Supporting Information

The Elusive Tripodal Tris(2-pyridyl)borate Ligand: A Strongly Coordinating Tetraarylborate

Chengzhong Cui, Roger A. Lalancette and Frieder Jäkle*

Materials and General Methods. Mg, 2-bromopyridine, and NEt₃ were purchased from Fisher Scientific and FeCl₂ (anhydrous) from Sigma-Aldrich. Solvents were purchased from Pharmco and used as received unless noted otherwise. Ether solvents were distilled from Na/benzophenone prior to use. Hydrocarbon and chlorinated solvents were purified using a solvent purification system (Innovative Technologies; alumina/copper columns for hydrocarbon solvents). Chlorinated solvents were distilled from CaH₂ and degassed via several freeze-pump-thaw cycles. 4-*t*-Butylphenyl dibromoborane was prepared according to a literature procedure (Y. Qin, I. Kiburu, S. Shah and F. Jäkle, *Org Lett*, 2006, **8**, 5227-5230). Reactions and manipulations involving boron halide species were carried out under an atmosphere of prepurified nitrogen using either Schlenk techniques or an inert-atmosphere glove box (Innovative Technologies). All other procedures were carried out under ambient conditions.

The 499.9 MHz ¹H, 125.7 MHz ¹³C, and 160.4 MHz ¹¹B NMR spectra were recorded on a Varian INOVA 500 MHz spectrometer equipped with a boron-free probe. All ¹H and ¹³C NMR spectra were referenced internally to the solvent peaks and ¹¹B NMR spectra to $BF_3 \cdot Et_2O$ ($\delta = 0$) in C_6D_6 . The assignments are based on the numbering scheme shown here.

The MALDI TOF measurements were performed on an Applied Biosystems 4800 Proteomics Analyzer in reflectron (+) or (-)-mode with delayed

extraction. For data acquisition in (+)-mode benzo[α]pyrene was used as the matrix (20 mg/mL in toluene) and in (–)-mode α -cyano-4-hydroxycinnamic acid (50% acetonitrile, 0.1% TFA in deionized water). The sample was dissolved in toluene or MeOH (ca. 10 mg/mL), mixed with the matrix in a 1:10 ratio, and then spotted on the wells of a sample plate.

Cyclic voltammetry (CV) experiments were carried out on a CV-50W analyzer from BAS. The three-electrode system consisted of an Au disk as working electrode, a Pt wire as secondary electrode and an Ag wire as a pseudo-reference electrode. The voltammograms were recorded with ca. 10^{-3} to 10^{-4} M solution in CH₂Cl₂ containing Bu₄N[PF₆] (0.1 M) as the supporting electrolyte. The scans were referenced after the addition of a small amount of ferrocene (Fc) as internal standard. The potentials are reported relative to the Fc^{0/+} couple. UV-vis absorption data were acquired on a Varian Cary 500 UV-Vis / NIR spectrophotometer. Elemental analyses were performed by Quantitative Technologies, Inc., Whitehouse, NJ.

Single crystal X-ray diffraction intensities were collected on a Smart Apex2 CCD diffractometer at 100 K using Cu K α (1.54178 Å) radiation and details of the X-ray diffraction experiments and crystal structure refinements are provided at the end of the Supporting Information. Crystallographic data for the structures of $(PyMgCl)_2(THF)_4$, **1**, **2**, and $[2^+]FeCl_4$ have been deposited with the Cambridge Crystallographic Data Center as supplementary publications CCDC 878726-878729, respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk).

Synthetic Procedures

Synthesis of 2-Pyridyl Grignard Reagent. To a freshly prepared and filtered solution of *i*-PrMgCl in tetrahydrofuran (400 mL, 345 mmol), neat 2-bromopyridine (30.0 mL, 313 mmol) was added through a syringe. The resulting dark red reaction mixture was kept stirring for 5 h and then connected to vacuum to evaporate the solvent until a dense yellow slurry formed suddenly. The slurry was carefully transferred under nitrogen protection to a fritted addition

funnel and anhydrous tetrahydrofuran (ca. 150 mL) was used to help complete the transfer of the solids. Anhydrous tetrahydrofuran was continuously passed through the filter cake until it was white and the filtrate colorless. The solid was dried under high vacuum at room temperature for 6 h and then further dried under high vacuum at 65 °C for 12 h. Yield of $(PyMgCl)_2*(THF)_4$: 63 g (71%). ¹H NMR (499.973 MHz, CD₂Cl₂) $\delta = 8.60$ (br), 7.87 (br), 7.45 (br), 7.01 (br), 3.76 (br m, thf), 1.84 (br m, thf). Single crystals for X-ray diffraction analysis were obtained by recrystallization from hot THF.

Synthesis of t-Butylphenyltris(2-pyridyl)borate Free Acid (1). t-Butylphenyl dibromoborane (5.00 g, 16.5 mmol) in CH₂Cl₂ (30 mL) was added drop-wise to a solution of pyridyl Grignard (14.5 g, 25.7 mmol) in CH₂Cl₂ (50 mL). The resulting dark red mixture was kept stirring for 5 h. The reaction mixture was poured into an aqueous Na₂CO₃ solution (30 g in 250 mL H₂O) to give a slurry which was stirred for 30 min. Extraction with CH₂Cl₂ (3×200 mL) gave a brown organic phase that was dried over Na₂SO₄. The solvents were removed under vacuum to give an oil that was redissolved in acetone (100 mL), filtered and brought to dryness. The product was further purified by chromatography on silica gel with a 1:1 mixture of hexanes and acetone containing 1% (v/v) triethylamine as the eluent. The product was dried under high vacuum at 60 °C for 10 h to give a white solid. Yield: 3.4 g (54%). ¹H NMR (499.973 MHz, CDCl₃) δ = 19.5 (br s, 1H, pyridyl N-H), 8.49 (d, ${}^{3}J = 5.0 \text{ Hz}$, 3H, pyridyl-H6), 7.58 (pst, ${}^{3}J = 7.5 \text{ Hz}$, 3H, pyridyl-H4), 7.40 $(d, {}^{3}J = 7.5 \text{ Hz}, 3\text{H}, \text{pyridyl-H3}), 7.16 (d, {}^{3}J = 7.5 \text{ Hz}, 2\text{H}, \text{tPh-H3}, 5), 7.10 (\text{pst}, {}^{3}J = 6.3 \text{ Hz}, 3\text{H}, 3\text{H})$ pyridyl-H5), 6.96 (br d, ³J = 6.0 Hz, 2H, tPh-H2,6), 1.27 (s, 9H, *t*-Bu). ¹³C NMR (125.718 MHz, CDCl₃) $\delta = 184.2$ (q, ¹J_{C-B} = 53.1 Hz, pyridyl-C2), 152.3 (q, ¹J_{C-B} = 50.0 Hz, tPh-C1), 146.9 (tPh-C4), 143.6 (pyridyl-C6), 136.3 (pyridyl-C4), 134.2 (pyridyl-C3), 131.8 (tPh-C2,6), 124.2 (tPh-C3,5), 119.8 (pyridyl-C5), 34.3 ($C(CH_3)_3$), 31.7 ($C(CH_3)_3$). ¹¹B NMR (160.386 MHz, CDCl₃) $\delta =$ -10.8 (w_{1/2} = 13 Hz). MALDI-TOF MS (benzo[α]pyrene): m/z = 380.2333 (MH⁺, calcd for ${}^{12}C_{25}H_{27}{}^{11}B_{1}{}^{14}N_{3}$ 380.3130). Elemental analysis: calcd for $C_{25}H_{26}B_{1}N_{3}$: C 79.16, H 6.91, N 11.08%; found C 78.92, H 6.94, N 11.08%. Single crystals for X-ray diffraction analysis were obtained by slow evaporation of a toluene solution.

Synthesis of Bis(t-butylphenyltris(2-pyridyl)borate) Iron(II) (2). A 100 mL Schlenk flask was charged with anhydrous FeCl₂ powder (0.10 g, 0.79 mmol) and anhydrous tetrahydrofuran (50 mL). A solution of t-butylphenyltris(2-pyridyl)borate free acid (0.30 g, 0.79 mmol) and triethylamine (2 mL, 14.3 mmol) in methanol (10 mL) was then added. The reaction mixture was kept stirring for 3 h and subsequently filtered to give a red solution. The volatile components were removed on a rotary evaporator to give a red solid, which was purified by column chromatography on silica gel with hexanes as the eluent. Solvent evaporation gave the product as a red solid, which was dried under high vacuum at RT for 1 h. Yield: 0.22 g (68%). ¹H NMR $(499.973 \text{ MHz}, \text{CDCl}_3) \delta = 8.09 \text{ (d, }^{3}\text{J} = 7.5 \text{ Hz}, 4\text{H}, \text{tPh-H2,6}), 7.60 \text{ (d, }^{3}\text{J} = 8.0 \text{ Hz}, 4\text{H}, \text{tPh-H2,6})$ H3,5), 7.59 (d, ³J = 9.0 Hz, 6H, pyridyl-H3), 7.27 (pst, ³J = 7.5 Hz, 6H, pyridyl-H4), 7.11 (d, ³J = 5.5 Hz, 6H, pyridyl-H6), 6.44 (pst, ${}^{3}J = 6.5$ Hz, 6H, pyridyl-H5), 1.52 (s, 18H, *t*-Bu). ${}^{13}C$ NMR $(125.718 \text{ MHz}, \text{CDCl}_3) \delta = 188.0 \text{ (q}, {}^{1}\text{J}_{\text{C-B}} = 49.6 \text{ Hz}, \text{pyridyl-C2}), 158.3 \text{ (pyridyl-C6)}, 149.2 \text{ (q}, 125.718 \text{ MHz}, \text{CDCl}_3) \delta = 188.0 \text{ (q}, {}^{1}\text{J}_{\text{C-B}} = 49.6 \text{ Hz}, \text{pyridyl-C2}), 158.3 \text{ (pyridyl-C6)}, 149.2 \text{ (q}, 125.718 \text{ MHz}, 125.7$ ¹J_{C,B} = 57.3 Hz, tPh-C1), 147.4 (tPh-C4), 136.7 (tPh-C2,6), 132.0 (pyridyl-C4), 125.7 (pyridyl-C3), 124.5 (tPh-C3,5), 119.7 (pyridyl-C5), 34.7 (C(CH₃)₃), 32.0 (C(CH₃)₃). ¹¹B NMR (160.411 MHz, CDCl₃) $\delta = -7.5$ (w_{1/2} = 21 Hz). UV-Vis (25 °C, CH₂Cl₂): $\lambda_{max} = 480$ nm ($\epsilon = 16400$ M⁻ 1 cm⁻¹), 425 (shoulder, $\varepsilon = 11000 \text{ M}^{-1}$ cm⁻¹). Cyclic voltammetry: $E_{1/2} = -350 \text{ mV}$, $\Delta E_{p} = 84 \text{ mV}$ (1 mM, CH₂Cl₂ containing 0.1 M [Bu₄N]PF₆ as the supporting electrolyte; scan rate 100 mV/s). MALDI-TOF MS (benzo[α]pyrene): m/z = 812.3564 (M⁺, calcd for ${}^{12}C_{50}{}^{-1}H_{50}{}^{-13}B_{2}{}^{56}Fe^{14}N_{6}$ 812.4392). Elemental analysis for crystals obtained from toluene: calcd for $C_{50}H_{50}B_2FeN_6 \cdot C_7H_8$: C 75.68, H 6.46, N 9.29%; found C 75.61, H 6.46, N 9.24%. Single crystals of the Fe(II) complex for X-ray diffraction analysis were obtained by slow evaporation of a solution in toluene.

Synthesis of Bis(t-butylphenyltris(2-pyridyl)borate) Iron(III) Tetrachloroferrate(III) ([2⁺]FeCl₄). A solution of 2•toluene (0.20 g, 0.22 mmol) in CH₂Cl₂ (10 mL) was layered with a solution of FeCl₃ (0.12 g, 0.74 mmol) in H₂O (10 mL). The reaction mixture was shaken vigorously for 5 min. The organic layer was collected and dried over Na₂SO₄. A dark purple solid was obtained after solvent evaporation. The product was purified by repeated precipitation from dichloromethane solution into diethyl ether and then dried under high vacuum at 60 °C. Yield: 0.18 g (81%). ¹H NMR (499.973 MHz, CDCl₃) δ = 22.8 (br, 4H, tPh-H), 21.9 (br, 6H, pyridyl-H), 13.5 (br, 4H, tPh-H), 4.37 (s, 9H, *t*-Bu), -6.91 (br, 6H, pyridyl-H), -8.06 (br, 6H, pyridyl-H), -79.1 (br, 6H, pyridyl-H). ¹¹B NMR (160.411 MHz, CDCl₃) δ = 30 (w_{1/2} = 160 Hz). UV-Vis (25 °C, CH₂Cl₂): λ_{max} = 574 nm (ϵ = 370 M⁻¹ cm⁻¹). Single crystals for X-ray diffraction analysis were obtained from CDCl₃ solution.

Figure S1. (left) ORTEP plot of the structure of the Grignard reagent $(PyMgCl)_2(THF)_4$. Note that 1 molecule of disordered THF per Grignard dimer that is located in channels along the crystallographic c-axis is omitted. Note also that N1 and C1 show positional disorder with occupancies of 0.50. (right) View along the crystallographic c-axis (slightly offset to show multiple layers). Selected bond lengths (Å) and angles (deg): Mg1-C1 2.1312(18), Mg1-N1 2.1461(18), Mg1-Cl1 2.3378(7), Mg1-O1 2.0904(14), Mg1-O2 2.3444(13), N1-C1 1.390(2), N1 C5 1.383(3); O1-Mg1-Cl 93.40(6), O1-Mg1-N1 93.79(6), C1-Mg1-N1 114.27(7), O1-Mg1-Cl1 95.22(4), C1-Mg1-Cl1 121.20(5), N1-Mg1-Cl1 122.96(5), O1-Mg1-O2 174.87(5), C1-Mg1-O2 83.44(5), N1-Mg1-O2 83.88(5), C11-Mg1-O2 89.88(4), C5-N1-Cl 116.73(18), C5-N1-Mg1 125.07(16), C1-N1-Mg1 118.20(12), C2-C1-N1 119.13(18), C2-C1-Mg1 125.34(16), N1-C1-Mg1 115.35(12).

.

	1 (Molecules A, B)	2	$[2^+]$ FeCl ₄
Fe-N		1.9880(13)	1.996(3), 2.011(3)
Fe-N		1.9902(13)	1.966(3), 1.991(3)
Fe-N		1.9685(13)	1.990(3), 1.990(2)
B-C(Ph)	1.628(2), 1.635(2)	1.634(2)	1.613(5), 1.621(5)
B-C(Py)	1.641(2), 1.638(2)	1.638(2)	1.636(5), 1.637(5)
B-C(Py)	1.641(2), 1.642(2)	1.641(2)	1.633(5), 1.635(5)
B-C(Py)	1.638(2), 1.643(2)	1.642(2)	1.632(5), 1.622(5)
N-C(B)	1.349(2), 1.340(2)	1.363(2)	1.361(4), 1.356(4)
N-C(B)	1.349(2), 1.356(2)	1.365(2)	1.354(4), 1.360(4)
N-C(B)	1.354(2), 1.354(2)	1.361(2)	1.357(4), 1.355(4)
N-Fe-N(trans)		180	179.40(12)
N-Fe-N(trans)		180	178.81(13)
N-Fe-N(trans)		180	179.32(11)
N-Fe-N		89.82(5)	90.65(12), 89.18(11)
N-Fe-N		90.18(5)	90.16(11), 89.60(11)
N-Fe-N		90.27(5)	91.35(11), 89.80(12)
N-Fe-N		89.73(5)	90.07(11), 90.25(10)
N-Fe-N		90.06(5)	90.23(11), 89.49(11)
N-Fe-N		89.94(5)	88.80(11), 90.44(11)
C(Py)-B- $C(Ph)$	107.77(10), 108.15(11)	115.56(13)	117.4(3), 118.8(3)
C(Py)-B-C(Ph)	111.13(11), 113.53(12)	115.09(13)	107.6(3), 106.4(3)
C(Py)-B- $C(Ph)$	113.47(11), 106.44(11)	107.99(13)	114.8(3), 114.1(3)
C(Py)-B- $C(Py)$	107.42(11), 106.20 (11)	101.76(13)	107.3(3), 106.6(3)
C(Py)-B- $C(Py)$	112.97(11), 112.23(12)	109.33(13)	99.4(3), 100.8(3)
C(Py)-B- $C(Py)$	103.92(10), 110.38(11)	106.64(13)	109.9(3), 109.7(3)

Table S1. Selected bond lengths (Å) and angles (deg) for 1, 2 and $[2^+]$ FeCl₄.

Figure S2. ORTEP plot of the structures of Molecules A and B of ligand 1.

Figure S3. ORTEP plots of the structures of Fe complexes **2** (top) and [**2**⁺]FeCl₄ (bottom).

Table S2. ¹H NMR assignments of tris(pyridyl)borate ligand 1 and iron complex 2 (CDCl₃, RT).

Figure S4. (a) Overlay of aromatic region of the ¹H NMR spectra of ligand **1** and the Fe complex **2** and (b) Aromatic Region of NOESY NMR spectrum of ligand **1** in CDCl₃.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Figure S5. Full NOESY NMR spectrum of ligand 1 in CDCl₃.

Figure S6. ¹H NMR spectrum of 2^+ in CDCl₃.

Figure S7. Overlay of ¹¹B NMR spectra of 1, 2, and 2^+ in CDCl₃.

Figure S8. Overlay of aromatic region of the 13 C NMR spectra of ligand 1 and the Fe complex 2 in CDCl₃ (the Fe complex 2 contains cocrystallized toluene)

Figure S9. MALDI-TOF-MS Data of a) free ligand 1 (cinnamic acid/MeOH) and b) the iron complex 2 (benzo[α]pyrene/toluene).

Experimental

Crystal data $C_{22}H_{32}Cl_2Mg_2N_2O_3$ $M_r = 492.02$ Tetragonal, P4/ncc a = 17.1131 (2) Å c = 18.5626 (3) Å V = 5436.21 (13) Å³

Data collection

Bruker SMART CCD Apex-II area-detector diffractometer	2706 independent reflections
Absorption correction: Numerical SADABS (Sheldrick, 2008a)	2550 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.348, \ T_{\max} = 0.488$	$R_{\rm int} = 0.000$
2706 measured reflections	

Z = 8

 $\mu = 2.79 \text{ mm}^{-1}$

 $0.48 \times 0.31 \times 0.30 \text{ mm}$

T = 100 K

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.122$ S = 1.102706 reflections 142 parameters

0 restraints H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.47~e~\AA^{-3}\\ &\Delta\rho_{min}=-0.34~e~\AA^{-3} \end{split}$$

Cu K α radiation, $\lambda = 1.54178$ Å

Data collection: *APEX* 2 (Bruker, 2006); cell refinement: *APEX* 2; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008b); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Bruker (2005). SAINT Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX 2 Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112—122.

Refinement

All H atoms for (I) were found in electron density difference maps. The methylene and aromatic Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.99 and 0.95 Å, respectively, and $U_{iso}(H) = 1.2U_{eq}(C)$. The occupancy of the pyridine C1 and N1 atoms was refined to be 50/50, and was fixed to be 0.50. Disordered solvent (THF) molecules were not determined, but SQUEEZE found that there were approximately 3.5-4.0 such disordered solvent molecules per cell, which are located in channels along the crystallographic c axis.

2706 independent reflections 2550 reflections with $I > 2\sigma(I)$

H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0659P)^2 + 3.3738P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $\begin{array}{l} (\Delta\!/\sigma)_{max}\,{<}\,0.001\\ \Delta\rho_{max}\,{=}\,0.47~e~{\rm \AA}^{-3} \end{array}$

 $\Delta \rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Primary atom site location: Structure-invariant direct

Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring

 $\theta_{max} = 74.1^\circ, \ \theta_{min} = 4.8^\circ$

 $R_{\rm int} = 0.000$

 $h = 0 \rightarrow 15$ $k = 0 \rightarrow 21$ $l = 0 \rightarrow 22$

methods

sites

(pyMgCl)2.(THF)4

Crystal data

$C_{22}H_{32}Cl_2Mg_2N_2O_3$	$D_{\rm x} = 1.202 {\rm Mg} {\rm m}^{-3}$
$M_r = 492.02$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
Tetragonal, P4/ncc	Cell parameters from 9782 reflections
Hall symbol: -P 4a 2ac	$\theta = 4.8 - 67.7^{\circ}$
a = 17.1131 (2) Å	$\mu = 2.79 \text{ mm}^{-1}$
c = 18.5626 (3) Å	T = 100 K
$V = 5436.21 (13) \text{ Å}^3$	Parallelepiped, Colourless
Z = 8	$0.48 \times 0.31 \times 0.30 \text{ mm}$
F(000) = 2080	

Data collection

Bruker SMART CCD Apex-II area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ϕ and ω scans
Absorption correction: Numerical
SADABS (Sheldrick, 2008a)
$T_{\min} = 0.348, \ T_{\max} = 0.488$
2706 measured reflections

Refinement

Refinement on F^2
Least-squares matrix: Full
$R[F^2 > 2\sigma(F^2)] = 0.043$
$wR(F^2) = 0.122$

S = 1.10

2706 reflections 142 parameters

0 restraints

Special details

Experimental. 'crystal mounted on a Cryoloop using Paratone-N'

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x		у	Z		$U_{\rm iso}*/U_{\rm eq}$
Mg1	0.0349	6 (3)	0.02747 (3)	0.32975 (3)	0.02481 (19)
Cl1	-0.001	83 (3)	0.12790 (3)	0.40809 (2)	0.03442 (18)
01	0.1255	0 (8)	-0.01422 (8)	0.39484 (8)	0.0308 (3)
O2	-0.064	58 (7)	0.06458 (7)	0.2500		0.0251 (4)
N1	0.1095	5 (10)	0.04586 (10)	0.23837 (10)	0.0360 (4)
C1	0.0817	5 (10)	0.02488 (9)	0.17074 (9)	0.0230 (3)
C2	0.1274	9 (14)	0.03848 (12)	0.11135 (13)	0.0436 (5)
H2	0.1080		0.0228	0.0656		0.052*
C3	0.1986	4 (15)	0.07285 (14)	0.11397 (18)	0.0571 (7)
H3	0.2274		0.0828	0.0712		0.068*
C4	0.2280	6 (13)	0.09287 (15)	0.1803 (2)	0.0635 (9)
H4	0.2780	1	0.1166	0.1843		0.076*
C5	0.1837	3 (12)	0.07785 (13)	0.24112 (15)	0.0476 (6)
H5	0.2053		0.0901	0.2869		0.057*
C6	0.1720	2 (11)	-0.07997 (11)	0.37087 (11)	0.0337 (4)
H6A	0.2228		-0.0621	0.3514		0.040*
H6B	0.1442		-0.1099	0.3331		0.040*
C7	0.1838	4 (13)	-0.12937 (12)	0.43751 (13)	0.0422 (5)
H7A	0.2324		-0.1607	0.4342		0.051*
H7B	0.1390	1	-0.1648	0.4457		0.051*
C8	0.1896	5 (12)	-0.06802 (14)	0.49636 (11)	0.0427 (5)
H8A	0.1743		-0.0899	0.5436		0.051*
H8B	0.2434		-0.0471	0.4999		0.051*
C9	0.1333	4 (14)	-0.00577 (14)	0.47256 (12)	0.0431 (5)
H9A	0.0821		-0.0128	0.4964		0.052*
H9B	0.1537	,	0.0467	0.4848		0.052*
C10	-0.143	81 (10)	0.05622 (11)	0.27946 (10)	0.0284 (4)
H10A	-0.142	20	0.0329	0.3282		0.034*
H10B	-0.176	50	0.0224	0.2480		0.034*
C11	-0.177	/24 (11)	0.13790 (11)	0.28237 (11)	0.0345 (4)
H11A	-0.163	3	0.1644	0.3280		0.041*
H11B	-0.234	8	0.1373	0.2771		0.041*
Atomic dis	placement par	ameters (Ų)				
	<i>T</i> 711	1 /22	1 /33	1712	1713	1 /23
Ma1	0 0298 (3)	0.0245(3)	0.0201(3)	-0.0003(2)	-0.0001(2)	-0.0010(2)
Cll	0.0290(3)	0.0243(3) 0.0318(3)	0.0201(3)	0.0005(2) 0.01345(18)	-0.00381(17)	-0.0010(2)
01	0.0333 (7)	0.0349 (7)	0.0223(3)	0.0158 (5)	-0.0024(5)	-0.0011(5)
02	0.0333(7) 0.0242(5)	0.0349(7) 0.0242(5)	0.0241(7) 0.0268(9)	-0.0003(5)	0.002 + (3)	0.0011(3)
02 N1	0.0272(3)	0.0242(3)	0.0200(3)	0.0003 (0)	-0.0009 (3)	0.0034(3)
C1	0.0314(0) 0.0233(8)	0.0340(0) 0.0208(8)	0.0419(10) 0.0250(8)	0.0007 (0)	0.0008(7)	0.0005(7)
	0.0233 (0)	0.0200 (0)	0.0230 (0)	0.0029 (0)	0.0031 (0)	0.0013 (0)

C2	0.0578 (14)	0.0329 (10)	0.0401 (12)	0.0073 (9)	0.0222 (10)	0.0043 (9)
C3	0.0467 (13)	0.0432 (12)	0.0813 (19)	0.0127 (10)	0.0370 (14)	0.0242 (12)
C4	0.0245 (10)	0.0417 (12)	0.124 (3)	0.0022 (9)	0.0108 (13)	0.0396 (15)
C5	0.0336 (10)	0.0406 (11)	0.0685 (16)	-0.0081 (8)	-0.0182 (10)	0.0209 (11)
C6	0.0315 (9)	0.0353 (10)	0.0342 (10)	0.0048 (7)	-0.0002 (8)	-0.0017 (8)
C7	0.0381 (10)	0.0400 (11)	0.0485 (13)	0.0065 (8)	0.0039 (9)	0.0135 (9)
C8	0.0371 (10)	0.0613 (14)	0.0296 (10)	0.0071 (9)	-0.0003 (8)	0.0115 (9)
C9	0.0517 (13)	0.0508 (12)	0.0267 (11)	0.0079 (10)	-0.0090 (9)	-0.0022 (8)
C10	0.0234 (8)	0.0332 (9)	0.0285 (9)	-0.0002 (7)	0.0039(7)	0.0002 (7)
C11	0.0303 (9)	0.0381 (10)	0.0350 (10)	0.0068 (7)	0.0014 (8)	-0.0028 (8)
Geometric	c parameters (Å,	, °)				
Mg1—O1		2.0904	(14)	C4—H4		0.9500
Mg1—C1 ⁱ		2.1312	(18)	С5—Н5		0.9500
Mg1—N1		2.1461	(18)	C6—C7		1.512 (3)
Mg1—Cl1		2.3378	(7)	С6—Н6А		0.9900
Mg1-02		2.3444	(13)	C6—H6B		0.9900
Mg1—Mg1	i	3.3237	(11)	C7—C8		1.518(3)
01-C6	L.	1 448 (2)	С7—Н7А		0.9900
01 - 01		1 456 (2	3)	C7—H7B		0.9900
01 - 02 - 02 - 02 - 02 - 02 - 02 - 02 -		1.150 (.	(19)	C8-C9		1 503 (3)
$02-010^{i}$		1.4689	(19)	C8-H8A		0.0000
02-010 $02-Ma1^{i}$		2 3///	(13)	C8—H8B		0.9900
M1 C5		1 383 ((15)	Со нол		0.9900
N1 - CJ		1.385 (.	<i>)</i>)	C9—119A C0 H0B		0.9900
NI - CI		1.390 (2	2)	С9—п9В		1.511(2)
C1 - C2		1.572 (.	(19)			0.0000
C1 - Mg1		2.1512	(10)	С10—П10А		0.9900
$C_2 = C_3$		1.555 (*	+)			0.9900
C2—H2		0.9500	4)			1.533 (4)
C3-C4		1.3/3 (4	+)	CII—HIIA		0.9900
C3—H3		0.9500		CII—HIIB		0.9900
C4—C5		1.385 (4	1)			
Ol—Mgl-	-C1 ⁱ	93.40 (6	5)	N1—C5—C4		123.1 (2)
Ol—Mgl-	N1	93.79 (0	5)	N1—C5—H5		118.4
C1 ⁱ —Mg1-	—N1	114.27	(7)	C4—C5—H5		118.4
Ol-Mgl-	-Cl1	95.22 (4	4)	O1—C6—C7		104.87 (16)
Cl ⁱ —Mg1-	Cl1	121.20	(5)	O1—C6—H6A		110.8
N1-Mg1-	-Cl1	122.96	(5)	С7—С6—Н6А		110.8
Ol-Mgl-	O2	174.87	(5)	O1-C6-H6B		110.8
C1 ⁱ —Mg1-	O2	83.44 (3	5)	C7—C6—H6B		110.8
N1-Mg1-		83.88 (5)	H6A—C6—H6B		108.8
Cl1—Mg1-	—O2	89.88 (4	4)	C6—C7—C8		102.17 (17)
Ol-Mgl-	–Mg1 ⁱ	130.05	(4)	С6—С7—Н7А		111.3
C1 ⁱ —Mg1-	-Mg1 ⁱ	63.89 (5)	C8—C7—H7A		111.3
N1-Mg1-	-Mg1 ⁱ	62.24 (5)	С6—С7—Н7В		111.3
Cl1—Mg1-	—Mg1 ⁱ	134.737	7 (17)	C8—C7—H7B		111.3
O2—Mg1-	–Mg1 ⁱ	44.86 (3	3)	H7A—C7—H7B		109.2
C6-01-	C9	109.33	(14)	C9—C8—C7		103.69 (17)
C6-01-	Mg1	119.67	(11)	C9—C8—H8A		111.0
C9—01—	Mg1	127.37	(12)	C7—C8—H8A		111.0
C10—O2—	-C10 ⁱ	108.56	(17)	C9—C8—H8B		111.0
C10—O2—	–Mg1 ⁱ	114.48	(8)	C7—C8—H8B		111.0
C10 ⁱ —O2–	–Mg1 ⁱ	114.16	(8)	H8A—C8—H8B		109.0

C10—O2—Mg1	114.16 (8)	01—C9—C8	106.25 (17)
C10 ⁱ —O2—Mg1	114.48 (8)	O1—C9—H9A	110.5
Mg1 ⁱ —O2—Mg1	90.29 (6)	С8—С9—Н9А	110.5
C5—N1—C1	116.73 (18)	O1—C9—H9B	110.5
C5—N1—Mg1	125.07 (16)	С8—С9—Н9В	110.5
C1—N1—Mg1	118.20 (12)	Н9А—С9—Н9В	108.7
C2-C1-N1	119.13 (18)	O2—C10—C11	105.82 (14)
C2—C1—Mg1 ⁱ	125.34 (16)	O2—C10—H10A	110.6
N1—C1—Mg1 ⁱ	115.35 (12)	C11—C10—H10A	110.6
C3—C2—C1	123.9 (3)	O2-C10-H10B	110.6
C3—C2—H2	118.0	C11—C10—H10B	110.6
C1—C2—H2	118.0	H10A—C10—H10B	108.7
$C^2 - C^3 - C^4$	118.1.(2)	$C10-C11-C11^{i}$	102.23(11)
C2C3H3	121.0	C10 $C11$ $H11A$	111.3
C_{4} C_{3} H3	121.0	$C11^{i}$ $C11$ $H11A$	111.3
C_{4} C_{5} C_{4} C_{5}	1121.0 118.0(2)		111.5
$C_3 = C_4 = C_3$	110.9 (2)		111.5
$C_5 = C_4 = H_4$	120.5		111.5
С5—С4—н4	120.5	HIIA—CII—HIIB	109.2
Cl ⁱ —Mgl—Ol—C6	58.90 (14)	Mgl ⁱ —Mgl—Nl—C5	-176.20 (18)
N1—Mg1—O1—C6	-55.71 (14)	01—Mg1—N1—C1	138.30 (13)
Cl1—Mg1—O1—C6	-179.32(12)	$C1^{i}$ Mg1 $-N1$ $-C1$	42.84 (13)
02 - Mg1 - 01 - C6	7.1 (6)	Cl1-Mg1-N1-C1	-122.99(12)
$Mg1^{i}$ $Mg1$ $O1$ $C6$	0.64 (16)	Ω^2 —Mg1—N1—C1	-37.12(13)
$C1^{i}$ Mg1 $O1$ $C9$	-97 21 (16)	$M\sigma 1^{i}$ $M\sigma 1$ $N1$ $C1$	4 36 (11)
N1 - Mg1 - O1 - C9	148 17 (16)	C_{5} N1 C_{1} C_{2}	-1.6(3)
$C_1 M_{g1} O_1 C_9$	24 56 (16)	Mg1 - N1 - C1 - C2	1.0(5) 177.01(14)
$\Omega^2 - Mg1 - \Omega1 - \Omega^9$	-1/0 1 (5)	$C_5 N_1 - C_1 - M_{g1}^{i}$	177.91(14) 173.84(14)
M_{a1i} Ma1 O1 C0	-155.47.(15)	$M_{\alpha 1} = N_1 = C_1 = M_{\alpha 1}^{i}$	-6.67(17)
MgI - MgI - 0I - 09	-133.47(13)	$Mg_{1} = N_{1} = C_{1} = Mg_{1}$	-0.07(17)
OI - MgI - O2 - CIO	110.2 (3) 57.08 (10)	NI = CI = C2 = C3	-1.2(3)
C1 - Mg1 - O2 - C10	57.98 (10) 172.25 (11)	MgI = CI = C2 = C3	-1/0.1/(10)
NI - MgI - O2 - CIO	1/3.35(11)	C1 - C2 - C3 - C4	2.4 (3)
CII—MgI—O2—CIO	-63.46 (10)	$C_2 = C_3 = C_4 = C_5$	-0.6(3)
Mgl-Mgl-O2-Cl0	117.15 (10)	CI—NI—C5—C4	3.3 (3)
$OI - MgI - O2 - C10^4$	-123.8 (5)	Mg1—N1—C5—C4	-1/6.10(1/)
$C1^{4}$ —Mg1—O2—C10 ⁴	-176.03 (11)	C3—C4—C5—N1	-2.3 (3)
$N1 - Mg1 - O2 - C10^{1}$	-60.67 (11)	C9—O1—C6—C7	20.8 (2)
$Cl1$ —Mg1—O2— $C10^{1}$	62.52 (10)	Mg1—O1—C6—C7	-139.22 (13)
$Mg1^{i}$ — $Mg1$ — $O2$ — $C10^{i}$	-116.87 (10)	O1—C6—C7—C8	-34.74 (19)
$O1-Mg1-O2-Mg1^{i}$	-7.0 (5)	C6—C7—C8—C9	35.6 (2)
C1 ⁱ —Mg1—O2—Mg1 ⁱ	-59.17 (5)	C6—O1—C9—C8	2.0 (2)
N1—Mg1—O2—Mg1 ⁱ	56.20 (5)	Mg1-01-C9-C8	160.07 (14)
Cl1—Mg1—O2—Mg1 ⁱ	179.39 (3)	C7—C8—C9—O1	-23.8 (2)
O1—Mg1—N1—C5	-42.26 (17)	C10 ⁱ —O2—C10—C11	-12.54 (9)
C1 ⁱ —Mg1—N1—C5	-137.72 (16)	Mg1 ⁱ —O2—C10—C11	-141.38 (12)
Cl1—Mg1—N1—C5	56.45 (18)	Mg1-O2-C10-C11	116.49 (13)
O2—Mg1—N1—C5	142.33 (16)	O2-C10-C11-C11 ⁱ	32.0 (2)

Symmetry code: (i) -y, -x, -z+1/2.

Experimental

Crystal data	
$C_{25}H_{26}BN_3$ $M_r = 379.30$ Triclinic, $P\overline{1}$ $q = 9.5834 (2) \text{ Å}$	$\gamma = 70.469 (1)^{\circ}$ $V = 2091.03 (8) \text{ Å}^{3}$ Z = 4 Cu Kg radiation $\lambda = 1.54178 \text{ Å}$
b = 13.3508 (3) Å	$\mu = 0.54 \text{ mm}^{-1}$
c = 17.3829 (4) Å	T = 100 K
$\alpha = 86.769 \ (1)^{\circ}$	$0.50\times0.15\times0.10~mm$
$\beta = 86.723 \ (1)^{\circ}$	
Data collection	
Bruker SMART CCD Apex-II area-detector diffractometer	7078 independent reflections
Absorption correction: Numerical <i>SADABS</i> (Sheldrick, 2008a)	6431 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.774, \ T_{\max} = 0.948$	$R_{\rm int} = 0.020$
14577 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.111$ S = 1.027078 reflections 529 parameters 0 restraints H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.31\ e\ {\AA}^{-3}\\ &\Delta\rho_{min}=-0.19\ e\ {\AA}^{-3} \end{split}$$

Data collection: *APEX* 2 (Bruker, 2006); cell refinement: *APEX* 2; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008b); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Bruker (2005). SAINT Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2006). APEX 2 Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.

Refinement

All H atoms for (I) were found in electron density difference maps. The methyl H atoms were put in ideally staggered positions with C—H distances of 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. The pyridinium and aromatic Hs were placed in geometrically idealized positions and constrained to ride on their parent C or N atoms with distances of 0.88 and 0.95 Å, respectively, and $U_{iso}(H) = 1.2U_{eq}(C)$.

(ligand1)

Crystal data

$C_{25}H_{26}BN_3$	Z = 4
$M_r = 379.30$	F(000) = 808
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.205 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Cu K α radiation, $\lambda = 1.54178$ Å
a = 9.5834 (2) Å	Cell parameters from 9977 reflections
b = 13.3508 (3) Å	$\theta = 3.7 - 68.3^{\circ}$
c = 17.3829 (4) Å	$\mu = 0.54 \text{ mm}^{-1}$
$\alpha = 86.769 \ (1)^{\circ}$	T = 100 K
$\beta = 86.723 \ (1)^{\circ}$	Needle, Colourless
$\gamma = 70.469 \ (1)^{\circ}$	$0.50 \times 0.15 \times 0.10 \text{ mm}$
$V = 2091.03 (8) Å^3$	

Data collection

Bruker SMART CCD Apex-II area-detector diffractometer	7078 independent reflections
Radiation source: fine-focus sealed tube	6431 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
φ and ω scans	$\theta_{\text{max}} = 68.0^\circ, \ \theta_{\text{min}} = 2.6^\circ$
Absorption correction: Numerical SADABS (Sheldrick, 2008a)	$h = -11 \rightarrow 11$
$T_{\min} = 0.774, \ T_{\max} = 0.948$	$k = -16 \rightarrow 14$
14577 measured reflections	$l = -20 \longrightarrow 20$

methods

sites

Refinement

Refinement on F^2 Least-squares matrix: Full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.111$ S = 1.027078 reflections 529 parameters 0 restraints

Special details

Experimental. 'crystal mounted on a Cryoloop using Paratone-N'

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 0.8759P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

$$\label{eq:phi} \begin{split} \Delta \rho_{max} &= 0.31 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} &= -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Primary atom site location: Structure-invariant direct

Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
B1	0.68573 (17)	0.82247 (13)	0.39062 (8)	0.0209 (3)
N1	0.43378 (13)	0.88183 (9)	0.46892 (6)	0.0228 (2)
H1	0.4860	0.8902	0.5065	0.027*
N2	0.59858 (13)	1.02326 (9)	0.35286 (6)	0.0250 (3)
N3	0.68790 (13)	0.85327 (9)	0.53491 (6)	0.0239 (3)
C1	0.50632 (15)	0.84713 (11)	0.40159 (8)	0.0215 (3)
C2	0.41843 (16)	0.83629 (12)	0.34301 (8)	0.0269 (3)
H2	0.4636	0.8136	0.2941	0.032*
C3	0.26791 (17)	0.85786 (13)	0.35480 (9)	0.0298 (3)
H3	0.2106	0.8490	0.3145	0.036*
C4	0.20028 (16)	0.89274 (12)	0.42610 (9)	0.0290 (3)
H4	0.0967	0.9080	0.4353	0.035*
C5	0.28675 (16)	0.90450 (12)	0.48254 (8)	0.0271 (3)
Н5	0.2431	0.9287	0.5315	0.033*
C6	0.71142 (15)	0.93002 (11)	0.35145 (7)	0.0208 (3)
C7	0.85113 (16)	0.92746 (12)	0.32005 (8)	0.0268 (3)
H7	0.9303	0.8617	0.3184	0.032*
C8	0.87448 (18)	1.01941 (13)	0.29157 (9)	0.0326 (3)
H8	0.9690	1.0174	0.2706	0.039*
С9	0.75786 (18)	1.11451 (12)	0.29412 (9)	0.0328 (3)
Н9	0.7702	1.1794	0.2755	0.039*
C10	0.62325 (18)	1.11182 (12)	0.32464 (8)	0.0298 (3)
H10	0.5426	1.1768	0.3258	0.036*
C11	0.76820 (15)	0.80456 (11)	0.47273 (7)	0.0213 (3)
C12	0.92049 (16)	0.75138 (12)	0.47925 (8)	0.0257 (3)
H12	0.9775	0.7154	0.4364	0.031*
C13	0.98867 (16)	0.75071 (12)	0.54747 (8)	0.0290 (3)
H13	1.0920	0.7147	0.5516	0.035*
C14	0.90432 (17)	0.80323 (12)	0.60962 (8)	0.0286 (3)
H14	0.9484	0.8052	0.6568	0.034*
C15	0.75479 (17)	0.85248 (12)	0.60095 (8)	0.0275 (3)
H15	0.6960	0.8876	0.6436	0.033*
C16	0.75231 (14)	0.72252 (11)	0.33436 (7)	0.0206 (3)
C17	0.79488 (15)	0.61581 (11)	0.36142 (7)	0.0227 (3)
H17	0.7903	0.6008	0.4154	0.027*
C18	0.84324 (15)	0.53158 (11)	0.31229 (8)	0.0237 (3)
H18	0.8715	0.4609	0.3336	0.028*
C19	0.85153 (14)	0.54803 (11)	0.23224 (8)	0.0219 (3)
C20	0.80788 (14)	0.65338 (11)	0.20458 (7)	0.0217 (3)
H20	0.8104	0.6682	0.1505	0.026*
C21	0.76066 (14)	0.73734 (11)	0.25422 (8)	0.0215 (3)
H21	0.7328	0.8079	0.2327	0.026*
C22	0.90839 (16)	0.45416 (11)	0.17862 (8)	0.0259 (3)
C23	0.8071 (2)	0.38623 (15)	0.18730 (11)	0.0448 (4)

H23A	0.8049	0.3598	0.2409	0.067*
H23B	0.8450	0.3259	0.1534	0.067*
H23C	0.7067	0.4295	0.1730	0.067*
C24	0.9158 (2)	0.49185 (13)	0.09446 (9)	0.0369 (4)
H24A	0.8159	0.5333	0.0783	0.055*
H24B	0.9570	0.4301	0.0622	0.055*
H24C	0.9792	0.5364	0.0889	0.055*
C25	1.06638 (18)	0.38572 (13)	0.20019 (9)	0.0364 (4)
H25A	1.1311	0.4293	0.1952	0.055*
H25B	1.1040	0.3263	0.1656	0.055*
H25C	1.0647	0.3580	0.2535	0.055*
B2	0.26399 (17)	0.79272 (13)	0.08985 (9)	0.0230 (3)
N1A	-0.00814(13)	0.91557 (10)	0.07815 (7)	0.0265 (3)
H1A	0.0193	0.9593	0.1049	0.032*
N2A	0.35020 (14)	0.80551 (10)	-0.05011(7)	0.0298 (3)
N3A	0.18349 (14)	0.97875 (10)	0.14787 (7)	0.0281 (3)
CIA	0.09480 (15)	0.82228 (11)	0.06136 (7)	0.0229 (3)
C2A	0.04550(17)	0.75365(13)	0.02073 (8)	0.0227(3)
H2A	0.1135	0.6864	0.0070	0.036*
C3A	-0.10002(17)	0.78193(13)	0.00036 (9)	0.030
НЗА	-0.1323	0.7335	-0.0258	0.032*
C4A	-0.19930(17)	0.88140 (13)	0.01816 (8)	0.039
Н4А	-0 2992	0.9025	0.0032	0.038*
C5A	-0.15057(17)	0.94796 (13)	0.05740 (9)	0.030
H5A	-0.2161	1.0165	0.0700	0.0322 (5)
C6A	0.27378 (15)	0.74306 (11)	0.01540 (8)	0.039
C7A	0.48306 (19)	0.64332 (13)	0.01373(9)	0.0241(5) 0.0373(4)
H74	0.5010	0.5990	0.0593	0.0373 (4)
C8A	0.5664(2)	0.60735 (15)	-0.05342(10)	0.0439 (4)
H8A	0.6412	0.5394	-0.0538	0.053*
C9A	0.53902(17)	0.67146(14)	-0.11912(9)	0.033
ноа	0.5930	0.6491	-0.1662	0.042*
C104	0.3330 0.43096(18)	0.0491 0.76892 (13)	-0.11432(9)	0.042 0.0329(3)
H10A	0.4119	0.8137	-0.1597	0.0327 (5)
C11A	0.29729 (16)	0.80712 (11)	0.11903 (7)	0.039
C12A	0.23723(10) 0.44157(17)	0.09712(11) 0.90162(12)	0.11903(7) 0.12047(9)	0.0243(3)
H12A	0.5224	0.8458	0.0003	0.036*
C13A	0.5224 0.46768 (18)	0.0458	0.15223 (9)	0.030
H13A	0.5657	0.9881	0.15225 (5)	0.0344 (4)
C14A	0.3037	1.06806 (13)	0.1337 0.18173 (0)	0.041
U14A	0.3635	1.1260	0.18175 (9)	0.0333 (4)
C15A	0.20960 (19)	1.06150 (13)	0.2041 0.17769 (8)	0.040
H15A	0.1275	1 1183	0.1968	0.0321 (5)
C16A	0.1275 0.28432(15)	0.70024(11)	0.1508	0.039
C17A	0.23+32(15)	0.70924(11) 0.66376(12)	0.10772(8)	0.0217(3)
U17A	0.5047	0.6807	0.1772 (8)	0.0200 (5)
C18A	0.44375 (16)	0.0807 0.50517 (12)	0.26206 (8)	0.031
U18A	0.5300	0.5563	0.2821	0.0200 (5)
C10A	0.33752 (17)	0.5005	0.2021	0.034
C20A	0.32733(17) 0.18877(16)	0.50749 (12)	0.27011(0) 0.26711(8)	0.0203(3)
H20A	0.10677 (10)	0.013+0(12)	0.20711(0)	0.0277 (3)
C21A	0.1001	0.3777	0.2907	0.035
H21A	0.10007 (10)	0.7114	0.1826	0.0203 (3)
C22A	0.35210 (18)	0.717 0.49543 (13)	0.1020	0.032 0.0325(4)
~~~~	0.000010(10)	0.12010(10)	0.0 / 1 / 0 (0)	0.0040(1)

<b>C</b> 22.4	0.2424 (2)		0.5((47.(1()	0.42004(0)		0.0442 (4)
C23A	0.3424 (2)		0.56647 (16)	0.43994 (9)		0.0443 (4)
H23E	0.4212		0.5982	0.4337		0.066*
H23D	0.3540		0.5234	0.4882		0.066*
H23F	0.2457		0.0230	0.4413		0.000*
C24A	0.5057(2)		0.40986 (13)	0.36890 (9)		0.0435 (4)
H24D	0.5180		0.3698	0.3220		0.065*
H24E	0.5154		0.3613	0.4142		0.065*
H24F	0.5821		0.4437	0.3686		0.065*
C25A	0.2352 (3)		0.4417 (2)	0.38433 (14)		0.0840 (10)
H25E	0.13/1		0.4959	0.3900		0.126*
H25D	0.2554		0.3956	0.4311		0.126*
H25F	0.2377		0.3989	0.3400		0.126*
Atomic disp	placement parame	ters (Ų)				
1	1711	L ²²	1/33	L ¹²	<i>L</i> /13	L /23
B1	0 0208 (7)	0 0228 (8)	0.0197(7)	-0.0077.(6)	0.0013 (6)	-0.0039(6)
N1	0.0200(7)	0.0220(0) 0.0247(6)	0.0197(7)	-0.0089(5)	0.0015(0)	-0.0037(0)
N2	0.0231(0) 0.0283(6)	0.0247(0)	0.0217(5)	-0.0089(5)	0.0003(4)	-0.0042(4)
N3	0.0283(0) 0.0273(6)	0.0231(0) 0.0243(6)	0.0230(0)	-0.0084(5)	0.0010(5)	-0.0038(4)
NJ C1	0.0275(0)	0.0243(0)	0.0205(5)	-0.0088(5)	0.0005(5)	-0.0038(4)
C1 C2	0.0243(7)	0.0183(7)	0.0223(0) 0.0242(7)	-0.0084(0) -0.0120(7)	0.0013(3)	-0.0028(3)
C2	0.0273(7)	0.0312(8)	0.0242(7) 0.0303(7)	-0.0120(7)	-0.0022(0)	-0.0072(0)
C3	0.0231(7)	0.0343(9)	0.0303(7)	-0.0140(7)	0.0023(0)	-0.0009(0)
C4 C5	0.0227(7)	0.0330(8)	0.0338(8) 0.0250(7)	-0.0127(7)	0.0020(0)	-0.0051(0)
C5 C6	0.0238(7)	0.0293(8)	0.0239(7)	-0.0094(0)	-0.0030(0)	-0.0032(0)
C0 C7	0.0240(7)	0.0231(7)	0.0137(0) 0.0281(7)	-0.0084(0)	-0.0003(3)	-0.0038(3)
C7	0.0239(7)	0.0209(8)	0.0281(7) 0.0212(8)	-0.0094(0) -0.0100(7)	0.0017(0)	-0.0041(0)
	0.0323(8)	0.0390(9)	0.0312(8)	-0.0190(7)	0.0041(0)	-0.0013(0)
C9	0.0440(9)	0.0284 (8)	0.0308(8)	-0.0187(7)	-0.0023(7)	0.0027(0)
C10	0.0337(8) 0.0246(7)	0.0224(8)	0.0303(7)	-0.0083(7)	-0.0010(0)	-0.0011(0) -0.0025(5)
	0.0240(7)	0.0198(7)	0.0213(0)	-0.0101(0)	0.0011(3)	-0.0023(3)
C12 C13	0.0248(7) 0.0249(7)	0.0299(8)	0.0228(7)	-0.0093(0) -0.0008(7)	-0.0017(3)	-0.0032(0)
C13	0.0249(7)	0.0330(8)	0.0288(7)	-0.0098(7) -0.0138(7)	-0.0020(0)	-0.0013(0)
C14	0.0343(8)	0.0329(8)	0.0211(7)	-0.0138(7)	-0.0031(0)	-0.0012(0)
C13	0.0332(8)	0.0290(8)	0.0202(0)	-0.0107(7)	0.0000(6)	-0.0047(3)
C10 C17	0.01/3(0)	0.0238(7)	0.0218(0)	-0.0081(0)	0.0000(3)	-0.0049(3)
C17	0.0240(7)	0.0203(7)	0.0194(0)	-0.0107(6)	0.0003(3)	-0.0020(3)
C18	0.0247(7)	0.0210(7)	0.0203(7)	-0.0097(0)	-0.0012(3)	-0.0018(3)
C19 C20	0.0101(0)	0.0243(7)	0.0240(7)	-0.0083(0)	-0.0004(3)	-0.0004(3)
C20	0.0193(0)	0.0272(7)	0.0189(0)	-0.0079(0)	-0.0003(3)	-0.0039(3)
C21	0.0204(0)	0.0211(7)	0.0230(0) 0.0262(7)	-0.0008(0)	-0.0018(3)	-0.0022(3)
C22	0.0280(7)	0.0234(7)	0.0203(7)	-0.0080(0)	-0.0003(0)	-0.0073(0)
C23	0.0319(11) 0.0486(10)	0.0401(10)	0.0319(10)	-0.0200(9) -0.0047(8)	0.0122(8)	-0.0234(8)
C24 C25	0.0480(10)	0.0291(9)	0.0278(8)	-0.0047(8)	0.0000(7)	-0.0105(0)
C25	0.0309(9)	0.0310(9)	0.0333(8)	-0.0013(7)	-0.0018(7)	-0.0100(7)
DZ NI A	0.0238(8)	0.0214(6)	0.0230(7)	-0.0003(7)	-0.0003(0)	-0.0017(0)
NIA N2A	0.0200(0)	0.0213(0)	0.0302(0)	-0.0037(3)	0.0034(3)	-0.0037(3)
NZA	0.0332(7)	0.0280(7)	0.0270(6)	-0.0095(0)	0.0020(3)	-0.0007(3)
NJA C1A	0.0338(7) 0.0261(7)	0.0203(7) 0.0217(7)	0.0239(0)	-0.0129(0) -0.0051(6)	0.0071(3)	-0.0001(3)
	0.0201(7)	0.021/(/)	0.0100(0)	-0.0031(0)	-0.0012(3)	-0.0004(3)
$C_{2A}$	0.0279(7)	0.0200 (0)	0.0290(7) 0.0275(7)	-0.0030(7)	-0.0031(0)	-0.0077(0)
CAA	0.0309(8) 0.0243(7)	0.0300 (9)	0.0273(7) 0.0280(7)	-0.0069(7)	-0.0030(0)	-0.0081(0)
C5A	0.02+3(7)	0.0303 (9)	0.0200(7)	-0.0040(7)	0.0022(0)	0.0035(0)
CGA	0.0209(0) 0.0245(7)	0.0272(0) 0.0244(7)	0.0372(0) 0.0240(7)	-0.0007 (6)	-0.0012(5)	-0.0013(0)
COA	0.0243 (7)	0.0244 (7)	0.0249 (7)	-0.0097 (0)	-0.0012 (3)	-0.0026 (3)

C7A	0.0413 (9)	0.0317 (9)	0.0293 (8)	0.0000 (8)	0.0011 (7)	-0.0009 (6)
C8A	0.0395 (9)	0.0390 (10)	0.0392 (9)	0.0058 (8)	0.0031 (7)	-0.0085(7)
C9A	0.0288 (8)	0.0438 (10)	0.0302 (8)	-0.0102(8)	0.0071 (6)	-0.0112(7)
C10A	0.0369 (8)	0.0372 (9)	0.0259 (7)	-0.0150(8)	0.0035 (6)	-0.0009(6)
C11A	0.0307 (7)	0.0234 (7)	0.0196 (6)	-0.0097(6)	0.0003 (5)	0.0004 (5)
C12A	0.0301(8)	0.0265(8)	0.0339(8)	-0.0090(7)	-0.0001(6)	-0.0023(6)
C13A	0.0353(8)	0.0343(9)	0.0378(8)	-0.0169(7)	-0.0035(7)	-0.0009(7)
C14A	0.0355(0) 0.0464(9)	0.0316(9)	0.0270(0)	-0.0210(8)	0.0035(7)	-0.0060(6)
C154	0.0414(9)	0.0299(8)	0.0201(7) 0.0278(7)	-0.0161(7)	0.0010(7)	-0.0083(6)
C16A	0.0111(5) 0.0251(7)	0.0299(0) 0.0207(7)	0.0270(7)	-0.0084(6)	-0.0008(5)	-0.0005(5)
C17A	0.0231(7)	0.0207(7)	0.0204(0)	-0.0113(6)	0.0003(3)	-0.0043(5)
C18A	0.0252(7)	0.0303(8)	0.0200(7)	-0.0110(6)	-0.0064(6)	0.0012(0)
C10A	0.0230(7)	0.0322(8)	0.0273(7)	-0.0150(7)	-0.0060(6)	-0.0001(0)
CI9A	0.0329(8)	0.0280(8)	0.0221(7)	-0.0130(7)	-0.0000(0)	-0.0002(0)
C20A	0.0282(7)	0.0327(8)	0.0208(7)	-0.0100(7)	-0.0023(0)	0.0013(0)
C2IA C22A	0.0242(7)	0.0279(8)	0.0284(7)	-0.0104(6)	-0.0033(6)	0.0002 (6)
C22A C22A	0.0349 (8)	0.0415 (9)	0.0258 (7)	-0.0191 (7)	-0.0097(6)	0.0084 (6)
C23A	0.0384 (9)	0.0532 (11)	0.0240 (8)	0.00/9 (8)	-0.0049 (7)	-0.0002 (/)
C24A	0.0671 (12)	0.0268 (9)	0.0294 (8)	-0.0065 (9)	-0.0028 (8)	0.0034 (6)
C25A	0.0942 (17)	0.125 (2)	0.0683 (14)	-0.0880 (18)	-0.0529 (13)	0.0704 (15)
Geometric	parameters (Å, °)					
B1-C16		1.628 (2)		B2—C1A		1.635 (2)
B1-C11		1.6380 (19)		B2—C16A		1.6384 (19)
B1—C1		1.6407 (19)		B2—C6A		1.642 (2)
B1—C6		1.6410 (19)		B2-C11A		1.643 (2)
N1-C5		1.3483 (18)		N1A—C1A		1.3402 (19)
N1—C1		1.3491 (18)		N1A—C5A		1.351 (2)
N1—H1		0.8800		N1A—H1A		0.8800
N2-C10		1 3426 (19)		N2A—C10A		1339(2)
N2 - C6		1 3490 (19)		N2A—C6A		1.359(2) 1 3564(18)
N3-C15		1.3443(18)		N3A—C15A		1 3487 (19)
N3-C11		1 3539 (18)		N3A—C11A		1.3467(19) 1 354(2)
C1 - C2		1 4013 (10)		C1A - C2A		1.001(2)
C1 - C2		1.7013(1)		C1A - C2A		1.401(2) 1 370(2)
$C_2 = C_3$		1.579 (2)		$C_{2A}$ $U_{2A}$		0.0500
$C_2 = C_1$		1.204 (2)		$C2A - \Pi 2A$		0.9300
$C_3 = U_2$		1.394 (2)		C3A—C4A		1.390 (2)
С3—нз		0.9500		Сза—нза		0.9500
C4—C5		1.308 (2)		C4A—C5A		1.362 (2)
C4—H4		0.9500		C4A—H4A		0.9500
С5—Н5		0.9500		CSA—HSA		0.9500
C6-C/		1.40/1 (19)		C6A—C/A		1.393 (2)
C/—C8		1.380 (2)		C/A—C8A		1.390 (2)
С/—Н/		0.9500		C/A—H/A		0.9500
C8—C9		1.384 (2)		C8A—C9A		1.371 (2)
С8—Н8		0.9500		C8A—H8A		0.9500
C9—C10		1.377 (2)		C9A—C10A		1.369 (2)
С9—Н9		0.9500		С9А—Н9А		0.9500
C10—H10		0.9500		C10A—H10A		0.9500
C11—C12		1.4014 (19)		C11A—C12A		1.406 (2)
C12—C13		1.384 (2)		C12A—C13A		1.385 (2)
C12—H12		0.9500		C12A—H12A		0.9500
C13—C14		1.385 (2)		C13A—C14A		1.384 (2)
C13—H13		0.9500		C13A—H13A		0.9500
C14—C15		1.375 (2)		C14A—C15A		1.373 (2)

C14 114	0.0500		0.0500
C14—H14	0.9500	CI4A—HI4A	0.9500
C15—H15	0.9500	C15A—H15A	0.9500
C16—C21	1.3975 (18)	C16A—C21A	1.3959 (19)
C16—C17	1.4053 (19)	C16A—C17A	1.4008 (19)
C17—C18	1.3868 (19)	C17A—C18A	1.384 (2)
C17—H17	0.9500	C17A—H17A	0.9500
C18—C19	1.3984 (19)	C18A—C19A	1.393 (2)
C18—H18	0.9500	C18A—H18A	0.9500
C19—C20	1.392 (2)	C19A—C20A	1.391 (2)
C19—C22	1.5341 (19)	C19A—C22A	1.5373 (19)
C20—C21	1.3897 (19)	C20A—C21A	1.393 (2)
C20—H20	0.9500	C20A—H20A	0.9500
C21—H21	0.9500	C21A—H21A	0.9500
C22—C24	1.526 (2)	C22A—C25A	1.520 (2)
$C^{22}$ $C^{23}$	1.520(2) 1.531(2)	$C^{22}A - C^{24}A$	1 532 (2)
$C_{22} = C_{25}$	1.539(2)	$C^{22}A = C^{23}A$	1.532(2) 1.539(2)
C23_H23A	0.9800	C23A_H23E	0.9800
C22 H22P	0.9800	$C_{23}A = H_{23}D$	0.9800
C23—H23B	0.9800	C23A—H23D	0.9800
С23—П23С	0.9800	С23А—П23Г	0.9800
C24—H24A	0.9800	C24A—H24D	0.9800
C24—H24B	0.9800	C24A—H24E	0.9800
C24—H24C	0.9800	C24A—H24F	0.9800
С25—Н25А	0.9800	C25A—H25E	0.9800
С25—Н25В	0.9800	C25A—H25D	0.9800
С25—Н25С	0.9800	C25A—H25F	0.9800
C16—B1—C11	113.47 (11)	C1A—B2—C16A	108.15 (11)
C16—B1—C1	107.77 (10)	C1A—B2—C6A	106.20 (11)
C11—B1—C1	112.97 (11)	C16A—B2—C6A	113.53 (12)
C16—B1—C6	111.13 (11)	C1A—B2—C11A	112.23 (12)
C11—B1—C6	103.92 (10)	C16A—B2—C11A	106.44 (11)
C1—B1—C6	107.42 (11)	C6A—B2—C11A	110.38 (11)
C5—N1—C1	124.52 (12)	C1A—N1A—C5A	125.39 (13)
C5—N1—H1	117.7	C1A—N1A—H1A	117.3
C1—N1—H1	117.7	C5A—N1A—H1A	117.3
C10-N2-C6	118 82 (13)	C10A - N2A - C6A	119 14 (13)
C15 N3 C11	120.12(12)	C154 - N34 - C114	120 19 (13)
N1-C1-C2	115.77(12)	N1A - C1A - C2A	120.19(13) 115.51(13)
N1-C1-B1	120.77(12)	N1A - C1A - B2	120.56(12)
$C_2 - C_1 - B_1$	123.45(12)	$C_{2A}$ $C_{1A}$ $B_{2}$	120.50(12) 123.01(13)
$C_2 = C_1 = D_1$	123.43(12) 121.40(13)	$C_{2A} = C_{1A} = D_{2}$	123.91(13) 121.16(15)
$C_3 = C_2 = C_1$	110.3	$C_{3A} = C_{2A} = C_{1A}$	121.10 (13)
$C_{1}$ $C_{2}$ $H_{2}$	119.5	$C_{A} = C_{A} = H_{A}$	119.4
C1 - C2 - H2	119.5	CIA = CZA = GZA	119.4
$C_2 = C_3 = C_4$	119.07 (13)	$C_{2A} = C_{3A} = C_{4A}$	119.85 (15)
$C_2 = C_3 = H_3$	120.2	CAA CAA HAA	120.1
C4—C3—H3	120.2	C4A - C3A - H3A	120.1
C5-C4-C3	118.36 (13)	CSA—C4A—C3A	118.70(14)
C5—C4—H4	120.8	CSA—C4A—H4A	120.7
C3—C4—H4	120.8	U3A—U4A—H4A	120.7
NI	120.17 (13)	NIA—C5A—C4A	119.34 (15)
NI-C5-H5	119.9	NIA—C5A—H5A	120.3
С4—С5—Н5	119.9	C4A—C5A—H5A	120.3
N2—C6—C7	119.57 (13)	N2A—C6A—C7A	118.62 (13)
N2—C6—B1	119.34 (12)	N2A—C6A—B2	115.44 (12)

C7—C6—B1	121.01 (13)	C7A—C6A—B2	125.91 (13)
C8—C7—C6	120.76 (15)	C8A—C7A—C6A	121.24 (15)
С8—С7—Н7	119.6	C8A—C7A—H7A	119.4
С6—С7—Н7	119.6	С6А—С7А—Н7А	119.4
С7—С8—С9	118.89 (14)	C9A—C8A—C7A	118.98 (16)
С7—С8—Н8	120.6	С9А—С8А—Н8А	120.5
С9—С8—Н8	120.6	С7А—С8А—Н8А	120.5
C10—C9—C8	117.70 (14)	C10A—C9A—C8A	117.49 (15)
С10—С9—Н9	121.1	С10А—С9А—Н9А	121.3
С8—С9—Н9	121.1	С8А—С9А—Н9А	121.3
N2—C10—C9	124.24 (15)	N2A-C10A-C9A	124.52 (14)
N2—C10—H10	117.9	N2A—C10A—H10A	117.7
C9—C10—H10	117.9	C9A—C10A—H10A	117.7
N3-C11-C12	118.87 (12)	N3A—C11A—C12A	118.46 (13)
N3-C11-B1	117.86 (12)	N3A—C11A—B2	119.10(12)
C12-C11-B1	122 89 (12)	C12A - C11A - B2	122 27 (13)
C13 - C12 - C11	122.09(12) 120.71(13)	C13A - C12A - C11A	122.27(15) 120.98(15)
C13 - C12 - H12	110.6	$C_{13A}$ $C_{12A}$ $H_{12A}$	110.5
$C_{11} - C_{12} - H_{12}$	119.6	C11A - C12A - H12A	119.5
C12 - C13 - C14	119.0	C1/A $C1/A$	119.5
$C_{12} = C_{13} = C_{14}$	120.4	C14A = C13A = C12A	119.09 (14)
C12 - C13 - H13	120.4	C12A = C12A = H12A	120.5
$C_{14} = C_{13} = 1115$	120.4	C12A $C13A$ $C12A$	120.3 118.02 (14)
C15 - C14 - C15	110.04 (15)	C15A = C14A = C15A	110.02 (14)
C13 - C14 - H14	121.0	C13A - C14A - H14A	121.0
CI3-CI4-HI4	121.0	C13A - C14A - H14A	121.0
N3	123.09 (13)	N3A - C15A - C14A	123.23 (15)
N3-C15-H15	118.5	NJA—CIJA—HIJA	118.4
	118.5	CI4A—CI5A—HI5A	118.4
C21—C16—C17	114.96 (12)	C2IA— $CI6A$ — $CI/A$	114.93 (12)
C21—C16—B1	121.66 (12)	C2IA— $C16A$ — $B2$	124.18 (12)
C1/C16B1	123.21 (11)	C1/A—C16A—B2	120.80 (12)
C18—C17—C16	122.49 (12)	C18A—C17A—C16A	122.79 (13)
С18—С17—Н17	118.8	C18A—C17A—H17A	118.6
C16—C17—H17	118.8	C16A—C17A—H17A	118.6
C17—C18—C19	121.70 (13)	C17A—C18A—C19A	121.48 (13)
C17—C18—H18	119.1	C17A—C18A—H18A	119.3
C19—C18—H18	119.1	C19A—C18A—H18A	119.3
C20—C19—C18	116.43 (12)	C20A—C19A—C18A	116.75 (13)
C20—C19—C22	122.38 (12)	C20A—C19A—C22A	122.49 (13)
C18—C19—C22	121.19 (12)	C18A—C19A—C22A	120.64 (13)
C21—C20—C19	121.51 (12)	C19A—C20A—C21A	121.26 (13)
C21—C20—H20	119.2	C19A—C20A—H20A	119.4
С19—С20—Н20	119.2	C21A—C20A—H20A	119.4
C20—C21—C16	122.90 (13)	C20A—C21A—C16A	122.77 (13)
C20-C21-H21	118.6	C20A—C21A—H21A	118.6
C16—C21—H21	118.6	C16A—C21A—H21A	118.6
C24—C22—C23	109.25 (13)	C25A—C22A—C24A	108.94 (17)
C24—C22—C19	111.59 (12)	C25A—C22A—C19A	111.81 (12)
C23—C22—C19	109.97 (12)	C24A—C22A—C19A	111.06 (13)
C24—C22—C25	107.52 (13)	C25A—C22A—C23A	109.03 (17)
C23—C22—C25	109.37 (14)	C24A—C22A—C23A	108.69 (13)
C19—C22—C25	109.09 (11)	C19A—C22A—C23A	107.23 (13)
C22—C23—H23A	109.5	C22A—C23A—H23E	109.5
C22—C23—H23B	109.5	C22A—C23A—H23D	109.5

ЦЭЗА СЭЗ ЦЭЗ <b>Р</b>	100.5		100.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
	109.5	$C_{22}A = C_{23}A = H_{23}F$	109.5
H23A—C23—H23C	109.5	H23E—C23A—H23F	109.5
$H_{23}B = C_{23} = H_{23}C$	109.5	H23D—C23A—H23F	109.5
C22—C24—H24A	109.5	C22A—C24A—H24D	109.5
C22—C24—H24B	109.5	C22A—C24A—H24E	109.5
H24A—C24—H24B	109.5	H24D—C24A—H24E	109.5
C22—C24—H24C	109.5	C22A—C24A—H24F	109.5
H24A—C24—H24C	109.5	H24D—C24A—H24F	109.5
H24B—C24—H24C	109.5	H24E—C24A—H24F	109.5
C22—C25—H25A	109.5	C22A—C25A—H25E	109.5
С22—С25—Н25В	109.5	C22A—C25A—H25D	109.5
H25A—C25—H25B	109.5	H25E—C25A—H25D	109.5
С22—С25—Н25С	109.5	C22A—C25A—H25F	109.5
H25A—C25—H25C	109.5	H25E—C25A—H25F	109.5
H25B—C25—H25C	109.5	H25D—C25A—H25F	109.5
$C_{5}N_{1}C_{1}C_{2}$	0.86 (19)	C5A - N1A - C1A - C2A	-1.94(19)
$C_{5}$ N1- $C_{1}$ -B1	17957(12)	$C_{5}A = N_{1}A = C_{1}A = B_{2}$	179.76(12)
$C_{16}$ $B_{1}$ $C_{1}$ $N_{1}$	1/9.37(12) 1/45.83(11)	$C_{16A} = R_{1A} = C_{1A} = M_{1A}$	1/9.70(12) 102.96(13)
$C_{10}$ $D_{1}$ $C_{1}$ $N_{1}$	145.05(11)	$C_{11A} = D_2 = C_{1A} = N_{1A}$	102.90(13)
CII - DI - CI - NI	19.00(10)	$CIA = D_2 = CIA = NIA$	-14.10(10)
$C_0 = B_1 = C_1 = N_1$	-94.33 (13)	$C_{0A}$ $B_{2}$ $C_{1A}$ $N_{1A}$	-135.00 (12)
$CI_{0}$ $BI$ $CI_{-}C_{2}$	-35.57 (16)	C10A - B2 - C1A - C2A	-/5.20 (15)
CII = BI = CI = C2	-161.80 (12)	CIIA - B2 - CIA - C2A	167.74(12)
C6 - B1 - C1 - C2	84.25 (15)	C6A—B2—CIA—C2A	46.85 (16)
NI-CI-C2-C3	-1.4 (2)	NIA—CIA—C2A—C3A	-0.23 (19)
B1—C1—C2—C3	179.98 (12)	B2—CIA—C2A—C3A	178.01 (12)
C1—C2—C3—C4	1.0 (2)	C1A—C2A—C3A—C4A	2.0 (2)
C2—C3—C4—C5	-0.1(2)	C2A—C3A—C4A—C5A	-1.7 (2)
C1—N1—C5—C4	0.0 (2)	C1A—N1A—C5A—C4A	2.2 (2)
C3—C4—C5—N1	-0.4 (2)	C3A—C4A—C5A—N1A	-0.3 (2)
C10—N2—C6—C7	-0.61 (17)	C10A—N2A—C6A—C7A	0.96 (19)
C10—N2—C6—B1	176.18 (11)	C10A—N2A—C6A—B2	-177.32 (12)
C16—B1—C6—N2	134.30 (11)	C1A—B2—C6A—N2A	54.93 (14)
C11—B1—C6—N2	-103.29 (12)	C16A—B2—C6A—N2A	173.48 (11)
C1—B1—C6—N2	16.62 (14)	C11A—B2—C6A—N2A	-67.02 (14)
C16—B1—C6—C7	-48.95 (14)	C1A—B2—C6A—C7A	-123.20 (14)
C11—B1—C6—C7	73.46 (14)	C16A—B2—C6A—C7A	-4.65 (18)
C1—B1—C6—C7	-166.63 (11)	C11A—B2—C6A—C7A	114.84 (15)
N2—C6—C7—C8	0.79 (19)	N2A—C6A—C7A—C8A	-0.5(2)
B1—C6—C7—C8	-175.95 (12)	B2—C6A—C7A—C8A	177.55 (14)
C6—C7—C8—C9	-0.1 (2)	C6A—C7A—C8A—C9A	-0.3 (3)
C7—C8—C9—C10	-0.8(2)	C7A—C8A—C9A—C10A	0.7(2)
C6-N2-C10-C9	-0.3(2)	C6A - N2A - C10A - C9A	-0.6(2)
C8-C9-C10-N2	10(2)	C8A—C9A—C10A—N2A	-0.3(2)
C15 = N3 = C11 = C12	1.6(2)	C15A = N3A = C11A = C12A	-0.58(18)
C15 = N3 = C11 = B1	-17149(11)	C15A = N3A = C11A = B2	174.82(11)
C16 B1 C11 N3	-150.68 (11)	C1A = B2 = C11A = N3A	27 39 (15)
$C1_B1_C11_N3$	-27 57 (15)	$C_{16} = B_2 = C_{11} \Delta = N_3 \Delta$	-90.62(13)
$C_{1} = D_{1} = C_{11} = N_{2}$	27.37 (13) 88 40 (13)	C64 = B2 = C114 = N24	145.77(11)
$C_{16} = B_{1} = C_{11} = C_{12}$	36.48 (16)	$C_{1A} = B_2 - C_{11A} - N_{3A}$	-157.29(12)
C1  B1  C11  C12	150.40(10)	$C_{1A}$ $D_{2}$ $C_{11A}$ $C_{12A}$ $C_{16A}$ $D_{2}$ $C_{11A}$ $C_{12A}$	137.30 (12) 84.61 (14)
$C_1 = D_1 = C_{11} = C_{12}$	1J7.J7 (12) 94.25 (14)	CIUA D2 CIIA CI2A	20.01 (14)
U = B = U = U = U = U = U = U = U = U =	-64.33(14)	UOA - BZ - UIIA - UIZA	-39.01(10)
N3-C11-C12-C13	-1.50 (19)	N3A—C11A—C12A—C13A	1.5 (2)

B1-C11-C12-C13	171.26(12)	B2-C11A-C12A-C13A	-173.80(12)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.1 (2)	C11A - C12A - C13A - C14A	-1.0(2)
C12—C13—C14—C15	1.2 (2)	C12A—C13A—C14A—C15A	-0.3(2)
$C_{11} = N_{3} = C_{15} = C_{14}$	-0.3(2)	C11A—N3A—C15A—C14A	-0.8(2)
C13 - C14 - C15 - N3	-1.1(2)	C13A— $C14A$ — $C15A$ — $N3A$	1.2.(2)
$C_{11}$ = B1 = C_{16} = C_{21}	-145.27(11)	C1A - B2 - C16A - C21A	-8.22(17)
C1 - B1 - C16 - C21	88.82 (13)	C11A = B2 = C16A = C21A	112.48 (13)
C6-B1-C16-C21	-28.61(15)	C6A = B2 = C16A = C21A	-125.72(13)
$C_{11}$ = B1 = C_{16} = C_{17}	39.69 (16)	C1A - B2 - C16A - C17A	175.23 (12)
C1 - B1 - C16 - C17	-86.21(13)	C11A = B2 = C16A = C17A	-64.07(16)
C6-B1-C16-C17	156.35 (11)	C6A - B2 - C16A - C17A	57.73 (16)
C21—C16—C17—C18	0.75 (17)	C21A—C16A—C17A—C18A	1.3 (2)
B1-C16-C17-C18	176.10(11)	B2-C16A-C17A-C18A	178.13 (13)
C16—C17—C18—C19	-0.45 (19)	C16A—C17A—C18A—C19A	-0.2(2)
C17—C18—C19—C20	-0.49(18)	C17A—C18A—C19A—C20A	-1.2(2)
C17 - C18 - C19 - C22	178.70(11)	C17A— $C18A$ — $C19A$ — $C22A$	-177.10(14)
C18 - C19 - C20 - C21	1.09(17)	C18A - C19A - C20A - C21A	1.5 (2)
$C_{22}$ $C_{19}$ $C_{20}$ $C_{21}$	-178.08(11)	C22A—C19A—C20A—C21A	177.28 (14)
C19 - C20 - C21 - C16	-0.80(18)	C17A - C16A - C21A - C20A	-1.0(2)
C17-C16-C21-C20	-0.14(17)	B2-C16A-C21A-C20A	-177.74(13)
B1-C16-C21-C20	-175.56(11)	C19A - C20A - C21A - C16A	-0.4(2)
C20—C19—C22—C24	2.44 (17)	C20A—C19A—C22A—C25A	26.1 (2)
C18 - C19 - C22 - C24	-176.69(12)	C18A—C19A—C22A—C25A	-158.28(18)
$C_{20}$ $C_{19}$ $C_{22}$ $C_{23}$	-118.95(14)	$C_{20A} - C_{19A} - C_{22A} - C_{24A}$	147.86 (14)
C18 - C19 - C22 - C23	61.92 (16)	C18A—C19A—C22A—C24A	-36.48(19)
C20—C19—C22—C25	121.06 (13)	C20A— $C19A$ — $C22A$ — $C23A$	-93.50(16)
C18—C19—C22—C25	-58.07 (16)	C18A - C19A - C22A - C23A	82.17 (17)
			()

## Experimental

Crystal data	
$C_{50}H_{50}B_{2}FeN_{6}C_{7}H_{8}$ $M_{r} = 904.56$ Monoclinic, C2/c a = 18.0553 (2) Å b = 10.0207 (1) Å c = 26.1009 (4) Å $\beta = 105.384$ (1)°	$V = 4553.1 (1) \text{ Å}^3$ Z = 4 Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ $\mu = 3.01 \text{ mm}^{-1}$ T = 100  K $0.25 \times 0.21 \times 0.14 \text{ mm}$
Data collection	
Bruker SMART CCD Apex-II area-detector diffractometer	3964 independent reflections
SADABS (Sheldrick, 2008a)	3630 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.520, T_{\max} = 0.678$ 17098 measured reflections	$R_{\rm int} = 0.027$

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.090$ S = 1.053964 reflections 305 parameters

0 restraints H-atom parameters constrained  $\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{min} = -0.41 \text{ e} \text{ Å}^{-3}$ 

Data collection: *APEX* 2 (Bruker, 2006); cell refinement: *APEX* 2; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008b); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

## References

Bruker (2005). SAINT Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX 2 Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112—122.

## Refinement

All H atoms for (I) were found in electron density difference maps. The methyl H atoms were put in ideally staggered positions with C—H distances of 0.98 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ . The aromatic Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with distances of 0.95 Å, and  $U_{iso}(H) = 1.2U_{eq}(C)$ . The toluene methyl group Hs were disordered and were set at 0.50.

3964 independent reflections 3630 reflections with  $I > 2\sigma(I)$ 

Primary atom site location: Structure-invariant direct

Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring

 $\theta_{\text{max}} = 67.3^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ 

 $R_{\rm int} = 0.027$ 

 $h = -21 \rightarrow 20$  $k = 0 \rightarrow 11$  $l = 0 \rightarrow 30$ 

methods

sites

### (complex2)

## Crystal data

$C_{50}H_{50}B_2FeN_6C_7H_8$	F(000) = 1912
$M_r = 904.56$	$D_{\rm x} = 1.320 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $C2/c$	Cu Ka radiation, $\lambda = 1.54178$ Å
Hall symbol: -C 2yc	Cell parameters from 9961 reflections
a = 18.0553 (2) Å	$\theta = 3.5 - 66.7^{\circ}$
b = 10.0207 (1)  Å	$\mu = 3.01 \text{ mm}^{-1}$
c = 26.1009 (4) Å	T = 100  K
$\beta = 105.384 (1)^{\circ}$	Parallelepiped, Orange
V = 4553.1 (1) Å ³	$0.25 \times 0.21 \times 0.14 \text{ mm}$
Z = 4	

## Data collection

Bruker SMART CCD Apex-II area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: Numerical
SADABS (Sheldrick, 2008a)
$T_{\min} = 0.520, \ T_{\max} = 0.678$
17098 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: Full  $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.090$ S = 1.053964 reflections 305 parameters 0 restraints

## Special details

Experimental. 'crystal mounted on a Cryoloop using Paratone-N'

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for

H-atom parameters constrained  $w = 1/[\sigma^2(F_0^2) + (0.0561P)^2 + 3.0717P]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $\begin{array}{l} (\Delta \! / \! \sigma)_{max} \! < \! 0.001 \\ \Delta \rho_{max} \! = \! 0.34 \ e \ \AA^{-3} \end{array}$ 

 $\Delta \rho_{min} = -0.41 \text{ e} \text{ } \text{\AA}^{-3}$ 

estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters*  $(\hat{A}^2)$ 

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Fe1	0.2500	0.2500	0.0000	0.01230 (11)	( )
B1	0.29574 (11)	0.25467 (17)	0.12453 (7)	0.0156 (4)	
N1	0.32916 (7)	0.13486 (13)	0.04708 (5)	0.0147 (3)	
N2	0.29132 (7)	0.40699 (13)	0.04529 (5)	0.0148 (3)	
N3	0.17893 (7)	0.21340 (13)	0.04391 (5)	0.0146 (3)	
C1	0.34755 (9)	0.14898 (15)	0.10092 (6)	0.0155 (3)	
C2	0.41202 (9)	0.08005 (17)	0.13131 (6)	0.0195 (4)	
H2	0.4278	0.0941	0.1686	0.023*	
C3	0.45325 (9)	-0.00744(17)	0.10872 (7)	0.0215 (4)	
Н3	0.4958	-0.0550	0.1301	0.026*	
C4	0.43113 (9)	-0.02437 (16)	0.05399 (7)	0.0199 (4)	
H4	0.4573	-0.0852	0.0370	0.024*	
C5	0.37003 (9)	0.04969 (15)	0.02501 (6)	0.0176 (3)	
Н5	0.3558	0.0405	-0.0126	0.021*	
C6	0.31524 (9)	0.39632 (16)	0.09933 (6)	0.0157 (3)	
C7	0.35661 (9)	0.50250 (16)	0.12821 (7)	0.0192 (3)	
H7	0.3768	0.4933	0.1655	0.023*	
C8	0.36899 (9)	0.61990 (17)	0.10427 (7)	0.0209 (4)	
H8	0.3969	0.6911	0.1246	0.025*	
C9	0.33971 (9)	0.63163 (16)	0.04963 (7)	0.0200 (4)	
H9	0.3451	0.7122	0.0318	0.024*	
C10	0.30261 (9)	0.52299 (16)	0.02202 (6)	0.0178 (3)	
H10	0.2839	0.5300	-0.0155	0.021*	
C11	0.20426 (9)	0.22457 (15)	0.09770 (6)	0.0149 (3)	
C12	0.15070 (9)	0.21056 (16)	0.12780 (6)	0.0177 (3)	
H12	0.1675	0.2201	0.1653	0.021*	
C13	0.07428 (9)	0.18328 (16)	0.10419(7)	0.0191 (4)	
H13	0.0386	0.1756	0.1250	0.023*	
C14	0.05060 (9)	0.16730 (16)	0.04947 (7)	0.0195 (4)	
H14	-0.0012	0.1457	0.0321	0.023*	
C15	0.10411 (9)	0.18362 (15)	0.02102 (6)	0.0169 (3)	
H15	0.0879	0.1736	-0.0165	0.020*	
C16	0.31047 (9)	0.25381 (15)	0.18905 (7)	0.0156 (3)	
C17	0.33116 (9)	0.13966 (16)	0.22066 (6)	0.0175 (3)	
H17	0.3389	0.0586	0.2039	0.021*	
C18	0.34100 (9)	0.13930 (16)	0.27554 (6)	0.0178 (3)	
H18	0.3565	0.0593	0.2949	0.021*	
C19	0.32867 (10)	0.25327 (15)	0.30252 (7)	0.0166 (4)	
C20	0.30269 (9)	0.36549 (16)	0.27123 (6)	0.0182 (3)	
H20	0.2909	0.4443	0.2877	0.022*	
C21	0.29365(9)	0.36518 (16)	0.21676 (6)	0.0180(3)	
H21	0.2752	0.4439	0.1973	0.022*	
C22	0.34554(11)	0.26061 (15)	0.36325(7)	0.0203 (4)	
C23	0.42465(11)	0.32689(19)	0.38481(7)	0.0308(4)	
H23A	0.4248	0.4141	0.3678	0.046*	
	···	~	0.00,0	0.0.0	

0.4644	a <b>a -</b> a t			
0.4044	0.2701	0.3770	0.046*	
0.4350	0.3387	0.4233	0.046*	
0.28377 (12)	0.34388 (19)	0.37933 (7)	0.0306 (4)	
0.2327	0.3098	0.3610	0.046*	
0.2880	0.4373	0.3694	0.046*	
0.2912	0.3375	0.4178	0.046*	
0.34763 (11)	0.12260 (17)	0.38902 (7)	0.0246 (4)	
0.3591	0.1326	0.4277	0.037*	
0.3875	0.0680	0.3801	0.037*	
0.2976	0.0790	0.3757	0.037*	
0.0000	0.3551 (3)	0.2500	0.0283 (6)	
0.0000	0.4499	0.2500	0.034*	
0.06368 (11)	0.28538 (19)	0.24457 (7)	0.0271 (4)	
0.1078	0.3324	0.2412	0.033*	
0.06313 (10)	0.14713 (18)	0.24408 (7)	0.0237 (4)	
0.1068	0.1005	0.2396	0.028*	
0.0000	0.0749 (2)	0.2500	0.0211 (5)	
0.0000	-0.0759 (3)	0.2500	0.0295 (6)	
0.0346	-0.1085	0.2295	0.044*	0.50
-0.0522	-0.1085	0.2339	0.044*	0.50
0.0175	-0.1085	0.2866	0.044*	0.50
	0.4044 0.4350 0.28377 (12) 0.2327 0.2880 0.2912 0.34763 (11) 0.3591 0.3875 0.2976 0.0000 0.0000 0.06368 (11) 0.1078 0.06313 (10) 0.1068 0.0000 0.0000 0.0346 -0.0522 0.0175	0.4044 $0.2701$ $0.4350$ $0.3387$ $0.28377 (12)$ $0.34388 (19)$ $0.2327$ $0.3098$ $0.2880$ $0.4373$ $0.2912$ $0.3375$ $0.34763 (11)$ $0.12260 (17)$ $0.3591$ $0.1326$ $0.3875$ $0.0680$ $0.2976$ $0.0790$ $0.0000$ $0.3551 (3)$ $0.0000$ $0.4499$ $0.06368 (11)$ $0.28538 (19)$ $0.1078$ $0.3324$ $0.06313 (10)$ $0.14713 (18)$ $0.1068$ $0.1005$ $0.0000$ $-0.0759 (3)$ $0.0346$ $-0.1085$ $-0.0522$ $-0.1085$	0.4044 $0.2701$ $0.3770$ $0.4350$ $0.3387$ $0.4233$ $0.28377 (12)$ $0.34388 (19)$ $0.37933 (7)$ $0.2327$ $0.3098$ $0.3610$ $0.2880$ $0.4373$ $0.3694$ $0.2912$ $0.3375$ $0.4178$ $0.34763 (11)$ $0.12260 (17)$ $0.38902 (7)$ $0.3591$ $0.1326$ $0.4277$ $0.3875$ $0.0680$ $0.3801$ $0.2976$ $0.0790$ $0.3757$ $0.0000$ $0.4499$ $0.2500$ $0.0000$ $0.4499$ $0.2500$ $0.06368 (11)$ $0.28538 (19)$ $0.24457 (7)$ $0.1078$ $0.3324$ $0.2412$ $0.06313 (10)$ $0.14713 (18)$ $0.24408 (7)$ $0.1068$ $0.1005$ $0.2396$ $0.0000$ $-0.0759 (3)$ $0.2500$ $0.0000$ $-0.0759 (3)$ $0.2500$ $0.0346$ $-0.1085$ $0.2339$ $0.0175$ $-0.1085$ $0.2339$	0.40440.27010.37700.046*0.43500.33870.42330.046*0.28377 (12)0.34388 (19)0.37933 (7)0.0306 (4)0.23270.30980.36100.046*0.28800.43730.36940.046*0.29120.33750.41780.046*0.34763 (11)0.12260 (17)0.38902 (7)0.0246 (4)0.35910.13260.42770.037*0.38750.06800.38010.037*0.29760.07900.37570.037*0.00000.44990.25000.034*0.06368 (11)0.28538 (19)0.24457 (7)0.0271 (4)0.10780.33240.24120.033*0.06313 (10)0.14713 (18)0.24408 (7)0.0237 (4)0.10680.10050.23960.028*0.0000-0.0759 (3)0.25000.0211 (5)0.0000-0.0759 (3)0.25000.0211 (5)0.0346-0.10850.22950.044*-0.0522-0.10850.23390.044*0.0175-0.10850.23660.044*

## Atomic displacement parameters $(Å^2)$

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	$U^{23}$
Fe1	0.01448 (19)	0.01202 (19)	0.01032 (19)	-0.00022 (13)	0.00316 (14)	0.00028 (12)
B1	0.0173 (10)	0.0161 (9)	0.0128 (10)	-0.0009 (6)	0.0033 (8)	0.0003 (6)
N1	0.0164 (7)	0.0130 (6)	0.0147 (7)	-0.0004 (5)	0.0040 (5)	0.0004 (5)
N2	0.0156 (6)	0.0148 (7)	0.0143 (7)	-0.0002 (5)	0.0045 (5)	-0.0001 (5)
N3	0.0165 (7)	0.0131 (6)	0.0143 (7)	0.0006 (5)	0.0043 (5)	0.0008 (5)
C1	0.0166 (8)	0.0145 (8)	0.0155 (8)	-0.0038 (6)	0.0043 (6)	0.0011 (6)
C2	0.0192 (8)	0.0240 (9)	0.0154 (8)	0.0000(7)	0.0046 (7)	0.0022 (6)
C3	0.0187 (8)	0.0218 (9)	0.0233 (9)	0.0042 (7)	0.0046 (7)	0.0065 (7)
C4	0.0216 (8)	0.0154 (8)	0.0247 (9)	0.0015 (6)	0.0096 (7)	-0.0003 (6)
C5	0.0206 (8)	0.0152 (8)	0.0180 (8)	-0.0015 (6)	0.0068 (7)	-0.0010 (6)
C6	0.0142 (8)	0.0182 (8)	0.0154 (8)	0.0016 (6)	0.0053 (6)	0.0001 (6)
C7	0.0187 (8)	0.0231 (9)	0.0159 (8)	-0.0020 (7)	0.0048 (6)	-0.0027 (6)
C8	0.0187 (8)	0.0207 (9)	0.0246 (9)	-0.0047 (7)	0.0080 (7)	-0.0068 (7)
C9	0.0209 (8)	0.0158 (8)	0.0253 (9)	-0.0017 (6)	0.0098 (7)	0.0006 (6)
C10	0.0195 (8)	0.0173 (8)	0.0170 (8)	0.0002 (6)	0.0057 (6)	0.0014 (6)
C11	0.0188 (8)	0.0105 (7)	0.0156 (8)	0.0015 (6)	0.0047 (6)	0.0013 (6)
C12	0.0215 (9)	0.0175 (8)	0.0149 (8)	0.0018 (7)	0.0061 (7)	0.0011 (6)
C13	0.0200 (8)	0.0177 (8)	0.0218 (9)	0.0022 (6)	0.0096 (7)	0.0022 (6)
C14	0.0160 (8)	0.0186 (8)	0.0228 (9)	-0.0001 (6)	0.0033 (7)	0.0010 (6)
C15	0.0181 (8)	0.0160 (8)	0.0153 (8)	-0.0002 (6)	0.0023 (6)	0.0004 (6)
C16	0.0132 (8)	0.0182 (8)	0.0150 (9)	-0.0016 (6)	0.0032 (7)	-0.0007 (6)
C17	0.0202 (8)	0.0155 (8)	0.0174 (8)	-0.0013 (6)	0.0063 (7)	-0.0027 (6)
C18	0.0222 (8)	0.0148 (8)	0.0161 (8)	0.0004 (6)	0.0046 (7)	0.0021 (6)
C19	0.0158 (8)	0.0186 (9)	0.0151 (9)	-0.0029 (6)	0.0037 (7)	-0.0003 (6)
C20	0.0208 (8)	0.0163 (8)	0.0188 (9)	0.0008 (6)	0.0076 (7)	-0.0015 (6)
C21	0.0183 (8)	0.0183 (8)	0.0170 (8)	0.0020 (6)	0.0041 (6)	0.0033 (6)
C22	0.0293 (10)	0.0173 (9)	0.0140 (9)	-0.0008 (6)	0.0051 (7)	-0.0010 (6)
C23	0.0412 (11)	0.0261 (10)	0.0190 (9)	-0.0060 (8)	-0.0025 (8)	-0.0003 (7)
C24	0.0515 (12)	0.0250 (9)	0.0191 (9)	0.0057 (9)	0.0159 (9)	0.0002 (7)
C25	0.0374 (10)	0.0214 (9)	0.0153 (9)	0.0003 (7)	0.0076 (7)	0.0013 (7)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

C26	0.0445 (16)	0.0194 (13)	0.0188 (13)		0.000	0.0045 (11)	0.000
C27	0.0324 (11)	0.0269 (9)	0.0212 (9)		-0.0044(8)	0.0057 (8)	0.0046(7)
C28	0.0256 (9)	0.0257 (9)	0.0192 (9)		0.0030(7)	0.0049 (7)	0.0047 (7)
C29	0.0248(12)	0.0223(12)	0.0130(11)		0.000	-0.0007(9)	0.000
C30	0.0242(13)	0.0225(12) 0.0235(13)	0.0379 (16)		0.000	0.00007(3)	0.000
0.50	0.0242 (13)	0.0255 (15)	0.0577 (10)		0.000	0.0055 (11)	0.000
Geometri	c parameters (Å.	<i>o</i> )					
Eal M2i	e pui unicici s (11,	1 0695 (1	2)	C14	1114		0.0500
Fe1 = N3 Eq1 = N2		1.9065 (1	(3)	C14-			0.9500
Fel-N3		1.9065 (1	13) 12)	C15-	—п15 С17		0.9300
FeI—NI		1.9880 (1	(3)	C10-	C17		1.402(2)
rei—Ni		1.9881 (1	13)	C10-			1.400 (2)
FeI—N2		1.9902 (1	(3)	C17-			1.396 (2)
$FeI - N2^{-1}$		1.9903 (1	(3)	C1/-	-HI/		0.9500
BI-CI6		1.634 (2)		C18-			1.390 (2)
BI-CI		1.638 (2)		C18-	-H18		0.9500
BI-C6		1.641 (2)		C19-			1.396 (2)
BI-CII		1.642 (2)		C19-			1.534 (2)
NI—C5		1.353 (2)		C20-			1.387 (2)
Nl—Cl		1.363 (2)		C20-	-H20		0.9500
N2—C10		1.352 (2)		C21-	—H21		0.9500
N2—C6		1.365 (2)		C22-	C25		1.534 (2)
N3—C15		1.357 (2)		C22-	—C24		1.538 (3)
N3—C11		1.361 (2)		C22-	—C23		1.540 (3)
C1—C2		1.404 (2)		C23-	—H23A		0.9800
C2—C3		1.379 (2)		C23-	—H23C		0.9800
C2—H2		0.9500		C23-	—H23B		0.9800
C3—C4		1.388 (2)		C24-	—H24A		0.9800
С3—Н3		0.9500		C24-	—H24B		0.9800
C4—C5		1.377 (2)		C24-	—H24C		0.9800
C4—H4		0.9500		C25-	—H25C		0.9800
С5—Н5		0.9500		C25-	—H25B		0.9800
C6—C7		1.400 (2)		C25-	—H25A		0.9800
C7—C8		1.378 (2)		C26-	$-C27^{ii}$		1.384 (2)
С7—Н7		0.9500		C26-	—C27		1.384 (2)
С8—С9		1.388 (2)		C26-	—H26		0.9500
C8—H8		0.9500		C27-	—C28		1.385 (3)
C9—C10		1.377 (2)		C27-	—H27		0.9500
С9—Н9		0.9500		C28-	—C29		1.393 (2)
C10—H10	)	0.9500		C28-	—H28		0.9500
C11—C12		1.405 (2)		C29-	C28 ⁱⁱ		1.393 (2)
C12—C13		1.381 (2)		C29-	—C30		1.511 (3)
C12—H12	2	0.9500		C30-	—H30A		0.9800
C13—C14	Ļ	1.387 (2)		C30-	—H30B		0.9800
C13—H13	3	0.9500		C30-	-H30C		0.9800
C14—C15		1.376 (2)					
N3 ⁱ —Fe1-	—N3	180.0		C14-			120.6
N3 ¹ —Fe1–	—N1	89.73 (5)		C15-			118.25 (15)
N3—Fe1–	N1	90.27 (5)		C15-			120.9
N3 ⁱ —Fe1-	-N1 ⁱ	90.27 (5)		C13-			120.9
N3—Fe1-	-N1 ⁱ	89.73 (5)		N3—	-C15-C14		123.23 (15)
N1—Fe1-	-N1 ⁱ	180.0		N3—	-C15—H15		118.4
N3 ⁱ —Fe1-	N2	89.94 (5)		C14-			118.4
N3—Fe1-	N2	90.06 (5)		C17-			113.89 (15)

	00.00 (5)	C17 C1( D1	100 70 (10)
NI—FeI—N2	89.82 (5)	C1/C16B1	123.78(13)
$N1^{-}$ Fe1 $-N2$	90.18 (5)	C21—C16—B1	121.86 (14)
$N3^{1}$ —Fe1— $N2^{1}$	90.06 (5)	C18—C17—C16	123.20 (15)
$N3$ —Fe1— $N2^{i}$	89.94 (5)	C18—C17—H17	118.4
N1—Fe1—N2 ⁱ	90.18 (5)	С16—С17—Н17	118.4
N1 ⁱ —Fe1—N2 ⁱ	89.82 (5)	C19—C18—C17	121.59 (15)
$N2$ —Fe1— $N2^{i}$	180.0	C19—C18—H18	119.2
C16—B1—C1	115.56 (13)	C17—C18—H18	119.2
C16—B1—C6	115.09 (13)	C18—C19—C20	116.06 (15)
C1 - B1 - C6	101 76 (13)	C18 - C19 - C22	123 24 (14)
C16-B1-C11	107.99 (13)	$C_{20}$ $C_{19}$ $C_{22}$	120.64(14)
C1 - B1 - C11	109.33 (13)	$C_{20} = C_{10} = C_{20} = C_{10}$	120.01(11) 121.85(15)
$C_{1}$ $D_{1}$ $C_{11}$	109.55(13) 106.64(13)	$C_{21} = C_{20} = C_{19}$	121.05 (15)
$C_0 = B_1 = C_1$	100.04(13)	$C_{21} = C_{20} = H_{20}$	119.1
C5—NI—CI	119.50 (15)	C19 - C20 - H20	119.1
C5—NI—Fel	119.13 (11)	C20-C21-C16	123.11 (15)
CI—NI—Fel	121.04 (10)	C20—C21—H21	118.4
C10—N2—C6	119.17 (13)	C16—C21—H21	118.4
C10—N2—Fe1	119.35 (11)	C25—C22—C19	112.64 (13)
C6—N2—Fe1	121.18 (10)	C25—C22—C24	107.74 (15)
C15—N3—C11	119.67 (14)	C19—C22—C24	110.39 (14)
C15—N3—Fe1	120.74 (11)	C25—C22—C23	108.42 (15)
C11—N3—Fe1	119.52 (10)	C19—C22—C23	107.99 (14)
N1—C1—C2	118.04 (14)	C24—C22—C23	109.62 (15)
N1—C1—B1	116.61 (13)	C22—C23—H23A	109.5
C2—C1—B1	125.19 (14)	C22—C23—H23C	109.5
$C_{3} - C_{2} - C_{1}$	122 13 (15)	H23A—C23—H23C	109.5
$C_{3}$ $C_{2}$ $H_{2}$	118.9	C22_C23_H23B	109.5
C1 - C2 - H2	118.9	$H_{23}A = C_{23} = H_{23}B$	109.5
$C_{2}^{-}$ $C_{3}^{-}$ $C_{4}^{-}$	118.49 (15)	$H_{23}C_{-}C_{23}$ $H_{23}B$	109.5
$C_2 = C_3 = C_4$	120.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_2 = C_3 = H_2$	120.8	$C_{22} = C_{24} = H_{24}A$	109.5
C4C3	120.0	$C_{22} - C_{24} - H_{24B}$	109.5
$C_{5}$	117.98 (15)	H24A - C24 - H24B	109.5
C5—C4—H4	121.0	C22—C24—H24C	109.5
С3—С4—Н4	121.0	H24A—C24—H24C	109.5
N1—C5—C4	123.64 (15)	H24B—C24—H24C	109.5
N1—C5—H5	118.2	C22—C25—H25C	109.5
C4—C5—H5	118.2	С22—С25—Н25В	109.5
N2—C6—C7	118.30 (14)	H25C—C25—H25B	109.5
N2—C6—B1	116.04 (13)	C22—C25—H25A	109.5
C7—C6—B1	125.59 (14)	H25C—C25—H25A	109.5
C8—C7—C6	122.16 (15)	H25B—C25—H25A	109.5
С8—С7—Н7	118.9	C27 ⁱⁱ —C26—C27	119.4 (2)
С6—С7—Н7	118.9	C27 ⁱⁱ —C26—H26	120.3
С7—С8—С9	118.35 (15)	C27—C26—H26	120.3
С7—С8—Н8	120.8	C26—C27—C28	120.10 (18)
С9—С8—Н8	120.8	C26—C27—H27	119.9
C10-C9-C8	118.06 (15)	$C_{28} = C_{27} = H_{27}$	119.9
C10-C9-H9	121.0	$C_{27} - C_{28} - C_{29}$	121 50 (17)
С8_С9_Н9	121.0	C27_C28_H28	110.3
$V_{2} = V_{1} = V_{1}$	121.0	$C_2 = C_2 $	117.5
$N_2 = C_1 O = U_1 O$	123.71 (13)	$C_{29} = C_{20} = 1120$	117.3
$1N2 - C 10 - \Pi 10$	110.1	120 - 129 - 128	117.4 (2)
	118.1	$(20^{-1}-(29-(30)))$	121.29(11)
N3-C11-C12	118.41 (14)	$C_{28} = C_{29} = C_{30}$	121.29 (11)
N3—C11—B1	118.67 (14)	C29—C30—H30A	109.5

C10 C11 D1	100.00 (1.4)	C20 C20 H20D	100 5
CI2—CII—BI	122.92 (14)	C29—C30—H30B	109.5
C13—C12—C11	121.63 (15)	H30A—C30—H30B	109.5
C13—C12—H12	119.2	С29—С30—Н30С	109.5
C11—C12—H12	119.2	H30A—C30—H30C	109.5
C12-C13-C14	118.75 (15)	H30B-C30-H30C	109.5
C12—C13—H13	120.6		
N3 ⁱ —Fe1—N1—C5	-42.74(12)	$C_{16}B_{1}C_{6}C_{7}$	137(2)
$N_3 = 1$ $N_1 = C_5$	127.74(12)	C1 $B1$ $C6$ $C7$	-112.07(17)
$N_{1} = 1 = N_{1} = 0$	137.20(12)	C1 $D1$ $C6$ $C7$	112.07(17)
NI = FeI = NI = C5	21(0) 122(0(12))	CII = BI = C0 = C7	135.39 (10)
$N_2$ —FeI— $N_1$ —C5	-132.09 (12)	$N_2 = C_0 = C_1 = C_8$	4.7(2)
N2 ⁻ FeI	4/.31(12)	BI	-1/8.33 (15)
N ³ —Fel—Nl—Cl	131.28 (12)	C6-C7-C8-C9	-0.5 (2)
N3—Fe1—N1—C1	-48.72 (12)	C7—C8—C9—C10	-2.7 (2)
$N1^{i}$ —Fe1—N1—C1	-165 (6)	C6—N2—C10—C9	2.4 (2)
N2—Fe1—N1—C1	41.34 (12)	Fe1—N2—C10—C9	-171.51 (12)
N2 ⁱ —Fe1—N1—C1	-138.66 (12)	C8—C9—C10—N2	1.8 (2)
N3 ⁱ —Fe1—N2—C10	44.60 (12)	C15—N3—C11—C12	-2.8(2)
N3—Fe1—N2—C10	-135.40 (12)	Fe1—N3—C11—C12	173.96 (11)
N1—Fe1—N2—C10	134.33 (12)	C15—N3—C11—B1	177.56 (13)
$N1^{i}$ —Fe1—N2—C10	-45.67 (12)	Fe1—N3—C11—B1	-5.67 (18)
$N2^{i}$ —Fe1—N2—C10	-32(10)	C16 - B1 - C11 - N3	-176.59(13)
$N3^{i}$ Fe1 $N2$ C6	-12914(12)	$C1_B1_C11_N3$	-5010(18)
$N_2$ Eq. $N_2$ C6	50.86(12)	C6 $B1$ $C11$ $N3$	50.10(17)
$N_{1} = F_{0} = N_{2} = C_{0}$	30.00(12)	$C_{16}$ $D_{1}$ $C_{11}$ $C_{12}$	39.19(17)
NI = FeI = N2 = CO	-39.42 (12)		5.8 (2)
NI - FeI - N2 - C6	140.59 (12)		130.29 (16)
N2 ⁴ —Fel—N2—C6	154 (10)	C6—B1—C11—C12	-120.43 (16)
$N3^{1}$ —Fe1—N3—C15	-150 (12)	N3—C11—C12—C13	1.4 (2)
N1—Fe1—N3—C15	-135.24 (12)	B1—C11—C12—C13	-179.02 (14)
$N1^{i}$ —Fe1—N3—C15	44.76 (12)	C11—C12—C13—C14	1.1 (2)
N2—Fe1—N3—C15	134.94 (12)	C12-C13-C14-C15	-2.0 (2)
N2 ⁱ —Fe1—N3—C15	-45.06 (12)	C11—N3—C15—C14	1.9 (2)
N3 ⁱ —Fe1—N3—C11	34 (12)	Fe1-N3-C15-C14	-174.83 (12)
N1—Fe1—N3—C11	48.02 (12)	C13—C14—C15—N3	0.6 (2)
N1 ⁱ —Fe1—N3—C11	-131.98 (12)	C1—B1—C16—C17	-32.0(2)
N2—Fe1—N3—C11	-41.80(12)	C6—B1—C16—C17	-150.28(15)
$N2^{i}$ Fe1 $N3$ $C11$	138 20 (12)	$C_{11}$ = B1 = C_{16} = C_{17}	90 74 (18)
$C_{5}$ N1- $C_{1}$ C2	40(2)	$C1_B1_C16_C21$	156 35 (15)
$C_3$ $N_1$ $C_1$ $C_2$	-160.06(11)	C6 B1 C16 C21	130.33(13)
$C_5 N_1 C_1 D_1$	109.90(11) 170.61(12)	$C_{0}$ $B_{1}$ $C_{10}$ $C_{21}$	30.1(2)
$C_{J}$ NI $C_{I}$ DI	1/9.01(15)	C11 - B1 - C10 - C21	-80.89(17)
Fel—NI—CI—BI	5.62 (18)	$C_{21} = C_{10} = C_{17} = C_{18}$	-5.5 (2)
CI6—BI—CI—NI	1/1.41 (13)	BI-C16-C17-C18	-177.73 (15)
C6-B1-C1-N1	-63.16 (16)	C16—C17—C18—C19	1.8 (2)
C11—B1—C1—N1	49.36 (18)	C17—C18—C19—C20	2.8 (2)
C16—B1—C1—C2	-13.4 (2)	C17—C18—C19—C22	-174.49 (15)
C6—B1—C1—C2	112.06 (17)	C18—C19—C20—C21	-3.3 (2)
C11—B1—C1—C2	-135.42 (16)	C22-C19-C20-C21	174.04 (15)
N1-C1-C2-C3	-4.6 (2)	C19—C20—C21—C16	-0.7 (3)
B1-C1-C2-C3	-179.78 (15)	C17—C16—C21—C20	5.0 (2)
C1—C2—C3—C4	1.8 (3)	B1-C16-C21-C20	177.36 (15)
C2—C3—C4—C5	1.4 (2)	C18—C19—C22—C25	-21.6 (2)
C1—N1—C5—C4	-0.8(2)	C20—C19—C22—C25	161.28 (16)
Fe1—N1—C5—C4	173.26 (12)	C18—C19—C22—C24	-142.05(17)
$C_{3}$ $C_{4}$ $C_{5}$ $N_{1}$	-20(2)	$C_{10} = C_{10} = C_{22} = C_{24}$	40.8 (2)
	2.0 (2)	020 017 022 <del>-</del> 02 <del>1</del>	10.0 (2)

# Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

## supplementary materials

C10—N2—C6—C7	-5.5 (2)	C18—C19—C22—C23	98.12 (18)
Fe1—N2—C6—C7	168.29 (11)	C20—C19—C22—C23	-79.02 (19)
C10—N2—C6—B1	177.25 (14)	C27 ⁱⁱ —C26—C27—C28	0.62 (12)
Fe1—N2—C6—B1	-9.00 (18)	C26—C27—C28—C29	-1.3 (2)
C16—B1—C6—N2	-169.26 (13)	C27—C28—C29—C28 ⁱⁱ	0.64 (12)
C1—B1—C6—N2	65.00 (16)	C27—C28—C29—C30	-179.36 (12)
C11—B1—C6—N2	-49.53 (17)		

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*; (ii) -*x*, *y*, -*z*+1/2.

## Experimental

Crystal data	
C ₅₀ H ₅₀ B ₂ FeN ₆ ·Cl ₄ Fe	$V = 4812.36 (14) \text{ Å}^3$
$M_r = 1010.08$	Z = 4
Orthorhombic, <i>Pna</i> 2 ₁	Cu K $\alpha$ radiation, $\lambda = 1.54178$ Å
a = 27.5963 (5) Å	$\mu = 7.20 \text{ mm}^{-1}$
b = 12.7473 (2) Å	T = 100  K
c = 13.6801 (2)  Å	$0.24 \times 0.16 \times 0.13 \text{ mm}$
· ·	

## Data collection

Bruker SMART CCD Apex-II area-detector diffractometer	8157 independent reflections
Absorption correction: Numerical SADABS (Sheldrick, 2008a)	7259 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.277, \ T_{\max} = 0.455$	$R_{\rm int} = 0.061$
41913 measured reflections	

## Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$   $wR(F^2) = 0.084$  S = 1.028157 reflections 584 parameters 1 restraint H-atom parameters constrained 
$$\begin{split} &\Delta\rho_{max}=0.51\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.27\ e\ \mathring{A}^{-3}\\ &Absolute\ structure:\ Flack\ (1983),\ 3788\ Friedel\ pairs\\ &Flack\ parameter:\ 0.685\ (3) \end{split}$$

Data collection: *APEX* 2 (Bruker, 2006); cell refinement: *APEX* 2; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008b); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

## References

Bruker (2005). SAINT Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX 2 Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112—122.

## Refinement

All H atoms for (I) were found in electron density difference maps. The methyl H atoms were put in ideally staggered positions with C—H distances of 0.98 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ . The pyridinium and aromatic Hs were placed in geometrically idealized positions and constrained to ride on their parent C or N atoms with distances of 0.88 and 0.95 Å, respectively, and  $U_{iso}(H) = 1.2U_{eq}(C)$ . This crystal is non-merohedrally twinned. The final refinement resulted in a ratio of 0.685 (3): 0.315 (3) for the two domains, with a final wR2 = 0.084 and R1 = 0.037.

## (Complex2+)

### Crystal data

C II D EaN Cl Ea	E(000) = 2099
$C_{50}\Pi_{50}\Pi_{2}\Gamma e \Pi_{6} C_{14}\Gamma e$	F(000) = 2088
$M_r = 1010.08$	$D_{\rm x} = 1.394 {\rm ~Mg~m^{-3}}$
Orthorhombic, <i>Pna</i> 2 ₁	Cu K $\alpha$ radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2c -2n	Cell parameters from 9958 reflections
a = 27.5963 (5) Å	$\theta = 3.5 - 66.8^{\circ}$
b = 12.7473 (2) Å	$\mu = 7.20 \text{ mm}^{-1}$
c = 13.6801 (2)  Å	T = 100  K
$V = 4812.36 (14) \text{ Å}^3$	Block, Red purple
Z = 4	$0.24\times0.16\times0.13~mm$

### Data collection

Bruker SMART CCD Apex-II area-detector diffractometer	8157 independent reflections
Radiation source: fine-focus sealed tube	7259 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.061$
$\varphi$ and $\omega$ scans	$\theta_{max} = 67.5^{\circ},  \theta_{min} = 3.2^{\circ}$
Absorption correction: Numerical SADABS (Sheldrick, 2008a)	$h = -31 \rightarrow 32$
$T_{\min} = 0.277, \ T_{\max} = 0.455$	$k = -12 \rightarrow 14$
41913 measured reflections	$l = -16 \rightarrow 16$

## Refinement

Refinement on $F^2$	Secondary atom site location: Difference Fourier map
Least-squares matrix: Full	Hydrogen site location: Inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2 + 0.0721P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
8157 reflections	$\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm \AA}^{-3}$
584 parameters	$\Delta \rho_{\rm min} = -0.27 \ e \ {\rm \AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 3788 Friedel pairs
Primary atom site location: Structure-invariant direct methods	Flack parameter: 0.685 (3)

## Special details

Experimental. 'crystal mounted on a Cryoloop using Paratone-N'

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Fe1	0.879853 (16)	0.73064 (3)	0.61770 (4)	0.01476 (11)
B1	0.92696 (13)	0.6916 (3)	0.4131 (3)	0.0173 (8)
B2	0.83225 (14)	0.7751 (3)	0.8213 (3)	0.0175 (8)
N1	0.85696 (10)	0.6265 (2)	0.5190 (2)	0.0163 (6)
N2	0.88627 (10)	0.8382 (2)	0.5155 (2)	0.0173 (6)
N3	0.94748 (9)	0.6820(2)	0.59535 (18)	0.0166 (6)
N4	0.90361 (10)	0.8348 (2)	0.7172 (2)	0.0179 (6)
N5	0.87252 (9)	0.6238 (2)	0.7228 (2)	0.0157 (6)
N6	0.81195 (9)	0.7778 (2)	0.63918 (18)	0.0162 (6)
C1	0.88296 (11)	0.6092 (3)	0.4360 (2)	0.0169 (7)
C2	0.87279 (12)	0.5179 (3)	0.3825 (3)	0.0194 (8)
H2A	0.8917	0.5016	0.3265	0.023*
C3	0.83586 (12)	0.4516 (3)	0.4096 (2)	0.0195 (7)
H3A	0.8301	0.3890	0.3739	0.023*
C4	0.80717 (12)	0.4763 (3)	0.4890 (2)	0.0203 (8)
H4A	0.7801	0.4342	0.5062	0.024*
C5	0.81914 (11)	0.5640 (3)	0.5423 (2)	0.0184 (7)
H5A	0.8001	0.5814	0.5978	0.022*
C6	0.90530 (11)	0.8098 (3)	0.4282 (2)	0.0175 (7)
C7	0.90425 (13)	0.8847 (3)	0.3531 (3)	0.0249 (8)
H7A	0.9169	0.8668	0.2907	0.030*
C8	0.88546 (14)	0.9829 (3)	0.3673 (3)	0.0301 (9)
H8A	0.8848	1.0322	0.3153	0.036*
С9	0.86736 (12)	1.0098 (3)	0.4592 (3)	0.0265 (8)
H9A	0.8544	1.0776	0.4714	0.032*
C10	0.86893 (11)	0.9360 (3)	0.5304 (3)	0.0218 (8)
H10A	0.8573	0.9539	0.5936	0.026*
C11	0.96329 (11)	0.6623 (2)	0.5032 (2)	0.0152 (7)
C12	1.00771 (12)	0.6097 (3)	0.4922 (2)	0.0201 (8)
H12A	1.0193	0.5943	0.4283	0.024*
C13	1.03465 (13)	0.5802 (3)	0.5717 (3)	0.0245 (8)
H13A	1.0641	0.5426	0.5632	0.029*
C14	1.01851 (12)	0.6058 (3)	0.6648 (3)	0.0235 (8)
H14A	1.0372	0.5890	0.7209	0.028*
C15	0.97513 (12)	0.6556 (3)	0.6732 (3)	0.0196 (7)
H15A	0.9637	0.6727	0.7368	0.024*
C16	0.95140 (12)	0.6869(3)	0.3061 (2)	0.0187 (7)
C17	0.92612 (12)	0.6665 (3)	0.2203 (3)	0.0210 (8)
H17A	0.8939	0.6405	0.2252	0.025*
C18	0.94563 (11)	0.6822 (2)	0.1276 (3)	0.0210(7)
H18A	0.9267	0.6655	0.0717	0.025*

C19	0.99226 (11)	0.7218 (2)	0.1150 (3)	0.0200 (6)
C20	1.01781 (13)	0.7457 (3)	0.2002 (3)	0.0194 (8)
H20A	1.0496	0.7737	0.1951	0.023*
C21	0.99775 (12)	0.7296 (3)	0.2923 (3)	0.0214 (8)
H21A	1.0162	0.7483	0.3483	0.026*
C22	1.01508 (13)	0.7436 (3)	0.0154 (3)	0.0229 (8)
C23	0.98264 (16)	0.7079(3)	-0.0690(3)	0.0390 (11)
H23A	0.9510	0.7423	-0.0637	0.058*
H23B	0.9784	0.6316	-0.0659	0.058*
H23C	0.9978	0.7269	-0.1313	0.058*
C24	1.02401 (16)	0.8608 (3)	0.0043 (3)	0.0353(10)
H24A	1.0464	0.8845	0.0554	0.053*
H24B	0.9932	0.8986	0.0105	0.053*
H24C	1 0381	0.8748	-0.0601	0.053*
C25	1.06326 (14)	0.6849 (3)	0.0001	0.033 (10)
H25A	1.0574	0.6092	0.0119	0.057*
H25R	1.0371	0.7066	0.0611	0.057*
H25C	1.0786	0.7013	-0.0552	0.057*
C1A	0.87780 (12)	0.8530 (3)	0.0332	0.057 0.0168 (7)
C2A	0.87789(12) 0.88940(13)	0.0339(3)	0.7997(2) 0.8555(3)	0.0108(7)
U2R	0.8695	0.9421 (3)	0.0006	0.0210 (8)
C3A	0.0093	0.9003	0.9090	0.020
	0.92941 (13)	1.0624	0.8333 (3)	0.0240 (8)
CAA	0.9574	0.0766 (2)	0.0723 0.7522(2)	0.030
	0.93739(12)	0.9700 (3)	0.7333 (2)	0.0211 (0)
П4D	0.9802	0.8024 (2)	0.7382	$0.023^{\circ}$
	0.94320 (11)	0.8934 (3)	0.0904 (2)	0.0109(7)
ПЭБ	0.9019	0.8703	0.0403	0.023
COA	0.85260(12)	0.0330(3)	0.8090(2)	0.01/4(7)
C/A	0.85246 (12)	0.5814 (5)	0.8854 (2)	0.0208 (8)
H/B	0.8390	0.0007	0.9467	0.023*
	0.87079 (12)	0.4830 (3)	0.8741 (5)	0.0228 (8)
H8B	0.8700	0.4549	0.9272	0.027*
C9A	0.88981 (12)	0.4554 (5)	0.7841 (5)	0.0230 (8)
H9B	0.9027	0.3851	0.7740	0.028*
LIOD	0.88933 (11)	0.5264 (5)	0.7101(3)	0.0192 (7)
HIUB	0.9014	0.5068	0.6476	0.023*
CIIA	0.79689 (12)	0.8034 (2)	0.7304 (2)	0.01/0(/)
CI2A UI2D	0.75406 (12)	0.8609 (2)	0.7402 (3)	0.0211(/)
HI2B	0.7441	0.8835	0.8033	0.025*
CI3A HI2D	0.72595 (12)	0.8853 (3)	0.6598 (3)	0.0233 (8)
HI3B	0.6970	0.9246	0.6675	0.028*
CI4A	0.74041 (12)	0.8519 (3)	0.5680 (3)	0.0224 (8)
HI4B	0.7209	0.8648	0.5120	0.02/*
CISA	0.78390 (12)	0.7996(3)	0.5604 (2)	0.0189(7)
HI5B	0.7947	0.7780	0.4975	0.023*
CI6A	0.80600 (11)	0.7799 (3)	0.9273 (2)	0.0186 (7)
CI/A	0.75996 (12)	0./346(3)	0.9394 (3)	0.0196 (8)
HI7B	0.7427	0.7131	0.8827	0.023*
CI8A	0.73855 (13)	0.7198 (3)	1.0302 (3)	0.0221 (8)
HI8B	0.7073	0.6887	1.0339	0.027*
CI9A	0.76189 (11)	0.7496 (2)	1.1156 (3)	0.0209 (7)
C20A	0.80753 (11)	0.7934 (2)	1.1056 (3)	0.0210 (7)
H20B	0.8246	0.8147	1.1625	0.025*
C21A	0.82900(12)	0.8070(3)	1.0152 (2)	0.0214 (8)

H21B	0.8607		0.8359	1.0125	0.0	26*
C22A	0.73864	(13)	0.7364 (3)	1.2178 (3)	0.0	230 (8)
C23A	0.68974	(15)	0.6810 (4)	1.2128 (3)	0.0	445 (11)
H23D	0.6766		0.6735	1.2790	0.0	67*
H23E	0.6939		0.6115	1.1834	0.0	67*
H23F	0.6673		0.7225	1.1729	0.0	67*
C24A	0.77215	(15)	0.6721 (3)	1.2838 (3)	0.0	336 (9)
H24D	0.7760		0.6015	1.2565	0.0	50*
H24E	0.7580		0.6672	1.3493	0.0	50*
H24F	0.8039		0.7064	1.2878	0.0	50*
C25A	0.73205	(15)	0.8460 (3)	1.2634 (3)	0.0	352 (10)
H25D	0.7637		0.8804	1.2693	0.0	53*
H25E	0.7174		0.8390	1.3283	0.0	53*
H25F	0.7109		0.8883	1.2215	0.0	53*
Fe2	0.63102	8 (17)	0.64613 (4)	0.61657 (5)	0.0	2128 (12)
Cl1	0.61674	(3)	0.75420 (7)	0.73878 (7)	0.0	323 (2)
Cl2	0.70196	(3)	0.57666 (7)	0.64372 (9)	0.0	459 (3)
C13	0.62864	(4)	0.72542 (8)	0.47430 (7)	0.0	376 (3)
Cl4	0.57539	(3)	0.52317 (7)	0.61511 (8)	0.0	327 (2)
		( 82)				
Atomic dis	splacement paran	neters $(A^2)$				
	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	$U^{23}$
Fe1	0.0165 (2)	0.0161 (3)	0.0117 (2)	-0.00003 (17)	0.0011 (3)	-0.0006 (3)
B1	0.019 (2)	0.020 (2)	0.013 (2)	-0.0011 (15)	0.0004 (16)	-0.0005 (15)
B2	0.020(2)	0.020 (2)	0.013 (2)	0.0027 (15)	-0.0005 (16)	-0.0014 (15)
N1	0.0172 (15)	0.0167 (16)	0.0151 (16)	0.0036 (11)	0.0002 (12)	-0.0047 (11)
N2	0.0195 (16)	0.0163 (17)	0.0160 (16)	0.0001 (11)	-0.0003 (12)	0.0000 (11)
N3	0.0168 (14)	0.0214 (16)	0.0116 (16)	-0.0007 (10)	0.0000 (11)	0.0000 (10)
N4	0.0168 (16)	0.0237 (17)	0.0132 (15)	0.0011 (11)	-0.0009 (12)	-0.0063 (11)
N5	0.0134 (15)	0.0171 (16)	0.0167 (16)	-0.0006 (10)	-0.0007 (12)	0.0019 (11)
N6	0.0173 (14)	0.0173 (15)	0.0141 (16)	-0.0014 (10)	0.0011 (11)	0.0005 (11)
C1	0.0140 (17)	0.022 (2)	0.0150 (18)	0.0032 (13)	-0.0025 (14)	-0.0012 (14)
C2	0.0183 (19)	0.026 (2)	0.0143 (19)	0.0049 (14)	0.0005 (14)	-0.0014 (14)
C3	0.023 (2)	0.0162 (19)	0.0192 (19)	0.0001 (13)	-0.0074 (15)	-0.0018 (14)
C4	0.0196 (19)	0.024 (2)	0.0172 (19)	-0.0015 (13)	-0.0013 (14)	-0.0011 (14)
C5	0.0144 (17)	0.026 (2)	0.0147 (17)	-0.0005 (14)	0.0018 (14)	0.0018 (13)
C6	0.0152 (18)	0.0208 (19)	0.0165 (19)	-0.0015 (13)	-0.0012 (14)	0.0016 (13)
C7	0.029(2)	0.033 (2)	0.0135 (19)	0.0052 (16)	0.0039 (16)	0.0012 (15)
C8	0.039(2)	0.022 (2)	0.029 (2)	0.0060 (17)	0.0022 (18)	0.0066 (17)
C9	0.028 (2)	0.022 (2)	0.029 (2)	0.0040 (15)	0.0013 (17)	0.0005 (15)
C10	0.0187 (19)	0.024 (2)	0.023 (2)	0.0019 (14)	0.0035 (15)	-0.0041 (14)
C11	0.0156 (18)	0.0174 (19)	0.0127 (18)	-0.0035 (13)	0.0010 (14)	0.0012 (13)
C12	0.0229 (19)	0.022 (2)	0.0152 (19)	-0.0003 (14)	0.0057 (14)	-0.0013 (14)
C13	0.023 (2)	0.025 (2)	0.026 (2)	0.0023 (14)	0.0024 (17)	0.0034 (16)
C14	0.023 (2)	0.030 (2)	0.017 (2)	-0.0007 (15)	-0.0051 (16)	0.0035 (15)
C15	0.026 (2)	0.021 (2)	0.0116 (18)	-0.0008 (14)	-0.0007 (15)	-0.0014 (13)
C16	0.0180 (18)	0.020 (2)	0.0178 (19)	0.0030 (14)	0.0022 (14)	-0.0030 (13)
C17	0.0190 (18)	0.022 (2)	0.022 (2)	0.0007 (13)	-0.0010 (15)	-0.0032 (14)
C18	0.0225 (17)	0.0241 (18)	0.0163 (19)	0.0008 (12)	-0.0003 (16)	-0.0012 (16)
C19	0.0252 (17)	0.0183 (17)	0.0166 (17)	0.0056 (12)	0.0003 (18)	-0.0007 (16)
C20	0.0208 (19)	0.017 (2)	0.021 (2)	-0.0004 (14)	0.0031 (15)	0.0008 (14)
C21	0.026 (2)	0.022 (2)	0.017 (2)	0.0005 (14)	-0.0034 (16)	-0.0034 (14)
C22	0.027 (2)	0.024 (2)	0.017 (2)	0.0001 (15)	0.0058 (16)	0.0000 (15)
C23	0.055 (3)	0.052 (3)	0.011 (2)	-0.011 (2)	0.0019 (19)	0.0029 (17)

C24	0.052 (3)	0.034 (2)	0.020(2)	-0.0010 (18)	0.0102 (19)	0.0060 (16)
C25	0.042 (3)	0.049 (3)	0.023 (2)	0.0176 (19)	0.0135 (18)	0.0100 (18)
C1A	0.0180 (19)	0.0174 (19)	0.0150 (19)	0.0011 (13)	-0.0008(14)	0.0021 (13)
C2A	0.025 (2)	0.023 (2)	0.016 (2)	-0.0012 (15)	0.0046 (15)	0.0001 (15)
C3A	0.034 (2)	0.022 (2)	0.0183 (19)	-0.0035 (15)	-0.0010 (16)	-0.0065 (14)
C4A	0.0200 (19)	0.022 (2)	0.021 (2)	-0.0048 (14)	0.0005 (15)	0.0021 (14)
C5A	0.0176 (18)	0.023 (2)	0.0161 (18)	-0.0017 (13)	0.0056 (14)	0.0012 (13)
C6A	0.0156 (18)	0.023 (2)	0.0139 (18)	-0.0053 (13)	-0.0023 (14)	-0.0027 (13)
C7A	0.0222 (19)	0.024 (2)	0.016 (2)	-0.0010 (14)	0.0006 (15)	0.0013 (14)
C8A	0.029 (2)	0.022 (2)	0.017 (2)	-0.0011 (15)	-0.0046 (16)	0.0079 (15)
C9A	0.0222 (19)	0.019 (2)	0.028 (2)	0.0000 (13)	-0.0034 (16)	0.0013 (15)
C10A	0.0202 (18)	0.018 (2)	0.019 (2)	-0.0002(13)	-0.0005(15)	-0.0045 (13)
C11A	0.0194 (18)	0.0176 (19)	0.0141 (18)	-0.0017 (12)	0.0040 (15)	0.0009 (13)
C12A	0.0227 (19)	0.0203 (19)	0.0201 (19)	-0.0013 (13)	0.0016 (15)	-0.0048 (15)
C13A	0.0200 (19)	0.020 (2)	0.030 (2)	0.0043 (14)	0.0042 (16)	-0.0003 (15)
C14A	0.0171 (19)	0.029 (2)	0.021 (2)	0.0021 (14)	-0.0040 (15)	0.0055 (15)
C15A	0.026 (2)	0.019 (2)	0.0120 (19)	-0.0009 (14)	0.0003 (15)	0.0005 (14)
C16A	0.0174 (18)	0.023 (2)	0.0154 (19)	0.0029 (13)	0.0028 (14)	-0.0009 (14)
C17A	0.0229 (19)	0.018 (2)	0.018 (2)	-0.0001 (13)	-0.0016 (15)	-0.0030(13)
C18A	0.022 (2)	0.025 (2)	0.019 (2)	-0.0009(14)	0.0021 (15)	0.0020 (14)
C19A	0.0244 (17)	0.0209 (18)	0.0173 (18)	0.0035 (11)	0.0044 (18)	-0.0019 (17)
C20A	0.0256 (18)	0.0222 (19)	0.0152 (18)	0.0027 (12)	-0.0001 (16)	-0.0016 (14)
C21A	0.024 (2)	0.021 (2)	0.0194 (19)	-0.0031 (14)	0.0039 (15)	-0.0018 (14)
C22A	0.024 (2)	0.031 (2)	0.014 (2)	0.0003 (15)	0.0031 (16)	0.0019 (15)
C23A	0.039 (3)	0.070 (3)	0.024 (2)	-0.015 (2)	0.0089 (19)	0.006 (2)
C24A	0.047 (3)	0.031 (2)	0.022 (2)	0.0045 (18)	0.0012 (19)	0.0050 (16)
C25A	0.046 (3)	0.041 (3)	0.018 (2)	0.0126 (18)	0.0126 (18)	0.0025 (16)
Fe2	0.0253 (3)	0.0178 (3)	0.0208 (3)	-0.00041 (18)	0.0044 (3)	-0.0009 (3)
C11	0.0375 (6)	0.0324 (6)	0.0270 (5)	0.0032 (4)	-0.0005 (4)	-0.0117 (4)
Cl2	0.0274 (5)	0.0316 (6)	0.0788 (9)	0.0073 (4)	0.0131 (5)	0.0114 (5)
Cl3	0.0619 (7)	0.0281 (6)	0.0227 (5)	-0.0110 (4)	0.0036 (5)	0.0042 (4)
Cl4	0.0384 (5)	0.0363 (5)	0.0235 (4)	-0.0159 (3)	0.0030 (5)	-0.0013 (4)
<i>.</i>						
Geometric	parameters (A, ^o )					
Fel—N2		1.966 (3)		C22—C25	1.:	530 (5)
Fe1—N6		1.990 (2)		C22—C23	1.:	530 (5)
Fel—N3		1.990 (3)		C23—H23A	0.9	9800
Fel—N5		1.991 (3)		С23—Н23В	0.9	9800
Fel—NI		1.996 (3)		C23—H23C	0.9	9800
Fel—N4		2.011 (3)		C24—H24A	0.9	9800
BI—Cl6		1.613 (5)		C24—H24B	0.9	9800
BI—CII		1.632 (5)		C24—H24C	0.9	9800
BI-C6		1.633 (5)		C25—H25A	0.9	9800
BI—CI		1.636 (5)		C25—H25B	0.9	9800
B2—CI6A		1.621 (5)		C25—H25C	0.9	9800
B2—CIIA		1.622 (5)		CIA—C2A	l	396 (5)
B2—C6A		1.635 (5)		C2A—C3A	1	585 (5) 560
B2—CIA		1.637 (5)		C2A—H2B	0.9	4000 205 (5)
NI-C5		1.351 (4)		C3A—C4A	1	585 (5)
NI-CI		1.361 (4)		C3A—H3B	0.9	4000 070 (5)
N2-C10		1.351 (4)		C4A—C5A	1	5/5 (5) 5500
N2-C6		1.354 (4)		C4A—H4B	0.9	4500 2500
N3-CI1		1.353 (4)		СЭА—НЭВ	0.9	7000 110 (E)
N3-C11		1.357 (4)		COA-C/A	1.4	+10(5)

N4—C5A	1.355 (4)	C7A—C8A	1.361 (5)
N4—C1A	1.356 (4)	С7А—Н7В	0.9500
N5-C10A	1.337 (4)	C8A—C9A	1.391 (5)
N5—C6A	1.360 (4)	C8A—H8B	0.9500
N6—C11A	1.355 (4)	C9A—C10A	1.375 (5)
N6—C15A	1.356 (4)	С9А—Н9В	0.9500
C1—C2	1.404 (5)	C10A—H10B	0.9500
C2—C3	1.375 (5)	C11A—C12A	1.397 (4)
C2—H2A	0.9500	C12A—C13A	1.381 (5)
C3—C4	1.381 (5)	C12A—H12B	0.9500
С3—НЗА	0.9500	C13A—C14A	1.385 (5)
C4—C5	1.375 (5)	C13A—H13B	0.9500
C4—H4A	0.9500	C14A—C15A	1.377 (5)
C5—H5A	0.9500	C14A—H14B	0.9500
C6—C7	1,404 (5)	C15A—H15B	0.9500
C7—C8	1 369 (5)	C16A - C21A	1 404 (5)
C7—H7A	0.9500	C16A - C17A	1405(4)
$C_{8}$	1 395 (5)	C17A - C18A	1.105(1) 1.389(5)
	0.9500	C17A_H17B	0.9500
$C_0 - C_{10}$	1 354 (5)	C18A - C19A	1 388 (5)
$C_{0}$ H0A	0.0500		0.0500
C10_H10A	0.9500	$C_{10A}$ $C_{20A}$	1.384(4)
$C_{10}$ $C_{11}$ $C_{12}$	1.406 (5)	C19A = C20A	1.364(4) 1.547(5)
C12 = C12	1.400(5)	$C_{19}A = C_{22}A$	1.347(3)
C12 - C13	1.570(5)	$C_{20A}$ $C_{21A}$	1.381 (3)
C12—F112A	0.9300	С20А—П20В	0.9300
C13 - C14	1.388 (5)	C21A—H21B	0.9500
C13—H13A	0.9500	C22A = C23A	1.524 (5)
	1.360 (5)	C22A—C24A	1.531 (5)
CI4—HI4A	0.9500	C22A—C25A	1.541 (5)
CI5—HI5A	0.9500	C23A—H23D	0.9800
C16—C17	1.390 (5)	С23А—Н23Е	0.9800
C16—C21	1.403 (5)	C23A—H23F	0.9800
C17—C18	1.393 (5)	C24A—H24D	0.9800
С17—Н17А	0.9500	C24A—H24E	0.9800
C18—C19	1.393 (4)	C24A—H24F	0.9800
C18—H18A	0.9500	C25A—H25D	0.9800
C19—C20	1.395 (5)	С25А—Н25Е	0.9800
C19—C22	1.527 (5)	C25A—H25F	0.9800
C20—C21	1.392 (5)	Fe2—Cl2	2.1804 (10)
C20—H20A	0.9500	Fe2—Cl3	2.1941 (12)
C21—H21A	0.9500	Fe2—Cl4	2.1943 (9)
C22—C24	1.521 (5)	Fe2—Cl1	2.2018 (11)
N2—Fe1—N6	88.80 (11)	C25—C22—C23	108.1 (3)
N2—Fe1—N3	91.35 (11)	С22—С23—Н23А	109.5
N6—Fe1—N3	179.32 (11)	С22—С23—Н23В	109.5
N2—Fe1—N5	178.81 (13)	H23A—C23—H23B	109.5
N6—Fe1—N5	90.25 (10)	С22—С23—Н23С	109.5
N3—Fe1—N5	89.60 (11)	H23A—C23—H23C	109.5
N2—Fe1—N1	90.65 (12)	H23B—C23—H23C	109.5
N6—Fe1—N1	90.16 (11)	C22—C24—H24A	109.5
N3—Fe1—N1	89.18 (11)	C22—C24—H24B	109.5
N5—Fe1—N1	90.07 (11)	H24A—C24—H24B	109.5
N2—Fe1—N4	89.49 (11)	C22—C24—H24C	109.5

N6—Fe1—N4	90.44 (11)	H24A—C24—H24C	109.5
N3—Fe1—N4	90.23 (11)	H24B—C24—H24C	109.5
N5—Fe1—N4	89.81 (12)	C22—C25—H25A	109.5
N1—Fe1—N4	179.39 (12)	С22—С25—Н25В	109.5
C16—B1—C11	114.8 (3)	H25A—C25—H25B	109.5
C16—B1—C6	107.6 (3)	С22—С25—Н25С	109.5
C11—B1—C6	109.9 (3)	H25A—C25—H25C	109.5
C16—B1—C1	117.4 (3)	H25B—C25—H25C	109.5
C11—B1—C1	99.4 (3)	N4—C1A—C2A	118.7 (3)
C6—B1—C1	107.3 (3)	N4—C1A—B2	116.3 (3)
C16A—B2—C11A	114.1 (3)	C2A—C1A—B2	124.8 (3)
C16A—B2—C6A	106.4 (3)	C3A—C2A—C1A	121.0 (3)
C11A—B2—C6A	109.7 (3)	СЗА—С2А—Н2В	119.5
C16A—B2—C1A	118.8 (3)	C1A—C2A—H2B	119.5
C11A—B2—C1A	100.8 (3)	C4A—C3A—C2A	118.9 (3)
C6A—B2—C1A	106.6 (3)	С4А—С3А—Н3В	120.5
C5—N1—C1	120.6 (3)	С2А—С3А—Н3В	120.5
C5-N1-Fe1	118.5 (2)	C5A - C4A - C3A	118.4 (3)
C1—N1—Fe1	1203(2)	C5A - C4A - H4B	120.8
C10-N2-C6	120.3(2) 121 1 (3)	C3A - C4A - H4B	120.8
C10 = N2 = Ee1	121.1(5) 1204(2)		120.0 122.7(3)
C6 N2 Fe1	120.4(2) 1184(2)	N4 C5A H5B	122.7 (5)
$C_{12} = 101$	110.7(2)	$C_{4} = C_{5} = H_{5} = H_{5}$	118.7
$C_{15} = N_{5} = C_{11}$	120.3(3)	$C_{A} = C_{A} = H_{A} = H_{A}$	116.7 116.5(2)
$C_{13}$ $N_{3}$ $E_{e1}$	119.0(2) 120.1(2)	N5 = C6A = C7A	110.3(3)
C11 - N3 - FC1	120.1(2)	$N_{3}$ $C_{0}A$ $B_{2}$	120.4(3)
C5A = N4 = C1A	119.9 (3)	C/A = COA = B2	123.1(3)
$C_{1A} = N_{4} = Fe_{1}$	119.1(2)	$C_{A} = C_{A} = C_{A}$	122.1 (3)
CIA—N4—Fei	120.7 (2)	$C_{A} = C_{A} = H_{B}$	118.9
C10A - N5 - C6A	121.9 (3)	C6A - C/A - H/B	118.9
CluA—N5—Fel	120.4 (2)	C/A—C8A—C9A	119.3 (3)
C6A—N5—Fel	117.5 (2)	C/A—C8A—H8B	120.3
C11A—N6—C15A	120.5 (3)	С9А—С8А—Н8В	120.3
Cl1A—N6—Fel	119.9 (2)	C10A—C9A—C8A	117.7 (3)
C15A—N6—Fe1	118.8 (2)	C10A—C9A—H9B	121.1
N1—C1—C2	117.7 (3)	С8А—С9А—Н9В	121.1
N1—C1—B1	116.5 (3)	N5—C10A—C9A	122.4 (3)
C2—C1—B1	125.5 (3)	N5—C10A—H10B	118.8
C3—C2—C1	121.1 (3)	C9A—C10A—H10B	118.8
C3—C2—H2A	119.5	N6C11AC12A	118.3 (3)
C1—C2—H2A	119.5	N6—C11A—B2	117.9 (3)
C2—C3—C4	119.8 (3)	C12A—C11A—B2	123.5 (3)
С2—С3—НЗА	120.1	C13A—C12A—C11A	121.1 (3)
С4—С3—Н3А	120.1	C13A—C12A—H12B	119.4
C5—C4—C3	117.7 (3)	C11A—C12A—H12B	119.4
C5—C4—H4A	121.1	C12A—C13A—C14A	119.4 (3)
C3—C4—H4A	121.1	C12A—C13A—H13B	120.3
N1-C5-C4	122.7 (3)	C14A—C13A—H13B	120.3
N1—C5—H5A	118.7	C15A—C14A—C13A	117.9 (3)
С4—С5—Н5А	118.7	C15A—C14A—H14B	121.0
N2—C6—C7	117.1 (3)	C13A—C14A—H14B	121.0
N2—C6—B1	120.0 (3)	N6—C15A—C14A	122.4 (3)
C7—C6—B1	122.8 (3)	N6—C15A—H15B	118.8
C8—C7—C6	121.7 (3)	C14A—C15A—H15B	118.8
С8—С7—Н7А	119.1	C21A—C16A—C17A	114.1 (3)
			× /

С6—С7—Н7А	119.1	C21A—C16A—B2	125.0 (3)
C7—C8—C9	119.2 (3)	C17A—C16A—B2	119.6 (3)
С7—С8—Н8А	120.4	C18A—C17A—C16A	123.1 (3)
С9—С8—Н8А	120.4	C18A—C17A—H17B	118.5
С10—С9—С8	117.7 (3)	C16A—C17A—H17B	118.5
С10—С9—Н9А	121.1	C19A—C18A—C17A	121.3 (3)
С8—С9—Н9А	121.1	C19A—C18A—H18B	119.4
N2—C10—C9	123.0 (3)	C17A—C18A—H18B	119.4
N2-C10-H10A	118.5	C20A—C19A—C18A	116.7 (4)
C9—C10—H10A	118.5	C20A—C19A—C22A	120.7 (3)
N3—C11—C12	117.9 (3)	C18A—C19A—C22A	122.6 (3)
N3—C11—B1	117.5 (3)	C21A—C20A—C19A	122.0 (3)
C12—C11—B1	124.3 (3)	C21A—C20A—H20B	119.0
C13—C12—C11	121.2 (3)	C19A—C20A—H20B	119.0
C13—C12—H12A	119.4	C20A—C21A—C16A	122.8 (3)
C11—C12—H12A	119.4	C20A—C21A—H21B	118.6
C12—C13—C14	119.3 (3)	C16A—C21A—H21B	118.6
C12—C13—H13A	120.3	$C_{23A}$ $C_{22A}$ $C_{24A}$	108.3 (3)
C14—C13—H13A	120.3	$C_{23A} - C_{22A} - C_{25A}$	109.5(3)
C15-C14-C13	118 1 (3)	$C_{24A} = C_{22A} = C_{25A}$	109.5(3) 108.5(3)
C15— $C14$ — $H14A$	121.0	$C_{23A}$ $C_{22A}$ $C_{19A}$	1122(3)
C13 $C14$ $H14A$	121.0	$C_{24A} = C_{22A} = C_{19A}$	1099(3)
N3-C15-C14	123.1 (3)	$C_{25A} - C_{22A} - C_{19A}$	109.9(3) 108.4(3)
N3_C15_H15A	118 5	$C_{23A} = C_{23A} = H_{23D}$	100.4 (5)
C14 $C15$ $H154$	118.5	$C_{22A}$ $C_{23A}$ $H_{23E}$	109.5
C17 C16 C21	114.6 (3)	$H_{22} = C_{23} = H_{23} = H$	109.5
C17 = C16 = C21	114.0(3) 124.3(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{1} = C_{10} = B_{1}$	124.3(3) 110.3(3)	$H_{22} = C_{23} = H_{23} = H_{23}$	109.5
$C_{21} = C_{10} = B_{1}$	119.3(3)		109.5
C16 - C17 - U17	123.2 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C10 - C17 - H17A	110.4	$C_{22}A = C_{24}A = H_{24}D$	109.5
C18 - C17 - H17A	118.4	C22A - C24A - H24E	109.5
C19 - C18 - C17	121.4 (3)	$H_24D - C_24A - H_24E$	109.5
C19—C18—H18A	119.3	C22A—C24A—H24F	109.5
C1/-C18-H18A	119.3	H24D—C24A—H24F	109.5
C18 - C19 - C20	116.3 (4)	H24E - C24A - H24F	109.5
C18 - C19 - C22	123.9 (3)	C22A—C25A—H25D	109.5
$C_{20}$ $C_{19}$ $C_{22}$	119.8 (3)	C22A—C25A—H25E	109.5
C21—C20—C19	121.5 (3)	H25D—C25A—H25E	109.5
C21—C20—H20A	119.2	C22A—C25A—H25F	109.5
C19—C20—H20A	119.2	H25D—C25A—H25F	109.5
C20—C21—C16	122.8 (3)	H25E—C25A—H25F	109.5
C20—C21—H21A	118.6	Cl2—Fe2—Cl3	111.42 (5)
C16—C21—H21A	118.6	Cl2—Fe2—Cl4	109.86 (4)
C24—C22—C19	109.6 (3)	Cl3—Fe2—Cl4	107.46 (5)
C24—C22—C25	109.4 (3)	Cl2—Fe2—Cl1	106.59 (5)
C19—C22—C25	109.4 (3)	Cl3—Fe2—Cl1	112.33 (5)
C24—C22—C23	108.2 (3)	Cl4—Fe2—Cl1	109.18 (4)
C19—C22—C23	112.2 (3)		
N2—Fe1—N1—C5	-137.0 (3)	C1—B1—C11—C12	109.3 (3)
N6—Fe1—N1—C5	-48.2 (2)	N3-C11-C12-C13	-0.8 (5)
N3—Fe1—N1—C5	131.6 (2)	B1-C11-C12-C13	-174.8 (3)
N5—Fe1—N1—C5	42.0 (2)	C11—C12—C13—C14	-2.1 (5)
N4—Fe1—N1—C5	120 (12)	C12—C13—C14—C15	2.8 (5)

NO E-1 N1 C1	51.9 (2)	C11 N2 C15 C14	22(5)
N2—FeI—NI—CI	51.8 (5)	CII = NS = CIS = CI4	-2.3(3)
No—FeI—NI—CI	140.7(3)	FeI—N3—CI5—CI4	168.9 (3)
N3—Fel—NI—Cl	-39.5 (3)	C13—C14—C15—N3	-0.7(5)
N5—Fel—NI—Cl	-129.1 (3)	CII—BI—CI6—CI7	152.7 (3)
N4—Fe1—N1—C1	-51 (13)	C6—B1—C16—C17	-84.6 (4)
N6—Fe1—N2—C10	43.7 (3)	C1—B1—C16—C17	36.4 (5)
N3—Fe1—N2—C10	-137.0 (3)	C11—B1—C16—C21	-43.5 (4)
N5—Fe1—N2—C10	7 (6)	C6—B1—C16—C21	79.3 (4)
N1—Fe1—N2—C10	133.8 (3)	C1—B1—C16—C21	-159.7 (3)
N4—Fe1—N2—C10	-46.8 (3)	C21—C16—C17—C18	2.9 (5)
N6—Fe1—N2—C6	-131.8 (2)	B1-C16-C17-C18	167.3 (3)
N3—Fe1—N2—C6	47.5 (3)	C16—C17—C18—C19	-1.1(5)
N5—Fe1—N2—C6	-169(23)	C17—C18—C19—C20	-0.7 (4)
N1—Fe1—N2—C6	-41.7 (2)	C17—C18—C19—C22	-178.2(3)
N4—Fe1—N2—C6	137.7 (2)	C18—C19—C20—C21	0.7 (5)
N2—Fe1—N3—C15	140.2 (2)	C22—C19—C20—C21	178.3 (3)
N6—Fe1—N3—C15	-117(10)	C19 - C20 - C21 - C16	1.2 (5)
N5—Fe1— $N3$ —C15	-391(2)	$C_{17}$ $C_{16}$ $C_{21}$ $C_{10}$	-29(5)
N1 Fe1 $N3$ C15	-1292(2)	$B_{1}-C_{16}-C_{21}-C_{20}$	-1682(3)
NI Fe1 $N3$ C15	50.7(2)	$C_{18} = C_{19} = C_{22} = C_{24}$	115.0(4)
$N_{1} = 101 = N_{2} = 0.13$	-48.6(2)	$C_{10} = C_{10} = C_{22} = C_{24}$	-62.2(4)
$N_2$ $re1 N_3$ $re1$	40.0(2)	$C_{20} = C_{19} = C_{22} = C_{24}$	-125.0(2)
$N_0 - F_0 - N_0 - C_1 $	33(10)	C18 - C19 - C22 - C25	-123.0(3)
$N_{1} = 1  N_{2} = C_{11}$	132.1(2)	$C_{20} = C_{19} = C_{22} = C_{23}$	57.0 (4)
NI - FeI - NS - CII	42.1(2)	C18 - C19 - C22 - C23	-3.1(3)
N4—FeI— $N3$ — $CII$	-138.1(2)	$C_{20} = C_{19} = C_{22} = C_{23}$	177.5 (3)
$N_2$ —FeI—N4—C5A	-46.5 (3)	CSA—N4—CIA—C2A	/.8 (5)
N6—FeI—N4—C5A	-135.3 (3)	Fel—N4—CIA—C2A	-165.8 (2)
N3—FeI—N4—C5A	44.9 (3)	C5A—N4—C1A—B2	-1/6.9(3)
N5—Fel—N4—C5A	134.5 (3)	Fel—N4—CIA—B2	9.5 (4)
NI—Fel—N4—C5A	56 (13)	C16A—B2—C1A—N4	169.2 (3)
N2—Fel—N4—ClA	127.1 (3)	C11A—B2—C1A—N4	-65.3 (3)
N6—Fe1—N4—C1A	38.3 (3)	C6A—B2—C1A—N4	49.2 (4)
N3—Fe1—N4—C1A	-141.5 (3)	C16A—B2—C1A—C2A	-15.9 (5)
N5—Fe1—N4—C1A	-51.9 (3)	C11A—B2—C1A—C2A	109.6 (4)
N1—Fe1—N4—C1A	-130 (12)	C6A—B2—C1A—C2A	-135.9 (3)
N2—Fe1—N5—C10A	173 (100)	N4—C1A—C2A—C3A	-6.7 (5)
N6—Fe1—N5—C10A	136.4 (2)	B2—C1A—C2A—C3A	178.5 (3)
N3—Fe1—N5—C10A	-42.9 (2)	C1A—C2A—C3A—C4A	1.1 (5)
N1—Fe1—N5—C10A	46.2 (2)	C2A—C3A—C4A—C5A	3.2 (5)
N4—Fe1—N5—C10A	-133.2 (2)	C1A—N4—C5A—C4A	-3.6 (5)
N2—Fe1—N5—C6A	-11 (6)	Fe1—N4—C5A—C4A	170.1 (3)
N6—Fe1—N5—C6A	-47.8 (2)	C3A—C4A—C5A—N4	-2.0 (5)
N3—Fe1—N5—C6A	132.9 (2)	C10A—N5—C6A—C7A	1.9 (5)
N1—Fe1—N5—C6A	-137.9 (2)	Fe1—N5—C6A—C7A	-173.9 (2)
N4—Fe1—N5—C6A	42.7 (2)	C10A—N5—C6A—B2	-179.5 (3)
N2—Fe1—N6—C11A	-127.2 (2)	Fe1—N5—C6A—B2	4.8 (4)
N3—Fe1—N6—C11A	130 (10)	C16A—B2—C6A—N5	173.2 (3)
N5—Fe1—N6—C11A	52.1 (2)	C11A—B2—C6A—N5	49.3 (4)
N1—Fe1—N6—C11A	142.2 (2)	C1A—B2—C6A—N5	-59.1 (4)
N4—Fe1—N6—C11A	-37.7 (2)	C16A—B2—C6A—C7A	-8.2 (4)
N2—Fe1—N6—C15A	42.4 (2)	C11A—B2—C6A—C7A	-132.1 (3)
N3—Fe1—N6—C15A	-61 (10)	C1A—B2—C6A—C7A	119.5 (3)
N5—Fe1—N6—C15A	-138.3 (2)	N5—C6A—C7A—C8A	0.1 (5)
N1—Fe1—N6—C15A	-48.3 (2)	B2—C6A—C7A—C8A	-178.5 (3)
	× /		(-)

N4—Fe1—N6—C15A	131.9 (2)	C6A—C7A—C8A—C9A	-1.2 (5)
C5—N1—C1—C2	-7.3 (5)	C7A-C8A-C9A-C10A	0.3 (5)
Fe1—N1—C1—C2	163.6 (2)	C6A—N5—C10A—C9A	-2.8 (5)
C5—N1—C1—B1	178.2 (3)	Fe1—N5—C10A—C9A	172.8 (3)
Fe1—N1—C1—B1	-10.9 (4)	C8A—C9A—C10A—N5	1.6 (5)
C16—B1—C1—N1	-168.4 (3)	C15A—N6—C11A—C12A	-5.6 (4)
C11—B1—C1—N1	67.2 (3)	Fe1—N6—C11A—C12A	163.8 (2)
C6—B1—C1—N1	-47.2 (4)	C15A—N6—C11A—B2	-180.0 (3)
C16—B1—C1—C2	17.7 (5)	Fe1—N6—C11A—B2	-10.5 (4)
C11—B1—C1—C2	-106.8 (3)	C16A—B2—C11A—N6	-164.7 (3)
C6—B1—C1—C2	138.8 (3)	C6A—B2—C11A—N6	-45.4 (4)
N1—C1—C2—C3	3.9 (5)	C1A—B2—C11A—N6	66.8 (3)
B1—C1—C2—C3	177.8 (3)	C16A—B2—C11A—C12A	21.3 (5)
C1—C2—C3—C4	2.0 (5)	C6A—B2—C11A—C12A	140.6 (3)
C2—C3—C4—C5	-4.4 (5)	C1A—B2—C11A—C12A	-107.3 (3)
C1—N1—C5—C4	5.1 (5)	N6-C11A-C12A-C13A	4.1 (5)
Fe1—N1—C5—C4	-166.0 (3)	B2-C11A-C12A-C13A	178.2 (3)
C3—C4—C5—N1	1.0 (5)	C11A—C12A—C13A—C14A	0.2 (5)
C10-N2-C6-C7	-2.7 (5)	C12A—C13A—C14A—C15A	-3.1 (5)
Fe1—N2—C6—C7	172.8 (2)	C11A—N6—C15A—C14A	2.8 (5)
C10-N2-C6-B1	178.8 (3)	Fe1—N6—C15A—C14A	-166.7 (3)
Fe1—N2—C6—B1	-5.7 (4)	C13A—C14A—C15A—N6	1.7 (5)
C16—B1—C6—N2	-174.5 (3)	C11A—B2—C16A—C21A	-149.0 (3)
C11—B1—C6—N2	-48.8 (4)	C6A—B2—C16A—C21A	89.9 (4)
C1—B1—C6—N2	58.4 (4)	C1A—B2—C16A—C21A	-30.2 (5)
C16—B1—C6—C7	7.1 (4)	C11A—B2—C16A—C17A	44.7 (4)
C11—B1—C6—C7	132.8 (3)	C6A—B2—C16A—C17A	-76.4 (4)
C1—B1—C6—C7	-120.0 (3)	C1A—B2—C16A—C17A	163.5 (3)
N2-C6-C7-C8	0.9 (5)	C21A—C16A—C17A—C18A	1.3 (5)
B1—C6—C7—C8	179.3 (3)	B2-C16A-C17A-C18A	169.0 (3)
C6—C7—C8—C9	0.7 (6)	C16A—C17A—C18A—C19A	0.1 (5)
C7—C8—C9—C10	-0.6 (6)	C17A—C18A—C19A—C20A	-0.7 (5)
C6—N2—C10—C9	3.0 (5)	C17A—C18A—C19A—C22A	178.7 (3)
Fe1—N2—C10—C9	-172.4 (3)	C18A—C19A—C20A—C21A	0.0 (5)
C8—C9—C10—N2	-1.3 (5)	C22A—C19A—C20A—C21A	-179.4 (3)
C15—N3—C11—C12	3.0 (4)	C19A—C20A—C21A—C16A	1.5 (5)
Fe1—N3—C11—C12	-168.2 (2)	C17A—C16A—C21A—C20A	-2.0(5)
C15—N3—C11—B1	177.4 (3)	B2-C16A-C21A-C20A	-168.9 (3)
Fe1—N3—C11—B1	6.2 (4)	C20A—C19A—C22A—C23A	-176.7 (3)
C16—B1—C11—N3	169.0 (3)	C18A—C19A—C22A—C23A	3.9 (4)
C6—B1—C11—N3	47.6 (4)	C20A—C19A—C22A—C24A	-56.2 (4)
C1—B1—C11—N3	-64.8 (3)	C18A—C19A—C22A—C24A	124.4 (4)
C16—B1—C11—C12	-16.9 (5)	C20A—C19A—C22A—C25A	62.3 (4)
C6—B1—C11—C12	-138.4 (3)	C18A—C19A—C22A—C25A	-117.1 (4)