₂H₂CH₃ and C5–CH₃), 2.46 (m, 1H, C5–H), 3.99 (m, 1H, C6–H), 5.73 (s, 1H, C2–H), 6.06 (br, 1H, NH), 7.40–7.45 (m, 5H, Ar).

To a suspension of NaH (10.8 mg, 0.45 mol) in DMF (1 mL) was added a solution of **10** (64.0 mg, 0.27 mmol) and allyl bromide (54.4 mg, 0.45 mmol) at 0 °C. After stirring at 23 °C for 1 h, the reaction was quenched with saturated aqueous NH₄Cl (1 mL), and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine (2 × 3 mL), and dried over anhydrous Na₂SO₄. Filtration and evaporation *in vacuo* followed by column chromatography (silica gel, 3:1 hexane/EtOAc) provided **11** (70.8 mg, 96%) as a colorless oil; TLC R_f = 0.46 (2:1 hexane/EtOAc); [α]_D²¹ –69.3 (*c* 1.05, CHCl₃) for 93% ee; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, *J* = 7.2 Hz, 3H, CH₂H₂CH₃), 1.32–1.64 (m, 7H, CH₂H₂CH₃ and C5–CH₃), 2.54 (ddd, *J* = 2.3, 7.2, 14.5 Hz, 1H, C5–H), 3.03 (ddt, *J* = 1.4, 7.2, 15.4 Hz, 1H, N–CHH), 3.94 (m, 1H, C6–H), 4.38 (ddt, *J* = 1.8, 4.5, 15.4 Hz, 1H, N–CHH), 4.88 (dd, *J* = 1.4, 17.2 Hz, 1H, NCH₂CH=CHH), 5.04 (dd, *J* = 1.4, 10.3Hz, 1H, NCH₂CH=CHH), 5.61–5.63 (m, 2H, NCH₂CH=CH₂ and C2–H), 7.35–7.41 (m, 5H, *Ar*).

To a solution of **11** (65.0 mg, 0.24 mmol) in THF (2 mL) was added a 2*N* aqueous HCl (1 mL). After stirring at 70 °C for 7 h, the reaction was quenched with saturated NaHCO₃ (2 mL), and the whole was extracted with EtOAc (20 mL). The organic layer was washed with water (3 mL) and brine (2 × 3 mL), and dried over anhydrous Na₂SO₄. Filtration and evaporation *in vacuo* followed by column chromatography (silica gel, 9:1 CHCl₃/EtOAc) provided 7 (40.4 mg, 91%) as a white solid; mp 120.0–121.5 °C; TLC R_f = 0.44 (1:1 CHCl₃/EtOAc); [α]_D¹⁸ –11.2 (*c* 1.12, CHCl₃) for 93% ee; IR (KBr) 3354, 1639, 1550 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, *J* = 7.4 Hz, 3H, C5–*H*), 1.18 (d, *J* = 7.4 Hz, 3H, C2–CH₃), 1.31–1.36 (m, 2H, C5–*H*), 1.47–1.52 (m, 2H, C5–*H*), 2.32 (ddd, *J* = 2.9, 7.4, 14.3 Hz, 1H, C2–*H*), 3.88–3.91 (m, 3H, C3–*H* and NCH₂), 5.14–5.22 (m, 2H, NCH₂CH=CH₂), 5.85 (m, 1H, NCH₂CH=CH₂), 5.99 (br, 1H,OH); ¹³C NMR (100 MHz, CDCl₃) δ 6.4 (CH₃), 11.2 (CH₃), 19.1 (CH₂), 35.6 (CH₂), 41.5 (CH₂), 44.5 (CH), 71.6 (CH), 116.2 (CH₂), 134.0 (CH), 176.5 (C=O); EI-HRMS calcd for C₁₀H₁₉NO₂ (M)⁺ 185.14158, found 185.14163. A sample for combustion analysis

was obtained by recrystallizations from 1:2 hexane/EtOAc as colorless needles; mp 120.5-121.5 °C; Anal. Calcd for C₁₀H₁₉NO₂: C, 64.83; H, 10.34; N, 7.56. Found: C, 64.53; H, 10.30; N, 7.58.

References

- 1) P. Bayard and L. Ghosez, Tetrahedron Lett., 1988, 29, 6115.
- 2) L. Ghosez, P. Bayard, V. Nshimymukiza, F. Gouverneur, R. Sainte, M. Beaudegnies, M. Rivera, A.-M. Frisque-Hesbain and C. Wynants, *Tetrahedron*, 1995, **51**, 11021.
- 3) E. W. Colvin, D. McGarry and M. J. Nugent, Tetrahedron, 1988, 44, 4157.
- 4) F. Duboudin, E. Frainnet, G. Vincon and F. Dabescat, J. Organomet. Chem. 1974, 82, 41.
- 5) M. Panunzio, E. Tamanini, E. Bandini, E. Campana, A. D'Aurizio and P. Vicennati, *Tetrahedron*, 2006, **62**, 12270.
- 6) C. Xu and C. Yuan, Tetrahedron, 2005, 61, 2169.
- 7) T. Washio, S. Nakamura, M. Anada and S. Hashimoto, Heterocycles, 2005, 66, 567.
- 8) J. H. Looker and C. H. Hayes, J. Am. Chem. Soc., 1957, 79, 745.
- 9) S. V. Raders and J. G. Verkade, J. Org. Chem., 2009, 74, 5417.
- 10) I. Obadalova, T. Pilarcik, M. Slavikova and J. Hajicek, Chirality, 2005, 17, S109.
- 11) B. Carmer, H. Harrer, K. Nakamura, D. Uemura and H.-U. Humpf, *Bioorg. Med. Chem.*, 2010, 18, 343.

5a (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	15.18	618563	49.83
2	17.28	622652	50.17

5a

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	15.31	2416	1.06
2	17.36	226185	98.94

5b (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	9.63	6837382	50.28
2	17.68	6761453	49.72

5b

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	9.72	574974	4.58
2	17.56	11987345	95.42

5c (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	15.76	334578	49.75
2	21.48	337952	50.25

5c

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	15.18	16738	2.88
2	20.63	564681	97.12

5d (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	11.33	128712	50.23
2	20.79	127514	49.77

5d

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	11.71	28601	5.05
2	20.43	538002	94.95

5e (racemate)

PeakNo.	Time (min)	Area [m V. Sec]	Area %
1	17.04	1748875	50.00
2	32.35	1748212	50.00

5e

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	17.28	21161	2.94
2	33.29	699008	97.06

5f (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	15.09	432413	49.85
2	24.13	434893	50.15

5f

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	15.05	34666	2.22
2	23.13	1526881	97.78

9g (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	14.48	446570	50.76
2	24.21	433125	49.24

9g

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	14.39	878008	4.06
2	24.66	37155	95.94

5h (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	15.92	1142620	50.00
2	17.15	1142401	50.00

5h

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	16.33	1854828	95.97
2	17.40	77886	4.03

5i (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	10.06	254511	49.80
2	16.62	256513	50.20

5i

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	10.37	28062	3.99
2	17.18	674969	96.01

5j (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	7.57	4556110	49.97
2	12.43	4561453	50.03

5j

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	8.17	53782	2.68
2	14.06	1952977	97.32

5k (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	21.12	111894	50.15
2	31.17	111237	49.85

5k

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	21.06	18751	2.00
2	30.43	916885	98.00

5l (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	14.24	542287	49.93
2	21.92	543770	50.07

51

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	14.89	2633	1.39
2	21.37	186845	98.61

5m (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	32.03	182366	49.58
2	21.92	185412	50.42

5m

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	32.88	9442	2.70
2	37.87	340778	97.30

5n (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	22.42	441738	49.33
2	24.93	453638	50.67

5n

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	22.33	46226	1.98
2	24.43	2291619	98.02

50 (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	8.15	1313541	50.21
2	9.28	1302371	49.79

50

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	8.16	60080	2.04
2	9.28	2881232	97.96

9p (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	19.03	399044	50.32
2	21.40	393938	49.68

9p

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	19.21	66123	3.87
2	21.42	1642780	96.13

5q (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	9.20	1244922	50.47
2	11.13	1221583	49.53

5q

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	9.23	36717	3.44
2	11.09	1030646	96.56

5r (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	6.92	4177546	49.89
2	12.82	4196476	50.11

5r

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	7.17	92105	4.41
2	13.86	1996462	95.59

5s (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	10.34	253278	50.06
2	14.58	252574	49.94

5s

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	10.29	47637	3.77
2	14.30	1217429	96.23

5t (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	11.13	557353	50.28
2	19.92	551208	49.72

5t

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	10.98	333129	96.46
2	20.28	12213	3.54