Electronic Supplementary Information

Asymmetric Olefin Aziridination Using a Newly Designed Ru(CO)(salen) Complex as Catalyst

Chungsik Kim, Tatsuya Uchida and Tsutomu Katsuki*

Department of Chemistry, Faculty of Science, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan. International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.

1. General

¹H and ¹³C NMR spectra were recorded at JEOL JNM–AL–400 spectrometer at 400 and 270 MHz, respectively. All signals were expressed as ppm downfield from tetramethylsilane used as an internal standard (δ –value in CDCl₃). Optical rotations were measured with a JASCO P–1020 polarimeter. Enantiomeric excesses were determined by HPLC analysis using SHIMADZU LC–10AT–VP equipped with a chiral stationary phase. Column chromatography was conducted on a silica gel 60N (spherical, neutral), 63-210 mm, available from Kanto Chemical Co., Inc., or a Chromatorex[®] NH (spherical, basic), 100-200 mm, available from Fuji Silysia Chemical LTD. Ru(CO)(salen) complex **3**,¹⁾ and 2-(trimethylsilyl)ethanesulfonyl azide (SESN₃)^{1,2)} were prepared according to the literatures.

1.1. Scheme for the synthesis of Ru(CO)(salen) complexes¹⁾

a) diisopropylethylamine, MOMCl, CH₂Cl₂, 0°C, 82%; b) *n*-BuLi, THF, -78°C; ClP(O)(OEt)₂, 76%; c) Li/naphthalene, THF, -78°C, 1,2-dibromoethane, THF, -78°C to r.t., 60%; d) Pd(PPh₃)₄ (5 mol %), 3,5-bis(trifluoromethyl)phenylboronic acid, 1M Na₂CO₃, toluene, reflux, 70%; e) TMEDA, *n*-BuLi, -78°C, DMF, THF, 65%; e) HCl/*i*PrOH (20%, *w/w*), THF, 99%; f) (1*R*, 2*R*)-diphyenyl-1,2-diamine, EtOH, reflux, 95%; g) (1*R*, 2*R*)-1,2-diaminocyclohexane, EtOH, reflux, 95%; h) Ru₃(CO)₁₂, EtOH, N₂, 65%.

1.2 Synthesis of (aR, R)-Ru(CO)(salen) complex 3^{1b)}

A solution of salen ligand (170 mg, 0.14 mmol) and triruthenium dodecacarbonyl ($Ru_3(CO)_{12}$, 180 mg, 2 eq) in dehydrated EtOH (6 mL) was refluxed under argon atmosphere for 48 h. The mixture was evaporated and subjected to chromatography on silica gel (hexanes/ethyl acetate = 4:1) to give **3** as a reddish-brown solid (122 mg, 65 % yield); IR (KBr) 3423, 3055, 1944, 1658, 1608, 1577,

1546, 1494, 1479, 1425, 1384, 1324, 1278, 1180, 1132, 1091, 954, 894, 815, 748, 705, 680, 536 cm⁻¹; HRMS (ESI-TOF): Ru(CO)(salen) m/z [M+H]⁺ Calcd for $[C_{73}H_{43}F_{12}N_2O_3Ru_1]^+$: 1324.2062; Found: 1324.2046; elemental analysis: Calcd (%) for $C_{73}H_{42}F_{12}N_2O_3Ru\cdot1.5H_2O$: C 64.04, H 3.46, N 2.05; Found: C 64.00, H 3.59, N 1.97

2. Solvent screening

condition: M.S. 4A (50 mg), solvent (0.4 mL), r.t. to 40oC, 3 mol% catalyst roading

solvents	yield	ee	
CHCI ₃	54 %	88%	
EtOAc	51 %	88 %	
Toluene	54 %	90 %	
DCM	81 %	90%	

3. Ru(CO)(salen) 3 – catalyst loading

0.12 mmol

0.1 mmol

condition: M.S. 4A (30 mg), DCM (0.2 mL), r.t., 6 hr

catalyst amount	yield ^a	ee
3 mol %	99 %	90 %
2 mol %	99 %	90 %
1 mol %	99 %	90 %
0.5 mol %	99 %	90 %
0.1 mol %	57 %	90 %

^a Isolated yield.

4. Asymmetric aziridination of alkenes

4.1. Typical experiment for asymmetric aziridination of alkenes using a combination of Ru(CO)(salen) complex 3 with SESN₃.

A dried Schlenk tube was charged with 4Å MS (50 mg) and then additionally dried with a heat gun for 10 min. The Schlenk tube was then evacuated, backfilled with nitrogen and equipped with a magnetic stir bar. To the Schrenlk tube, were added Ru(CO)(salen) complex **3** (0.5 ~ 3 mol%) and 0.4 ml of solvent, followed by olefins (0.36 ~ 0.9 mmol) and the azide (0.3 mmol) at room temperature. After stirred for another 6 ~ 24 h, the mixture was filtered through a Celite pad. Evaporation of the resulting solution and chromatographic separation on silica gel (Hexane/AcOEt=10/1 ~ 5/1) gave the corresponding aziridination compounds.

4.2. (2S)-2-(Phenyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 1, entry 2)

Colorless oil (99%); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0mL/min), t_r (Major)=15.0 min, t_r (Minor)=21.4 min].; $[\alpha]_D^{27.1}$ = +124.1 (c = 1.35, CDCl₃); { $[\alpha]_D^{25}$ = + 115 (c = 1.3, CDCl₃)}; ${}^{1a)}_{1}$ H NMR (CDCl₃, 400 MHz): δ 7.21-7.32 (m, 5H), 3.65 (dd, *J*=4.4, 4.4 Hz, 1H), 3.05-3.10 (m, 2H), 2.92 (d, *J*=6.8 Hz, 1H), 2.37 (d, *J*=4.4 Hz, 1H), 1.06-1.11 (m, 2H), -0.017 (s, 9H).; 13 C NMR (CDCl₃, 100 MHz): δ 135.2, 128.7, 128.4, 126.5, 49.1, 40.5, 35.1, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₃H₂₁NO₂SSi: 306.0954; Found: 306.0960.

4.3. 2-Butyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 1)

Colorless oil (74%); >99% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL WHELK-O1 (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=10.6].; $[\alpha]_D^{23} = +20.0$ (*c* 0.83, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 3.03-3.08 (m, 2H), 2.70-2.72 (m, 1H), 2.58 (d, *J*=6.8 Hz, 1H), 2.05 (d, *J*=5.2 Hz, 1H), 1.33-1.57 (m, 6H), 1.11-1.14 (m,

2H), 0.91 (t, *J*=6.8 Hz, 3H), 0.05 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 45.8, 39.1, 33.6, 31.2, 28.9, 22.8, 14.0, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₁H₂₅NO₂SSi: 286.1267; Found: 286.1266.

4.4. 2-Cyclohexyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 2)

Colorless oil (45%); >99% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL WHELK-O1 (Hexane/*i*-PrOH=99/01, 1.0 mL/min), t_r (Major)=13.8 min].; $[\alpha]_D^{22} = +18.47$ (*c* 1.12, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 3.00-3.06 (m, 2H), 2.50-2.54 (m, 2H), 2.21 (d, *J*=4.4 Hz, 1H), 1.63-1.80 (m, 5H), 1.11-1.23 (m, 8H), 0.04 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 48.6, 43.8, 39.4, 32.3, 30.4, 29.7, 26.0, 25.6, 25.4, 9.7, -2.0 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₃H₂₇NO₂SSi: 312.1426; Found: 312.1460.

4.5. 2-(5-Methylhex-4-en-1-yl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 3)

Colorless oil (54%); 89% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=6.3 min, t_r (Minor)=7.4 min].; $[\alpha]_D^{22} = + 8.94$ (*c* 0.96, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 4.99-5.05 (m, 1H), 2.96-3.03 (m, 2H), 2.63-2.67 (m, 1H), 2.52 (d *J*=10.4 Hz, 1H), 2.00 (d, *J*=4.28 Hz, 1H), 1.61 (s, 3H), 1.53 (s, 3H), 1.38-1.51 (m, 6H), 1.04-1.11 (m, 2H), 0.00 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 132.2, 123.8, 48.4, 39.0, 33.4, 30.9, 27.4, 26.9, 25.7, 17.7, 9.8, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₄H₂₉NO₂SSi: 325.1580; Found: 326.1238.

4.6. 2-Butyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry4)

Colorless oil (58%); 91% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=6.41 min, t_r (Minor)=7.1 min].; $[\alpha]_D^{24}$ = +25.8 (*c* 1.72, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 5.56-5.62 (m, 1H), 5.40-5.46 (m, 1H), 3.03-3.08 (m, 2H), 2.71-2.76 (m, 1H), 2.60 (d, *J*=8.0 Hz, 1H), 2.18-2.28 (m, 2H), 2.10 (d, *J*=4 Hz, 1H), 1.68 (dd, *J*=8.0 Hz, 3H), 1.11-1.15 (m, 2H), 0.07 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 128.8, 125.4, 48.3, 39.2, 34.3, 32.3, 18.0, 9.6, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₁H₂₃NO₂SSi: 284.1111; Found: 284.1164.

4.7. 2-Benzyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 6)

Colorless oil (91%); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=16.9 min, t_r (Minor)=24.1 min].; $[\alpha]_D^{22} = +19.2$ (*c* 0.76, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.22-7.30 (m, 5H), 2.70-2.98 (m, 3H), 2.60-2.68 (m, 3H), 2.17 (d *J*=4.4 Hz, 1H), 0.85-1.02 (m, 2H), -0.05 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 137.2, 128.9, 128.7, 127.1, 48.4, 40.9, 37.7, 32.3, 8.9, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₄H₂₃NO₂SSi: 320.1111; Found: 320.1122.

4.8. 2-(4-Bromobutyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 6)

Colorless oil (95%); 91% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL WHELK-O1 (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=35.5 min, t_r (Minor)=42.4 min].; $[\alpha]_D^{22} = +14.7$ (*c* 0.68, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 3.42 (t, *J*=8.0 Hz, 3H), 3.04-3.09 (m, 2H), 2.73 (m, 1H), 2.59 (d, *J*=8.0 Hz, 1H), 2.10 (d, *J*=4.4 Hz, 1H), 1.91-1.93 (m, 2H), 1.61-1.65 (m, 4H), 1.11-1.16 (m, 2H), 0.07 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 48.9, 38.3, 33.6, 33.2, 31.9, 30.5, 25.4, 9.7, -2.04 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₁H₂₄BrNO₂SSi: 364.0373; Found: 364.0384.

Colorless oil (65%); 87% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=95/05, 1.0 mL/min), t_r (Major)=25.8 min, t_r (Minor)=29.3 min].; $[\alpha]_D^{22}$ = +17.64 (*c* 0.8, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.23-7.32 (m, 5H), 4.46 (s, 2H), 3.45 (t, *J*=6.0 Hz, 2H), 2.99-3.06 (m, 2H), 2.67 (m, 1H), 2.55 (d, *J*=6.8 Hz, 1H), 2.04 (d, *J*=4.3 Hz, 1H), 1.49-2.05 (m, 6H), 1.07-1.14 (m, 2H), 0.03 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 138.5, 128.4, 127.6, 127.5, 72.9, 69.9, 48.8, 38.8, 33.5, 31.2, 29.3, 23.6, 9.7 -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₈H₃₁NO₃SSi: 392.1686; Found: 392.1714.

4.10. 2-(o-Tolyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 1)

Colorless oil (99%); 97% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0mL/min), t_r (Major)=10.1 min, t_r (Minor)=11.3 min].; $[\alpha]_D^{20.0}$ = +126.2 (c = 0.9, CDCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.13 -7.22 (m, 4H), 3.77 (dd, *J*=4.4, 5.2 Hz, 1H), 3.09-3.14 (m, 2H), 2.93 (d, *J*=7.2 Hz, 1H), 2.40 (s, 3H), 2.29 (d, *J*=4.4 Hz, 1H), 1.11-1.16 (m, 2H), 0.03 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 136.8, 111.4, 130.1, 128.1, 126.2, 125.5, 49.1, 38.3, 34.9, 19.1, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₄H₂₃NO₂SSi: 320.1111; Found: 320.1271.

4.11. 2-(*m*-Tolyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 2)

Colorless oil (99%); >90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=11.6 min, t_r

(Minor)=16.9 min].; $[\alpha]_D^{20}$ = +115.8 (*c* = 1.17, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.05-7.22 (m, 4H), 3.62 (dd, *J*=4.4, 4.4 Hz, 1H), 3.05-3.10 (m, 2H), 2.91 (d, *J*=7.2 Hz, 1H), 2.37 (d, *J*=5.2 Hz, 1H), 2.3 (s, 3H), 1.07-1.12 (m, 2H), -0.01 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 138.4, 135.0, 129.2, 128.6, 127.1, 123.6, 49.1, 40.5, 35.0, 21.3, 9.6, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₄H₂₃NO₂SSi: 320.1111; Found: 320.1117.

4.12. (2S)-2-(p-Tolyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 3)

White solid (99%); 89% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=90/10, 1.0 mL/min), t_r (Major)=12.3 min, t_r (Minor)=19.4 min].; $[\alpha]_D^{20}$ = +125.1 (c = 0.96, CHCl₃).; ¹H NMR (CDCl₃, 400 MHz): δ 7.11-7.23 (m, 4H), 3.64 (dd, *J*=6.8, 6.8 Hz, 1H), 3.05-3.11 (m, 2H), 2.92 (d, *J*=10.8 Hz, 1H), 2.37 (d, *J*=6.8 Hz, 1H), 2.32 (s, 3H), 1.07-1.14 (m, 2H), 0.00 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 138.3, 129,3, 126.4, 49.1, 40.5, 34.9 21.2, 9.6, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₄H₂₃NO₂SSi: 320.1111 Found: 320.1113.

4.12.1.Crystalstructureanalysisof(2S)-2-(p-tolyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine

Single crystals of the aziridine product [**Table 3** (entry 3)] for X-ray diffraction experiments were obtained by recrystallization from Et₂O. The data were collected at 100 K on a Bruker SMART APEX II diffractometer equipped with APEX II 4K CCD area detector, a graphite monochromator and a rotating-anode X-ray tube (Mo- $K\alpha$ radiation, 1 = 0.71073) focused with Helios multilayer optics for Mo-Ka radiation operating at 50 kV and 24 mA. The data collection was performed by APEX2 software program.⁴⁾ The cell refinement and the data reduction were carried out using SAINT-NT.⁵⁾ The absorption correction was carried out using SADABS.⁶⁾ The structure was solved by direct methods and refined by full-matrix least-squares based on all data using F^2 with SHELXLTL.⁷⁾ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed from the difference map and refined with geometrical and isotropic displacement parameters. Molecular plot was obtained with ORTEP-3.⁸⁾ Crystallographic data for **Table 3** (entry 3): C₁₇H₂₃NO₂SSi, colorless block, 0.15x0.08x0.08 mm³, monoclinic, $P2_1$, a = 10.8858(17), b = 5.9432(9), c = 12.636(2) Å, $V = 808.8(2) Å^3$, Z = 2, Flack = 0.04(6), R = 0.0325 and Rw = 0.0735.

CCDC 870579 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

FigureS1.ORTEPview(50%probability)of(2S)-2-(p-Tolyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine.

4.13. 2-(3-Bromophenyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 4)

Colorless oil (95 %); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=23.1 min, t_r (Minor)=29.7 min]; $[\alpha]_D^{21}$ = +115.4 (c = 0.94, CHCl₃).; ¹H NMR (CDCl₃, 400 MHz): δ 7.15-7.42 (m, 4H), 3.62 (dd, *J*=4.4, 4.4 Hz, 1H), 3.06-3.11 (m, 2H), 2.91 (d, *J*=7.2 Hz, 1H), 2.32 (d, *J*=5.2 Hz, 1H), 1.02-1.16 (m, 2H), 0.00 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 137.6, 131.6, 130.2, 129.4, 125.4, 122.8, 49.2, 39.3, 34.5, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₃H₂₀BrNO₂SSi: 384.0060; Found: 384.0082.

4.14. 2-(4-chlorophenyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 5)

Colorless oil (96%); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1 mL/min), t_r (Major)=15.8 min, t_r (Minor)=24.8 min].; $[\alpha]_D^{21}$ = +121.2 (c = 1.12, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.28 (d, J=8.8 Hz, 2H), 7.19(d, J=8.79 Hz, 2H), 3.62 (dd, J=4.4, 4.4 Hz, 1H), 3.04-3.10 (m, 2H), 2.91 (d, J=7.6 Hz 2H), 2.32 (d, J=8.4 Hz, 1H), 1.05-1.10 (m, 2H), -0.01 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 134.4, 133.8, 128.9, 127.9, 49.1, 39.4, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₃H₂₀CINO₂SSi: 340.0565; Found: 340.0573.

4.15. (2S)-2-(naphthalen-2-yl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 6)

White solid (99%); 91% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=54.8 min, t_r (Minor)=126.3 min].; $[\alpha]_D^{21} = +125.1$ (c = 1.17, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.81 (m, 4H), 7.22-7.49 (m, 3H), 3.84-3.87 (dd, *J*=4.4, 4.4 Hz, 1H), 3.11-3.16 (m, 2H), 3.02 (d, *J*=6.8 Hz, 1H), 1.12-1.16 (m, 2H), 0.00 (s, 9H).; ¹³C NMR (CDCl₃, 100 MHz): δ 133.2, 132.5, 128.6, 127.8, 126.6, 126.2, 123.6, 49.1, 40.7 35.2, 9.7, -2.0 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₇H₂₃NO₂SSi: 356.1111; Found: 356.1127.

4.15.1.Crystalstructureanalysisof(2S)-2-(Naphthalen-2-yl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 6)

Single crystals of the aziridine product [**Table 3** (entry 6)] for X-ray diffraction experiments were obtained by recrystallization from CH₂Cl₂/Hexane. The data were collected at 100 K on a Bruker SMART APEX II diffractometer equipped with APEX II 4K CCD area detector, a graphite monochromator and a rotating-anode X-ray tube (Mo-*Ka* radiation, 1 = 0.71073) focused with Helios multilayer optics for Mo-*Ka* radiation operating at 50 kV and 24 mA. The data collection

was performed by APEX2 software program.³⁾ The cell refinement and the data reduction were carried out using SAINT-NT.⁴⁾ The absorption correction was carried out using SADABS.⁵⁾ The structure was solved by direct methods and refined by full-matrix least-squares based on all data using F^2 with SHELXLTL.⁶⁾ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed from the difference map and refined with geometrical and isotropic displacement parameters. Molecular plot was obtained with ORTEP-3.⁷⁾ Crystallographic data for **Table 3** (entry 6): C₁₇H₂₃NO₂SSi, colorless block, 0.15x0.10x0.05 mm³, orthorhombic, $P2_12_12_1$, a = 6.0186(10), b = 11.5512(18), c = 24.941(4) Å, $V = 1733.9(5) Å^3$, Z = 4, *Flack* = 0.05(6), R = 0.0281 and Rw = 0.0682. CCDC 870052 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

of

FigureS2.ORTEPview(50%probability)(2S)-2-(naphthalen-2-yl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine.

4.16. 2-Methyl-3-phenyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 7)

Colorless oil (72%); 99% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=8.4 min, t_r (Minor)=12.2 min].; $[\alpha]_D^{22} = +124.1$ (c = 1.00, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.26-7.38 (m, 4H), 3.90 (d, *J*=8.0 Hz, 1H), 3.10-3.17 (m, 3H), 1.13-1.19 (m, 2H), 1.10 (d, *J*=8.0 Hz, 3H), 0.05 (s, 9H).¹³C NMR (CDCl₃, 100 MHz): δ 128.4, 127.9, 127.5, 49.1, 45.7, 40.9, 11.8, 9.8, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₄H₂₃NO₂SSi: 320.1111; Found: 320.1118.

4.16.1 Deprotection of the 2-Methyl-3-phenyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine and determination of its configuration

(2R,3S)-2-methyl-3-phenylaziridine

A solution of 2-methyl-3-phenyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (38 mg, 0.12 mmol) and TASF (150 mg, 4 equiv.) in DMF (0.5 mL) was stirred at room temperature overnight, and chromatographed on silica gel (hexanes : ethyl acetate = 1:2) to obtain the deprotected aziridine product (11.4 mg, 67%) as a white solid.^{8a)} Its spectroscopic data were identical to those previously reported: $[\alpha]_D^{24} = +68.5$ (c = 0.7, CHCl₃), {lit.^{8b)} $[\alpha]_D^{22} = +69.1$ ($c 4.43 \times 10^{-3}$, CHCl₃) for (2*R*,3*S*)-2-methyl-3-phenylaziridine}. ¹H NMR (CDCl₃, 400 MHz): δ 7.17-7.30 (m, 3H), 3.21 (d, *J*=8.0 Hz, 1H), 2.37 (m, 1H), 0.87 (d, *J*=8.0 Hz, 3H) HRMS [ESI-TOF] ([M + H]⁺) Calcd for C₉H₁₂N: 134.0964; Found: 134.1082.

4.17. 1-{[2-(Trimethylsilyl)ethane]sulfonyl}-1,1a,6,6a-tetrahydroindeno[1,2-b]aziridine (Table 3, entry 8)

Colorless oil (66%); 97% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/*i*-PrOH=97/03, 1.0 mL/min), t_r (Major)=15.2 min, t_r (Minor)=18.1 min].; $[\alpha]_D^{22}$ = +26.5 (c = 2.1, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, *J*=6.8 Hz, 1H), 7.21-7.26 (m, 3H), 4.20 (d, *J*=4.8 Hz, 1H), 3.88 (m, 1H), 3.21 (m, 1H), 3.05-3.09 (m, 2H), 1.07- 1.12 (m, 2H), 0.02 (s, 9H).¹³C NMR (CDCl₃, 100 MHz): δ 143.5, 127.8, 126.8, 125.7, 124.9, 49.6, 49.5, 43.5, 34.8, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]⁺) Calcd for C₁₄H₂₁NO₂SSi: 318.0954; Found: 318.0963.

References

1) a) H. Kawabata, K. Omura and T. Katsuki, Tetrahedron Lett., 2006, 47, 1571; (b) H. Kawabata,

K. Omura, T. Uchida and T. Katsuki, Chem. Asian J. 2007, 2, 248

- 2) a) S. M. Weinreb, D. M. Demko, T. A. Lessen, J. P. Demers, *Tetrahedron Lett.*, 1986, 27, 2099.
 b) L. L. Parker, N. D. Gowans, S. W. Jones, and D. J. Robins, *Tetrahedron*, 2003, 59, 10165.
- 3) Bruker APEX2, Version 2008.5-0; Bruker AXS Inc.: Madison, WI (USA), 2005.
- 4) Bruker SAINT-NT (includes XPREP and SADABS), Version 6.0; Madison, WI (USA), 2005.
- 5) G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen (Germany), 1996.
- a) Bruker SHELXTL (includes XS, XL, XP, and XShell), Version 5.1; Madison, WI (USA), 1997. b) G. M. Sheldrick, *Acta Cryst.*, 2008, A64, 112-122.
- 7) L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
- 8) a) P. Dauban and R. H. Dodd, *J. Org. Chem.*, 1999, **64**, 5304. b) A. Cruz, I. I. Padilla-Martinez and E. V. Garcia-Baez, *Tetrahedron: Asymmetry*, 2010, **21**, 909.

5. ¹H and ¹³C NMR spectra

5.1. (2S)-2-(Phenyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 1, entry 2)

5.3. 2-Cyclohexyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 2)

5.4. 2-(5-Methylhex-4-en-1-yl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 3)

5.5. 2-Butyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry4)

5.6. 2-Benzyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 5)

5.7. 2-(4-Bromobutyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 6)

5.8. 2-[3-(Benzyloxy)propyl]-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 2, entry 7)

5.9. 2-(o-Tolyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 1)

5.10. 2-(*m*-Tolyl)-1-{[2-(trimethylsilyl)ethyl]sulfonyl}aziridine (Table 3, entry 2)

5.11. (2S)-2-(p-Tolyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 3)

5.13. 2-(4-Chlorophenyl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 5)

5.14. (2S)-2-(Naphthalen-2-yl)-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 6)

5.15. 2-Methyl-3-phenyl-1-{[2-(trimethylsilyl)ethane]sulfonyl}aziridine (Table 3, entry 7)

5.16. 1-{[2-(Trimethylsilyl)ethane]sulfonyl}-1,1a,6,6a-tetrahydroindeno[1,2-b]aziridine (Table

