S1

SUPPORTING INFORMATION

Insertion of benzyne into the Pd–C bond. Synthesis of unnatural amino acid derivatives by sequential insertion of benzyne and CO: 2,2'-functionalized biaryls containing alkylamino and carboxymethyl substituents. Isolation of stable carbopalladated-benzyne intermediates

José-Antonio García López, María-José Oliva-Madrid, Isabel Saura-Llamas, Delia Bautista and José Vicente

Experimental Section

General Procedures. Melting points were determined on a Reicher apparatus and are uncorrected. Elemental analyses were carried out with a Carlo Erba 1106 microanalyzer. Exact masses were recorded on an AUTOSPEC 5000 VG mass spectrometer. IR spectra were recorded on a Perkin-Elmer 16F PC FT-IR spectrometer with Nujol mulls between polyethylene sheets. NMR spectra were recorded on a Brucker Avance 300 or 400 spectrometer, at room temperature. Chemical shifts were referenced to TMS (¹H, ¹³C{¹H}) or H₃PO₄ (³¹P{¹H}). NMR assignments were performed with the help of APT, HMQC and HMBC techniques. Chart 1 shows the atom numbering used for NMR assignments.

Chart 1. Numbering Scheme

Synthesis of [Pd(C,N-C₆H₄{(C₆H₄CH₂CMe₂NH₂-2)-2'})(μ -Cl)]₂ (1a). A solution of 2-(trimethylsylil)phenyl trifluoromethanesulphonate (370 μ L, 1.52 mmol) in dry CH₃CN (10 mL) was added dropwise to a suspension of palladacycle **A** (250 mg, 0.431 mmol) and CsF (300 mg, 1.975 mmol) in dry CH₃CN (10 mL) under N₂ atmosphere. The mixture was stirred for 48 h and filtered though a plug of Celite. The solvent from the orange filtrate was

S2

removed, and CH₂Cl₂ (40 mL) was added. The solution was washed with H₂O (2 x 15 mL) to remove inorganic salts, and the combined organic layers were dried over MgSO₄. The suspension was filtered, the pale orange filtrate was concentrated to ca. 1 mL, and Et₂O (15 mL) was added. The resulting suspension was filtered, and the solid was washed with Et₂O (2 x 5 mL) and air-dried to afford the complex 1a as a pale yellow solid. Yield: 200 mg, 0.273 mmol, 63%. Mp: 192 °C. Anal. Calcd for C₃₂H₃₆Cl₂N₂Pd₂ (732.397): C, 52.48; H, 4.95; N, 3.82. Found: C, 52.09; H, 5.25; N, 3.86. IR (cm⁻¹): ν (NH) 3282 (m), 3117 (m). ¹H NMR (400.91 MHz, DMSO-d₆): δ 1.26 (s, 3 H, Me, CMe₂), 1.29 (s, 3 H, Me, CMe₂), 2.24 (br d, 1 H, CH₂Ar, ${}^{2}J_{HH}$ = 14.0 Hz), 2.44 (br d partially obscured by the resonance of DMSO, 1 H, CH₂Ar, ${}^2J_{\rm HH}$ = 14.4 Hz), 3.63 (br d, 1 H, NH₂, ${}^2J_{\rm HH}$ = 11.2 Hz), 3.84 (br d, 1 H, NH₂, ${}^2J_{\rm HH}$ = 10.4 Hz), 6.83 (dd, 1 H, H6', ${}^{3}J_{HH} = 6.8$, ${}^{4}J_{HH} = 2.0$ Hz), 7.02 (m, 2 H, H3' + H4'), 7.13 (m, 1 H, H6), 7.28-7.35 (m, 4 H, H3 + H4 + H5 + H5'). ${}^{13}C\{{}^{1}H\}$ NMR (100.81 MHz, DMSO- d_6): δ 28.0 (s, Me, CMe₂), 33.4 (s, Me, CMe₂), 44.0 (s, CH₂Ar), 55.7 (s, CMe₂), 123.9 (s, CH, C3'), 125.9 (s, CH, C5), 126.1 (s, CH, C4'), 126.3 (s, CH, C4), 127.0 (s, CH, C6'), 128.8 (s, CH, C6), 132.2 (s, CH, C3), 133.9 (s, CH, C5'), 136.3 (s, C2), 145.8 (s, C1), 146.1 (s, C1'), 150.3 (s, C2').

Synthesis of $[Pd(C_7N-C_6H_4\{(C_6H_2CH_2CH_2NH_2-2,(OMe)_2-4,5)-2'\})(\mu-Br)]_2$ (1b). A solution of 2-(trimethylsylil)phenyl trifluoromethanesulphonate (298 μ L, 1.227 mmol) in dry CH₃CN (20 mL) was added dropwise to a suspension of palladacycle **B** (300 mg, 0.409 mmol) and CsF (186 mg, 1.227 mmol) in dry CH₃CN (10 mL) under N₂ atmosphere. The mixture was stirred for 48 h, the solvent was removed, CH₂Cl₂ (30 mL) was added, and the suspension was filtered through a plug or MgSO₄. The filtrate was washed with H₂O (3 x 10 mL), the combined organic layers were dried over MgSO₄ and filtered. The solvent was removed to ca. 2 mL, and Et₂O (30 mL) was added. The suspension was filtered, and the solid was washed with Et₂O (2 x 5 mL) and air-dried to afford a first crop of complex **1b** as a dark orange solid (280 mg). The filtrate was concentrated to ca. 2 mL, and *n*-pentane (20 mL) was added. The suspension was filtered, and the solid was washed with *n*-pentane (2 x 5 mL) and air-dried to give a second crop of complex **1b** as a dark orange solid (24 mg). Yield: 304 mg, 0.343 mmol, 84%. Mp: 182 °C. Anal. Calcd for C₃₂H₃₆Br₂N₂O₄Pd₂ (885.297): C, 43.41; H, 4.10; N, 3.16. Found: C, 43.29; H, 4.06; N, 3.16. IR (cm⁻¹): ν (NH) 3306 w, 3249 m. ¹H NMR (300.1 MHz, DMSO-*d*₆): δ 2.00 (m, 1 H, CH₂Ar), 2.59 (br dd, 1 H, CH₂Ar, ²J_{HH} = 14.6, ³J_{HH}

S3

= 4.7 Hz), 2.88 (m, 1 H, CH₂N), 3.01–3.08 (m, 1 H, CH₂N), 3.71 (s, 3 H, MeO), 3.73–3.78 (m, partially obscured by the MeO signal, 1 H, NH₂), 3.79 (s, 3 H, MeO), 3.73 4.05 (br d, 1 H, NH₂, ${}^2J_{\text{HH}}$ = 9.5 Hz), 6.67 (s, 1 H, H6), 6.91 (br dd, H6', ${}^2J_{\text{HH}}$ = 6.5, ${}^3J_{\text{HH}}$ = 1.9 Hz), 6.95 (s, 1 H, H3), 6.97–7.04 (m, 2 H, H4' + H5'), 7.27 (br dd, H3', ${}^2J_{\text{HH}}$ = 8.4 Hz, ${}^3J_{\text{HH}}$ = 1.8 Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (100.81 MHz, DMSO- d_6): δ 32.9 (s, CH₂Ar), 47.2 (s, CH₂N), 55.5 (s, MeO), 55.7 (s, MeO), 112.4 (s, CH, C6), 113.5 (s, CH, C3), 123.9 (s, CH, C5'), 126.3 (s, CH, C4'), 127.2 (s, CH, C6'), 131.9 (s, C2), 133.7 (s, CH, C3'), 137.1 (s, C1), 145.9 (s, C1'), 146.4 (s, C5), 148.0 (s, C4). The ${}^{13}\text{C}$ NMR resonance corresponding to the C2' was not observed.

Although the elemental analysis of complex **1b** agrees with the proposed structure, its ¹H NMR spectra shows a small impurity (ca. 95:5, according to resonances corresponding to the OMe groups), which cannot be removed by fractional crystallization or chromatography tecniques. Nevertheless, crude **1b** can be used as starting material to prepare **2b** and **3b**.

Synthesis of $[Pd(C,N-C_6H_4\{(C_6H_4CH_2CMe_2NH_2-2)-2'\})Cl(4-pic)]$ (2a). 4-Picoline (30 µL, 0.308 mmol) was added to a suspension of complex 1a (100 mg, 0.137 mmol) in CH₂Cl₂ (10 mL). The resulting pale yellow solution was stirred for 20 min, concentrated to ca. 2 mL, and Et₂O (25 mL) was added. The suspension was filtered, and the solid was washed with Et₂O (2 x 5 mL) and air-dried to afford complex 2a as pale yellow solid. Yield: 120 mg, 0.261 mmol, 95%. Mp: 181 °C. Anal. Calcd for C₂₂H₂₅ClN₂Pd (459.327): C, 57.53; H, 5.47; N, 6.10. Found: C, 57.35; H, 5.81; N, 6.14. IR (cm⁻¹): ν (NH) 3293 (m), 3188 (m), 3114 (m); ν (C=N) 1616 (m). ¹H NMR (400.91 MHz): δ 1.33 (s, 3 H, Me, CMe₂), 1.62 (s, 3 H, Me, CMe₂), 2.23 (s, 3 H, Me, pic), 2.29 (br d, 1 H, NH₂, ${}^{2}J_{HH} = 10.0 \text{ Hz}$), 2.34 (d, 1 H, CH₂Ar, ${}^{2}J_{HH} = 14.4 \text{ Hz}$), 2.53 (dd, 1 H, CH₂Ar, ${}^{2}J_{HH} = 13.5$, ${}^{4}J_{HH} = 1.2$ Hz), 3.20 (br d, 1 H, NH₂, ${}^{2}J_{HH} = 10.0$ Hz), 6.86–6.89 (m, 3 H, H2' + m-H of pic), 6.93 (d, 1 H, H5, ${}^{3}J_{HH} = 7.2$ Hz) 6.97 (td, 1 H, H3', $^{3}J_{HH} = 7.2$, $^{4}J_{HH} = 1.2$ Hz), 7.02 (td, 1 H, H4', $^{3}J_{HH} = 7.2$, $^{4}J_{HH} = 1.2$ Hz), 7.25 (m, partially obscured by the resonance of traces of CHCl₃ present in the deuterated solvent, 1 H, H4), 7.34–7.37 (m, 2 H, H2 + H3) 7.44 (dd, 1 H, H5', ${}^{3}J_{HH} = 7.6$, ${}^{4}J_{HH} = 1.2$ Hz), 8.14 (br d, 2 H, o-H pic, ${}^{3}J_{HH} = 6.4 \text{ Hz}$). ${}^{13}C\{{}^{1}H\}$ NMR (75.45 MHz): δ 20.9 (s, Me, pic), 28.0 (s, Me, CMe₂), 35.1 (s, Me, CMe₂), 44.7 (s, CH₂Ar), 56.1 (s, CMe₂), 123.7 (s, CH, C3'), 125.1 (s, m-CH, pic), 126.1 (s, CH, C4), 126.3 (s, CH, C4'), 126.5 (s, CH, C3), 126.9 (s, CH, C2'), 128.6 (s, CH, C5), 132.4 (s, CH, C2), 133.3 (s, CH, C5'), 135.9 (s, C1), 146.4 (s, C6), 147.2 (s, C1'), 148.9 (s, p-C, pic), 150.9 (s, C6'), 151.5 (s, o-CH, pic). Single crystals suitable for an X-ray diffraction study were obtained by slow diffusion of *n*-pentane into a solution of **2a** in CHCl₃.

S4

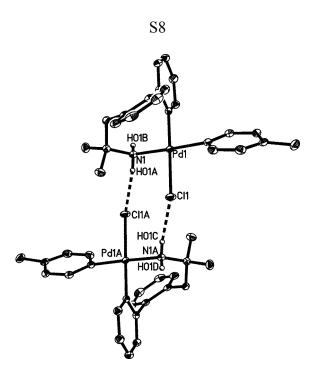
Synthesis of [Pd $(C_1N-C_6H_4\{(C_6H_2CH_2CH_2NH_2-2,(OMe)_2-4,5\}-2'\})$ Br(PPh₃)] (2b). PPh₃ (59 mg, 0.225 mmol) was added to a solution of complex 1b (100 mg, 0.113 mmol) in CH₂Cl₂ (25 mL), and the resulting solution was stirred for 30 min. The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 2 mL, and Et₂O (30 mL) was added. The suspension was filtered, and the solid was washed with Et₂O (2 x 5 mL) and airdried to give a first crop of complex 2b as a yellow solid (86 mg). The filtrate was concentrated to ca. 2 mL, and n-pentane was added. The suspension was filtered, and the solid was washed with *n*-pentane (2 x 5 mL) and air-dried to give a second crop of complex **2b** as a yellow solid (25 mg). Yield: 111 mg, 0.157 mmol, 70%. An analytically pure sample of complex 2b was obtained by recrystallization from CH₂Cl₂/Et₂O. Mp: 151 °C. Anal. Calcd for C₃₄H₃₃BrNO₂PPd (704.926): C, 57.93; H, 4.72; N, 1.99. Found: C, 57.90; H, 4.55; N, 1.94. IR (cm⁻¹): ν (NH) 3304 m, 3243 w. ¹H NMR (300.1 MHz): δ 1.56 (br s, H₂O), 2.12 (m, 1 H, CH₂Ar), 2.21–2.34 (m, partially obscured by the CH₂Ar signal, 1 H, NH₂), 2.70 (br dd, 1 H, CH_2Ar , $^2J_{HH} = 15.0$, $^3J_{HH} = 5.4$ Hz), 3.28–3.35 (m, partially obscured by the MeO signal, 1 H, CH₂N), 3.38 (s, 3 H, MeO), 3.45-3.52 (m, partially obscured by the MeO signal, 1 H, CH₂N), 3.53–3.61 (m, 1 H, NH₂), 4.03 (s, 3 H, MeO), 5.72 (s, 1 H, H6), 6.74–6.87 (m, 2 H, H4' + H5' + H6'), 6.90 (s, 1 H, H3), 7.08–7.23 (m, 13 H, 6H o-H + 6 H m-H of PPh₃ and 1 H of H3'), 7.27–7.40 (m, 3 H, p-H, PPh₃). ¹³C{¹H} NMR (75.45 MHz): δ 33.4 (s, CH₂Ar), 46.5 (s, CH₂N), 55.6 (s, MeO), 56.1 (s, MeO), 111,7 (s, CH, C6), 112.6 (s, CH, C3), 123.3 (s, CH, C5'), 126.6 (s, CH, C4'), 127.8 (d, m-CH, PPh₃ ${}^{3}J_{CP} = 10.7 \text{ Hz}$), 128.2 (s, C6'), 130.0 (d, p-CH, PPh_{3.} ${}^{4}J_{CP} = 2.6 \text{ Hz}$), 131.3 (d, *i*-C, PPh_{3.} ${}^{1}J_{CP} = 49.8 \text{ Hz}$), 131.4 (s, C2), 134.5 (d, *o*-CH, PPh_{3.} ${}^{2}J_{CP} = 11.6 \text{ Hz}$), 134.5 (d, CH, C3', ${}^{3}J_{CP} = 4.8 \text{ Hz}$), 138.7 (s, C1), 146.1 (s, C1'), 146.9 (s, C5), 148.4 (s, C4), 155.0 (s, C2'). ³¹P NMR (121.5 MHz): 29.3 (s). Single crystals of 2b·CH₂Cl₂ suitable for an X-ray diffraction study were obtained by slow diffusion of Et₂O into a solution of **2b** in CHCl₃.

Synthesis of 2-(2-amino-2,2-dimethylethyl)-2'-carboxymethyl-[1,1'-biphenyl] hydrochloride (3a). In a Carius tube, CO was bubbled through a suspension of complex 1a (100 mg, 0.137 mmol) in MeOH (15 mL) for 3 min. The pressure of CO was increased to 1 atm and the reaction mixture was stirred for 12 h. Decomposition to palladium black was observed. The suspension was filtered through a plug of Celite, and the solvent from the colorless filtrate was removed to dryness. The residue was dissolved in CH₂Cl₂ (1 mL), and *n*-

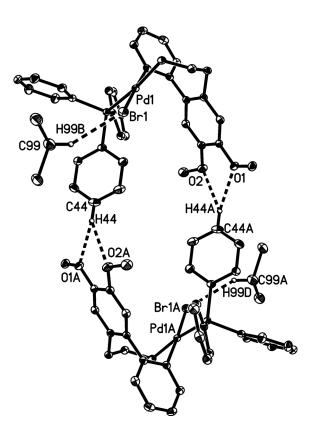
S5

pentane (25 mL) was added. The resulting suspension was filtered, and the solid was washed with *n*-pentane (2 x 5 mL) and air-dried to afford compound **3a** as a colorless solid. Yield: 64 mg, 0.200 mmol, 73%. Mp: 78 °C. IR (cm⁻¹): ν (NH) 3391 (br); ν (CO) = 1727 (vs). ¹H NMR (400.91 MHz): δ 1.12 (s, 3 H, Me, CMe₂), 1.26 (s, 3 H, Me, CMe₂), 2.78 (d, 1 H, CH₂Ar, ²J_{HH} = 14.0 Hz), 3.62 (s, 3 H, OMe), 7.09 (m, 1 H, H5) 7.26–7.30 (m, 3 H, H2' + H3 + H4), 7.39 (m, 1 H, H2), 7.45 (t, 1 H, H4', ³J_{HH} = 7.6 Hz), 7.57 (t, 1 H, H3', ³J_{HH} = 7.6 Hz), 7.95 (d, 1 H, H5', ³J_{HH} = 7.6 Hz), 8.16 (br s, 3 H, NH₃). ¹³C{¹H} NMR (100.81 MHz): δ 25.3 (s, Me, CMe₂), 26.1 (s, Me, CMe₂), 42.3 (s, CH₂Ar), 52.2 (s, OMe), 56.1 (s, CMe₂), 127.0 (s, CH, C4), 127.6 (s, CH, C4'), 127.8 (s, CH, C3), 130.2 (s, CH, C5), 130.45 (s, C6'), 130.48 (s, CH, C5'), 131.7 (s, CH, C2), 131.8 (s, CH, C3'), 131.9 (s, CH, C2'), 132.2 (s, C1), 141.8 (s, C1'), 141.9 (s, C6), 168.2 (s, CO). ESI-HRMS: exact mass calcd for C₁₈H₂₂NO₂ 284.16505 [(M – C1)⁺]; found 284.1657; Δ = 0.0006.

Synthesis of 2-(2-aminoethyl)-4,5-dimethoxy-2'-carboxymethyl-[1,1'-biphenyl] hydrobromide (3b). In a Carius tube, CO was bubbled through a suspension of complex 1b (80 mg, 0.09 mmol) in MeOH (25 mL) for 3 min. The pressure of CO was increased to 1 atm and the reaction mixture was stirred for 16 h. Decomposition to palladium black was observed. The resulting suspension was filtered through a plug of Celite, and the solvent from the filtrate was removed to dryness. The residue was vigorously stirred in Et₂O (30 mL), the suspension was filtered, and the solid was washed with Et₂O (2 x 5 mL) and dried under N₂ atmosphere to afford compound **3b** as a colorless solid. Yield: 43 mg, 0.109 mmol, 61%. Mp: 55 °C. $\Lambda_{\rm M}$ (Ω^{-1} cm² mol⁻¹) = 1.66 (6.00 x 10⁻⁴ M). IR (cm⁻¹): ν (NH) 3395 br m; ν (CO) 1725 s. ¹H NMR (300.1 MHz): δ 2.55–2.72 (m, 1 H, CH₂N), 3.07–3.21 (m, 3 H, 1 H of CH₂N + 2 H of CH₂Ar), 3.76 (s, 3 H, MeO), 3.78 (s, 3 H, MeO), 4.00 (s, 3 H, MeO), 6.44 (s, 1 H, H6), 7.15 (s, 1 H, H3), 7.30 (br d, 1 H, H6', ${}^{3}J_{HH} = 7.8$ Hz), 7.45 ("t", 1 H, H4', ${}^{3}J_{HH} = 7.2$ Hz), 7.56 ("t", 1 H, H5', ${}^{3}J_{HH}$ = 7.8 Hz), 7.62 (br s, 3 H, NH₃), 7.86 (br d, 1 H, H3', ${}^{3}J_{HH}$ = 7.5 Hz). 13 C{ 1 H} NMR (75.45 MHz): δ 30.1 (s, CH₂Ar), 38.7 (s, CH₂N), 53.0 s, CO₂Me), 56.0 (s, MeO), 56.3 (s, MeO), 112.6 (s, CH, C6), 114.4 (s, CH, C3), 124.1 (s, C2), 127.8 (s, C4'), 130.2 (s, C3'), 130.7 (s, C6'), 130.8 (s, C2'), 132.0 (s, C5'), 132.9 (s, C1), 141.2 (s, C1'), 148.0 (s, C5), 148.6 (s, C4), 169.5 (s, CO). EI-HRMS: exact mass calcd for C₁₈H₂₂NO₄ 316.1543 [(M – Br)⁺]; found 316.1549; $\Delta = 0.0006$.


S6

Single-Crystal X-ray Structure Determinations. Relevant crystallographic data and details of the refinements for the structures of compounds 2a and 2b·CH₂Cl₂ are summarized in Table 1. Data Collection: Crystals suitable for X-ray diffraction were mounted in inert oil on a glass fiber and transferred to a Bruker SMART APEX diffractometer. Data were recorded at 100(2)K using graphite-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å) and ω -scan mode. Multiscan absorption corrections were applied. Solution and Refinements: Crystal structures were solved by direct method and all nonhydrogen atoms refined anisotropically on F^2 using the program SHELXL-97. Hydrogen atoms were refined as follows: NH₂, free with SADI; methyl, rigid group; all others, riding.


¹ Sheldrick, G. M. SHELX-97; University of Göttingen, Göttingen, Germany, 1997.

S7 **Table 1.** Crystal Data and Structure Refinement Details for Complexes **2a** and **2b**·CH₂Cl₂.

	2a	2b ·CH₂Cl₂
formula	$C_{22}H_{25}ClN_2Pd$	C ₃₅ H ₃₅ BrCl ₂ NO ₂ PPd
fw	459.29	789.82
temp (K)	100(2)	100(2)
cryst habit	colorless block	colorless lath
cryst size (mm)	0.27 x 0.10 x 0.06	0.25 x 0.10 x 0.03
cryst syst	triclinic	triclinic
space group	P 1	P 1
a (Å)	9.2021(7)	8.8675(7)
b (Å)	10.3321(7)	13.5117(11)
c (Å)	11.8365(9)	15.0521(12)
α (deg)	73.850(2)	68.116(2)
β (deg)	78.692(2)	79.424(2)
γ (deg)	65.084(2)	75.791(2)
$V(\mathring{A}^3)$	976.33(12)	1613.8(2)
Z	2	2
$ ho_{ m calcd}~({ m Mg~m}^{-3})$	1.562	1.625
$\mu(Mo, K\alpha) (mm^{-1})$	1.095	2.062
F(000)	468	796
θ range (deg)	1.80-28.60	1.66–28.71
no. rflns collected	11 858	19 839
no. indep rflns	4558	7568
$R_{\rm int}$	0.0182	0.0202
max, min transmsn	0.937, 0.799	0.941, 0.829
no. of restraints/params	1/246	1/398
goodness of fit on F^2	1.094	1.035
R1 $(I > 2\sigma(I))$	0.0220	0.0289
wR2 (all rflns)	0.0536	0.0727
largest diff peak, hole (e Å ⁻³)	0.506, -0.458	0.767, -0.615

Figure 1. X-ray packing view of complex **2a** (50% probability) showing the dimers formed through N(1)–H(01A)···Cl(1A) hydrogen bond interactions. Symmetry operator: (A) 1-x, -y, 2-z.

Figure 2. X-ray packing view of complex **2b·CH₂Cl₂** (50% probability) showing the dimers formed through C(44)–H(44)···O(1A) and C(44)–H(44)···O(2A) hydrogen bond interactions. Symmetry operator: (A) 2-x, -y, 1-z. The C(99)–H(99B)··Br(1) hydrogen interaction with the solvent is also shown.