Supporting Information for

First Practical Cross-Alkylation of Primary Alcohols with a New and Recyclable Impregnated Iridium on Magnetite Catalyst

Rafael Cano, Miguel Yus and Diego J. Ramón*

Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias,

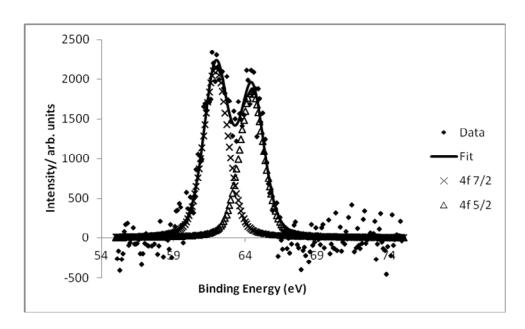
Universidad de Alicante, Apdo. 99, E-03080-Alicante, Spain

djramon@ua.es

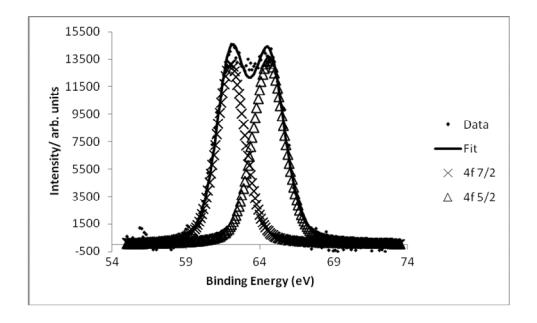
Table of Contents

General information	S2
General procedure for the preparation of IrO ₂ -Fe ₃ O ₄ catalyst	S2
XPS Data	S 3
ΓEM Images	S4
EDS Analysis	S5
Size Particle Distribution	S5
XRD Analysis	S 6
General procedures for the preparation of the products	S 6
Optimization reaction condition results	S 7
Reaction profiles for reaction in the presence of catalyst all time and for reaction filtered off the	catalyst
after the first day	S 8
Three-phase test	S 8
Spectra data of products	S 9
References	S15
Copies of ¹ H and ¹³ C-NMR spectra	S16

General Information

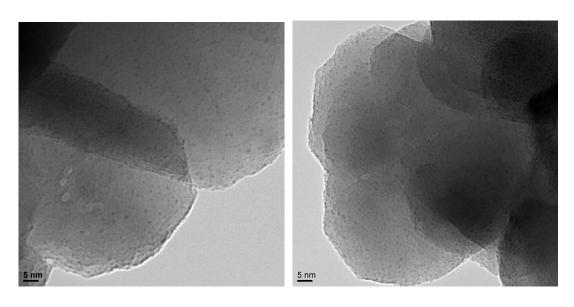

XPS analyses were carried out on a VG-Microtech Mutilab. XRD analyses were obtained on a BRUKER D-8 ADVANCE diffractometer with Göebel mirror, with a high temperature chamber (up to 900°C), with a X-ray generator KRISTALLOFLEX K 760-80F (3KW, 20-60KV and 5-80mA). TEM images were obtained on a JEOL, model JEM-2010 equipped with an X-ray detector OXFORD INCA Energy TEM 100 for microanalysis (EDS). XRF analyses were obtained on a PHILIPS MAGIX PRO (PW2400) X-ray spectrometer equipped with a rhodium X-ray tube and a beryllium window. BET isotherms were carried out on a AUTOSORB-6 (Quantachrome), using N₂. Melting points were obtained with a Reichert Thermovar apparatus. NMR spectra were recorded on a Bruker AC-300 (300 MHz for ¹H and 75 MHz for ¹³C) using CDCl₃ as a solvent and TMS as internal standard for ¹H and ¹³C; chemical shifts are given in δ (parts per million) and coupling constants (J) in Hertz. FT-IR spectra were obtained on a JASCO 4100LE (Pike Miracle ATR) spectrophotometer. Mass spectra (EI) were obtained at 70 eV on a Himazdu QP-5000 spectrometer, giving fragment ions in m/z with relative intensities (%) in parentheses. Thin layer chromatography (TLC) was carried out on Schleicher & Schuell F1400/LS 254 plates coated with a 0.2 mm layer of silica gel; detection by UV₂₅₄ light, staining with phosphomolybdic acid [25 g phosphomolybdic acid, 10 g Ce(SO₄)₂ 4 H₂O, 60 mL of concentrated H₂SO₄ and 940 mL H₂O]. Column chromatography was performed using silica gel 60 of 35-70 mesh. All reagents were commercially available (Acros, Aldrich, Fluorochem) and were used as received. The ICP-MS analyses were carried out on a Thermo Elemental VGPQ-ExCell spectrometer. The Elemental Analysis were performed on a Elemental Microanalyzer Thermo Finningan Flash 1112 Series.

General procedure for the preparation of IrO₂-Fe₃O₄ catalyst

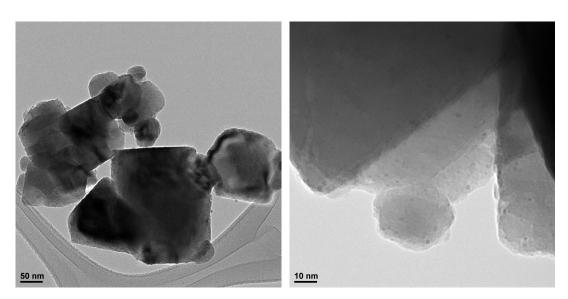

To a stirred solution of the metal salt $IrCl_3$ (1 mmol, 299 mg) in deionised water (150 mL) was added commercial available Fe_3O_4 (4 g, 17 mmol, powder < 5 μ m, BET area: 9.86 m²/g). After 10 minutes at room temperature, the mixture was slowly basified with NaOH (1M) until pH around 13. The mixture was stirred during one day at room temperature in air. After that, the catalyst was filtered and washed several times with deionized water (3 × 10 mL). The solid was dried at 100°C during 24 h in a standard glassware oven obtaining the expected catalyst.

XPS Data

Before reaction

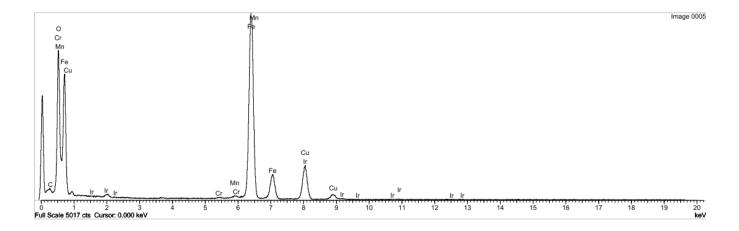


After reaction

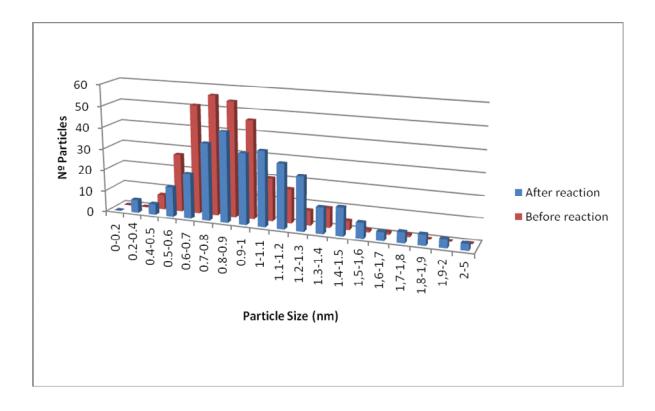


TEM Images

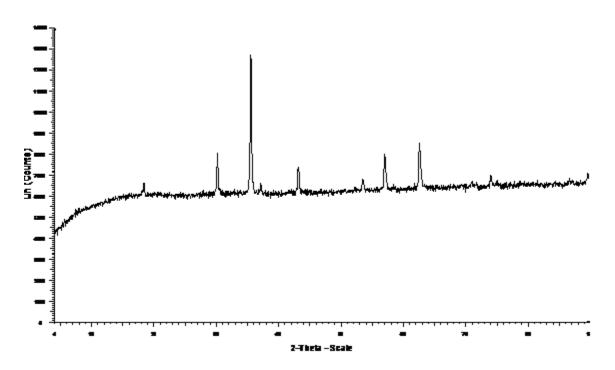
Before reaction



After reaction



EDS Analysis


Element	Peak Area	Area Sigma	k factor	Abs Corrn.	Weight%	Weight% Sigma	Atomic%
OK	28972	531	1.810	1.000	33.05	0.43	63.46
Cr K	434	99	1.100	1.000	0.30	0.07	0.18
Mn K	673	120	1.153	1.000	0.49	0.09	0.27
Fe K	88664	506	1.170	1.000	65.37	0.45	35.96
Ir L	495	143	2.550	1.000	0.80	0.23	0.13
Totals					100.00		

Particle Size Distribution

XRD Analysis

General procedures for the preparation of the products

To a stirred solution of alcohol (1, 1 mmol) in toluene (1.5 mL) were added IrO_2 - Fe_3O_4 (50 mg), KOH (1 mmol, 56 mg) and the corresponding alcohol (2, 2 mmol). The resulting mixture was stirred at 110°C until the end of reaction. The catalyst was removed by a magnet and the resulting mixture was quenched with deionised water and extracted with Et_2O (3 × 5 mL). The organic phases were dried over MgSO₄, followed by evaporation under reduced pressure to remove the solvent. The product was usually purified by chromatography on silica gel (hexane/ethyl acetate) to give the corresponding products 3.

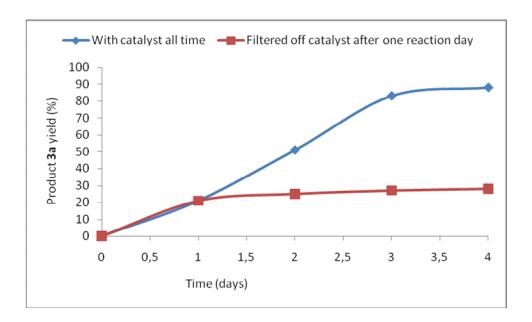

Optimization reaction condition results

Table Optimization of reaction conditions^a

	Ia	Za		3a 4	
Entry	Base (mol%)	solvent	T (°C)	Yield ^b 3a (%)	Yield ^b 4 (%)
1	tBuOK (100)	PhMe	130	80	19
2	tBuOK (100)	PhMe	110	85	10
3	tBuOK (100)	PhMe	90	8	0
4	tBuOK (100)	-	110	74	18
5	tBuOK (100)	H_2O	110	0	0
6	tBuOK (100)	MeCN	110	0	0
7	tBuOK (100)	dioxane	110	74	10
8	tBuOK (100)	THF	110	63	17
9	tBuOK (100)	xylenes	110	72	21
10	-	PhMe	110	0	0
11^c	NaOH (100)	PhMe	110	72	24
12^c	KOH (100)	PhMe	110	96	3
13	K_2CO_3 (100)	PhMe	110	0	0
14	KOH (50)	PhMe	110	10	12
15 ^c	KOH (200)	PhMe	110	71	26
$16^{c,d}$	KOH (100)	PhMe	110	2	0
$17^{c,e}$	KOH (100)	PhMe	110	69	3
18^f	KOH (100)	PhMe	110	55	11
$19^{c,g}$	KOH (100)	PhMe	110	91	4

^a Reaction carried out using **1a** (1.0 mmol) and **2a** (2.0 mmol), unless otherwise stated. ^b Isolated yield after column chromatography. ^c Reaction performed during 4 days. ^d Reaction performed using 1.0 mmol of **2a**. ^e Reaction performed using 3.0 mmol of **2a**. ^f Reaction performed using 0.03 mol% of IrO₂-Fe₃O₄. ^g Reaction performed using 0.28 mol% of IrO₂-Fe₃O₄.

Reaction profiles for reaction in the presence of catalyst all time and for reaction filtered off the catalyst after the first day

Three-phase test reaction

Phthalide (1 mmol) was anchored to a NovaSyn TG amino resin (**A**) by direct reaction in THF (2 mL). The mixture was refluxed 24h. Then, the resin was isolated by filtration. Only the 78% of the initial NH₂ groups were linked to phthalide according to elemental analysis. Elem. anal. for **A**: C, 64.77; H, 8.49; N, 0.13. Elem. anal. for **B**: C, 65.52; H, 8.54; N, 0.13;

To a stirred solution of alcohol (1a, 0.1 mmol) in toluene (0.1 mL) were added IrO₂-Fe₃O₄ (5 mg), KOH (0.1 mmol, 5.6 mg) and the corresponding resine **B** (0.5 g). The resulting three-phase mixture was stirred at 110°C during 7 days. The mixture was filtered and the residue was treated with a mixture of trifluoroacetic acid/H₂O (95:5; 1 mL) during 1 day. The resulting mixture was extracted with Et₂O (3×5 mL). The organic phases were dried over MgSO₄, followed by evaporation under reduced pressure to remove the solvent. The 1 H-NMR data, as well as MS-GC showed only the presence of 2-(hydroxymethyl)benzamide.

Spectra data of products

2,3-Diphenylpropan-1-ol (3a).1

Pale yellow oil; $R_f = 0.33$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3383, 1601, 1060, 1023 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.72 (s, br, 1H, OH), 2.9-3, 3.05-3.2 (2m, 1 and 2H, respectively, PhCH and PhCH₂), 3.8 (d, J = 6.2 Hz, 2H, CH₂OH), 7.1-7.4 (m, 10H, Ph × 2); ¹³C-NMR (75 MHz, CDCl₃): δ 38.6, 50.1, 66.2, 125.9, 126.7, 128 (2C), 128.1 (2C), 128.5 (2C), 129 (2C), 139.8, 141.9; EI-MS m/z: 212 (M⁺, 1%), 195 (17), 194 (100), 193 (33), 181 (18), 180 (13), 179 (40), 178 (29), 166 (11), 165 (24), 163 (14), 121 (24), 116 (24), 115 (33), 104 (18), 103 (45), 92 (13), 91 (74), 89 (12), 78 (11), 77 (28), 65 (18).

3-(4-Chlorophenyl)-2-phenylpropan-1-ol (3b).

Pale yellow oil; $R_f = 0.07$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3364, 1599, 1491, 1452, 1403, 1091, 1062, 1014, 834, 820, 675 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.51 (s, br, 1H, OH), 2.75-2.85, 2.95-3.05 (2m, 1 and 2H, respectively, PhCH and PhCHC H_2 C), 3.73 (d, J = 5.7 Hz, 2H, C H_2 OH), 6.95 (d, J = 8.3 Hz, 2H, ClCCHCH \times 2), 7.1-7.15, 7.15-7.2, 7.25-7.3 (3m, 4, 1 and 2H, respectively, ArH \times 7); ¹³C-NMR (75 MHz, CDCl₃): δ 37.8, 50.1, 66.2, 126.9, 128 (2C), 128.2 (2C), 128.6 (2C), 130.3 (2C), 131.7, 138.3, 141.3; EI-MS m/z: 246 (M⁺, 13%), 228 (15), 179 (16), 178 (20), 126 (11), 125 (22), 121 (100), 120 (19), 105 (10), 104 (15), 103 (58), 91 (26), 89 (13), 79 (10), 77 (22). HRMS calcd. (%) for C₁₅H₁₅ClO: 246.0811; found: 246.0814.

2-Phenyl-3-(p-tolyl)propan-1-ol (3c).

Pale yellow oil; $R_f = 0.2$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3357, 1513, 1494, 1452, 1414, 1061, 1021, 808, 758 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.34 (s, br, 1H, OH), 2.28 (s, 3H, CH₃), 2.91, 2.93 (2 dd, $J^1 = 42.7$ Hz, $J^2 = 17.8$ Hz, 2H, PhCHC H_2 C), 3-3.1 (m, 1H, PhCH), 3.76 (d, J = 5 Hz, 2H, C H_2 OH), 6.97 (d, J = 8 Hz, 2H, CH₃CCHC $H \times 2$), 7.03 (d, J = 8 Hz, 2H, CH₃CCH $\times 2$), 7.2-7.25, 7.25-7.3 (2m, 3 and 2H, respectively, Ph); ¹³C-NMR (75 MHz, CDCl₃): δ 21, 38.2, 50.2, 66.4, 126.8, 128.1 (2C), 128.6 (2C), 128.9 (2C), 128.9 (2C), 135.4, 136.7, 142; EI-MS m/z: 226 (M^+ , 13%), 224 (14), 223 (12), 208 (13), 207 (18), 195 (11), 194 (14), 193 (11), 179 (16), 178 (20), 165 (12), 129 (12), 121 (31), 120 (15), 119 (11), 117 (17), 115 (15), 106 (27), 105 (100), 104 (27), 103 (33), 92 (10), 91 (61), 79 (13), 77 (26). HRMS calcd. (%) for $C_{16}H_{18}O$: 226.1358; found: 226.1355.

3-[(4-tert-Butyl)phenyl]-2-phenylpropan-1-ol (3d).²

Pale yellow oil; $R_f = 0.2$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3376, 1601, 1513, 1363, 1267, 1061, 1020, 833, 808, 758 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.26 (s, br, 1H, OH), 1.28 (s, 9H, ^tBu), 2.92, 2.94 (2 dd, $J^1 = 26.6$ Hz, $J^2 = 13.6$ Hz, 2H, PhCHC H_2 C), 3.05-3.1 (m, 1H, PhCH), 3.7-3.8 (m, 2H, C H_2 OH), 7.04 (d, J = 7.9Hz, 2H, ^tBuCCHC $H \times 2$), 7.2-7.25 (m, 5H, Ph), 7.3 (d, J = 7.9Hz, 2H, ^tBuCCH $\times 2$); ¹³C-NMR (75 MHz, CDCl₃): δ 31.3 (3C), 34.3, 38.1, 50, 66.3, 125.1 (2C), 126.8, 128 (2C), 128.6 (2C), 128.6 (2C), 136.8, 142.2, 148.8; EI-MS m/z: 268 (M⁺, 19%), 164 (11), 149 (10), 148 (12), 147 (100), 132 (11), 121 (11), 120 (14), 117 (11), 103 (12), 91 (13).

3-(4-Methoxyphenyl)-2-phenylpropan-1-ol (3e).

Pale yellow oil; $R_f = 0.17$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3399, 1610, 1583, 1509, 1299, 1242, 1062, 1031, 818, 751, 699 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.54 (s, br, 1H, OH), 2.75-2.85, 2.9-3.05 (2m, 1 and 2H, respectively, PhCH and PhCHC H_2 C), 3.70-3.75 (m, 2H, C H_2 OH), 3.73 (s, 3H, OCH₃), 6.73 (d, J = 8.7 Hz, 2H, OCCH \times 2), 6.97 (d, J = 8.7 Hz, 2H, OCCHC H_1 \times 2), 7.15-7.3 (m, 5H, Ph); ¹³C-NMR (75 MHz, CDCl₃): δ 37.7, 50.3, 55.1, 66.2, 113.5 (2C), 126.7, 128 (2C), 128.5 (2C), 129.9 (2C), 131.9, 142, 157.7; EI-MS m/z: 242 (M⁺, 11%), 121 (100). HRMS calcd. (%) for $C_{16}H_{18}O_2$: 242.1307; found: 242.1308.

3-(3,5-Dimethoxyphenyl)-2-phenylpropan-1-ol (3f).

Pale yellow oil; $R_f = 0.03$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3386, 1594, 1458, 1428, 1203, 1147, 1055, 831, 759, 699 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.65 (s, br, 1H, OH), 2.92, 2.95 (2 dd, $J^1 = 47.8$ Hz, $J^2 = 17.8$ Hz, 2H, PhCHC H_2 C), 3.05-3.15 (m, 1H, PhCH), 3.73 (s, 6H, OCH₃ × 2), 3.75-3.85 (m, 2H, C H_2 OH), 6.27 (d, J = 2.1 Hz, 2H, OCC H_2 CCCCH₂ × 2), 6.31 (t, J = 2 Hz, 1H, OCCHCO), 7.2-7.3, 7.3-7.4 (2m, 3 and 2H, respectively, Ph); ¹³C-NMR (75 MHz, CDCl₃): δ 38.9, 49.9, 55.1 (2C), 66.3, 98, 107 (2C), 126.7, 128 (2C), 128.5 (2C), 141.9, 142.2, 160.5 (2C); EI-MS m/z: 272 (M⁺, 12%), 153 (11), 152 (100), 151 (16), 103 (10). HRMS calcd. (%) for C₁₇H₂₀O₃: 272.1412; found: 272.1387.

2-(4-Bromophenyl)-3-phenylpropan-1-ol (3g).

Pale yellow oil; $R_f = 0.17$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3347, 1602, 1590, 1487, 1453, 1406, 1071, 1030, 1009, 818, 741, 716, 698 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.42 (s, br, 1H, OH), 2.8-2.9, 2.95-3.1 (2m, 1 and 2H, respectively, PhCH₂CH and PhCH₂), 3.7-3.8 (m, 2H, CH₂OH), 7-7.1, 7.15-7.25 (2m, 4 and 3H, respectively, Ph and BrCCHCH × 2), 7.41 (d, J = 8.3 Hz, 2H, BrCCH × 2); ¹³C-

NMR (75 MHz, CDCl₃): δ 38.5, 49.6, 66.1, 120.5, 126.1, 128.3 (2C), 129 (2C), 129.8 (2C), 131.6 (2C), 139.4, 140.9; EI-MS m/z: 292 (M⁺+2, 18%), 290 (M⁺, 18), 201 (54), 200 (25), 199 (56), 198 (21), 180 (40), 179 (30), 178 (27), 165 (17), 120 (82), 102 (14), 92 (25), 91 (100), 89 (18), 77 (16). HRMS calcd. (%) for C₁₅H₁₅BrO: 290.0306; found: 290.0270.

2-(4-Chlorophenyl)-3-phenylpropan-1-ol (3h).³

Pale yellow oil; $R_f = 0.2$ (hexane/ethyl acetate: 4/1); IR (ATR): ν 3333, 1600, 1491, 1454, 1090, 1029, 1013, 822, 743, 698 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.68 (s, br, 1H, OH), 2.75-2.85, 2.95-3.05 (2m, 1 and 2H, respectively, PhCH₂CH and PhCH₂), 3.71 (m, 2H, CH₂OH), 7-7.05, 7.05-7.1, 7.15-7.2, 7.2-7.3 (4m, 2,2,1 and 4H, respectively, ArH \times 9); ¹³C-NMR (75 MHz, CDCl₃): δ 38.5, 49.5, 66, 126, 128.2 (2C), 128.6 (2C), 128.9 (2C), 129.3 (2C), 132.3, 139.4, 140.4; EI-MS m/z: 248 (M⁺+2, 8%), 246 (M⁺, 23), 228 (13), 215 (21), 180 (16), 179 (24), 178 (26), 165 (11), 157 (32), 156 (20), 155 (100), 154 (35), 139 (16), 138 (17), 137 (34), 125 (14), 103 (14), 102 (13), 101 (11), 92 (21), 91 (91), 89 (17), 77 (16).

2,3-bis(4-Chlorophenyl)propan-1-ol (3i).

Pale yellow oil; $R_f = 0.1$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3367, 1491, 1407, 1091, 1013, 906, 823, 731 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.39 (s, br, 1H, OH), 2.7-2.85, 2.95-3.05 (2m, 1 and 2H, respectively, $C_6H_4CH_2CH$ and $C_6H_4CH_2CH$), 3.76 (d, J = 6.2 Hz, 2H, CH_2OH), 6.96 (dt, $J^2 = 8.4$ Hz, $J^3 = 2.2$ Hz, 2H, $CH_2CCH \times 2$), 7.08 (dt, $J^2 = 8.4$ Hz, $J^3 = 2.3$ Hz, 2H, $CH_2CCH \times 2$), 7.17 (dt, $J^2 = 8.4$ Hz, $J^3 = 2.3$ Hz, 2H, $CH_2CCHCH \times 2$); ¹³C-NMR (75 MHz, CDCl₃): δ 37.8, 49.5, 66.1, 128.4 (2C), 128.7 (2C), 129.4 (2C), 130.3 (2C), 131.9, 132.6, 137.9, 139.9; EI-MS m/z: 280 (M⁺, 14%), 179 (10), 178 (20), 157 (32), 156 (13), 155 (100), 154 (15), 139 (13), 137 (28), 127 (14), 125 (37), 102 (11), 101 (11), 91 (30), 89 (18). HRMS calcd. (%) for $C_{15}H_{14}Cl_2O$: 280.0422; found: 280.0404.

2-(4-Chlorophenyl)-3-(4-methoxyphenyl)propan-1-ol (3j).

Pale yellow oil; $R_f = 0.1$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3383, 1611, 1583, 1510, 1492, 1463, 1300, 1243, 1177, 1091, 1034, 823, 731 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.48 (s, br, 1H, OH), 2.7-2.8, 2.9-3.05 (2m, 1 and 2H, respectively, $C_6H_4CH_2CH$ and $C_6H_4CH_2$), 3.7-3.8 (m, 5H, CH_2OH and OCH₃), 6.74 (d, J = 8.6 Hz, 2H, OCCH × 2), 6.94 (d, J = 8.5 Hz, 2H, OCCHC $H \times 2$), 7.09 (d, J = 8.4 Hz, 2H, ClCCHC $H \times 2$), 7.25 (d, J = 8.4 Hz, 2H, ClCCH × 2); ¹³C-NMR (75 MHz, CDCl₃): δ 37.7,

49.7, 55.1, 66.1, 113.6 (2C), 128.6 (2C), 129.4 (2C), 129.9 (2C), 131.4, 132.3, 140.5, 157.8; EI-MS m/z: 276 (M⁺, 6%), 121 (100). HRMS calcd. (%) for C₁₆H₁₇ClO₂: 276.0917; found: 276.0904.

2-(2-Chlorophenyl)-3-phenylpropan-1-ol (3k).

Pale yellow oil; $R_f = 0.2$ (hexane/ethyl acetate:4/1); IR (ATR): v 3335, 1494, 1474, 1454, 1440, 1055, 1037, 753, 698 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.81 (s, br, 1H, OH), 2.85-3.05, 3.65-3.8 (2m, 2 and 3H, respectively, CH_2OH , PhCH and PhCHC H_2), 7.05-7.35 (m, 9H, ArH); ¹³C-NMR (75 MHz, CDCl₃): δ 37.4, 44.9, 64.3, 126, 126.8, 127.6, 128.2 (2C), 128.2, 128.9 (2C), 129.6, 134.5, 139.3, 139.4; EI-MS m/z: 246 (M⁺, 6%), 230 (17), 228 (53), 215 (16), 193 (16), 180 (13), 179 (25), 178 (31), 165 (10), 157 (11), 155 (34), 154 (18), 140 (10), 139 (13), 138 (31), 137 (24), 103 (11), 92 (31), 91 (100), 89 (12), 77 (12). HRMS calcd. (%) for $C_{15}H_{15}ClO$: 246.0811; found: 246.0807.

2-(3-Chlorophenyl)-3-phenylpropan-1-ol (3l).

Pale yellow oil; $R_f = 0.07$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3342, 1595, 1570, 1493, 1454, 1430, 1028, 782, 744, 695 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): $\delta 1.62$ (s, br, 1H, OH), 2.75-2.9, 2.95-3.05 (2m, 1 and 2H, respectively, PhCH and PhCHC H_2), 3.7-3.75 (m, 2H, C H_2 OH), 7-7.05, 7.15-7.25 (2m, 3 and 6H, respectively, ArH); ¹³C-NMR (75 MHz, CDCl₃): $\delta 38.4$, 49.8, 65.9, 126.1, 126.3, 126.9, 128.1, 128.3 (2C), 128.9 (2C), 129.7, 134.3, 139.3, 144.2; EI-MS m/z: 246 (M⁺, 11%), 228 (23), 215 (10), 179 (16), 178 (19), 155 (22), 154 (17), 139 (10), 138 (28), 137 (16), 103 (10), 92 (27), 91 (100), 77 (11). HRMS calcd. (%) for $C_{15}H_{15}$ ClO: 246.0811; found: 246.0816.

2-(4-Methoxyphenyl)-3-phenylpropan-1-ol (3m).

Pale yellow oil; $R_f = 0.13$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3407, 1609, 1583, 1509, 1245, 1177, 1109, 1029, 827, 806, 698 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.31 (s, br, 1H, OH), 2.8-2.9, 2.95-3.05 (2m, 1 and 2H, respectively, PhCH₂CH and PhCH₂), 3.7-3.8 (m, 5H, CH₂OH and OCH₃), 6.83 (d, J = 8.8 Hz, 2H, OCCH \times 2), 7.05-7.15, 7.2-7.25 (2m, 5 and 2H, Ph and OCCHC \times 2); ¹³C-NMR (75 MHz, CDCl₃): δ 38.9, 49.3, 55.2, 66.5, 114 (2C), 125.9, 128.2 (2C), 129 (2C), 129 (2C), 133.7, 140, 158.4; EI-MS m/z: 242 (M⁺, 11%), 152 (13), 151 (100), 137 (14), 121 (11), 91 (32), 77 (13). HRMS calcd. (%) for $C_{16}H_{18}O_2$: 242.1307; found: 242.1308.

3-(4-Chlorophenyl)-2-(4-Methoxyphenyl)propan-1-ol (3n).

Pale yellow oil; $R_f = 0.07$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3374, 1610, 1510, 1492, 1245, 1177, 1033, 1015, 907, 828, 729 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.49 (s, br, 1H, OH), 2.7-2.85, 2.9-3 (2m, 1 and 2H, respectively, $C_6H_4CH_2CH$ and $C_6H_4CH_2CH$), 3.65-3.8 (m with s at 3.77, 5H, CH_2OH and OCH₃), 6.83 (dt, $J^2 = 8.7$ Hz, $J^3 = 2.3$ Hz, 2H, OCCH \times 2), 6.96 (dt, $J^2 = 8.4$ Hz, $J^3 = 2.1$ Hz, 2H, CICCHCH \times 2), 7.06 (dt, $J^2 = 8.7$ Hz, $J^3 = 2.2$ Hz, 2H, OCCHCH \times 2), 7.15 (dt, $J^2 = 8.4$ Hz, $J^3 = 2.1$ Hz, 2H, CICCH \times 2); ¹³C-NMR (75 MHz, CDCl₃): δ 38, 49.3, 55.2, 66.4, 114 (2C), 128.2 (2C), 128.9 (2C), 130.3 (2C), 131.6, 133.1, 138.4, 158.4; EI-MS m/z: 276 (M⁺, 6%), 152 (11), 151 (100), 121 (13), 91 (17). HRMS calcd. (%) for $C_{16}H_{17}ClO_2$: 276.0917; found: 276.0924.

2,3-bis(4-Methoxyphenyl)propan-1-ol (30).

Pale yellow oil; $R_f = 0.03$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3405, 1610, 1583, 1510, 1464, 1441, 1300, 1242, 1176, 1033, 908, 828, 729 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.45 (s, br, 1H, OH), 2.7-2.85, 2.85-3.05 (2m, 1 and 2H, respectively, $C_6H_4CH_2CH$ and $C_6H_4CH_2CH$), 3.7-3.8 (m with 2s at 3.74 and 3.77, 2, 3 and 3H, respectively, CH_2OH and $OCH_3 \times 2$), 6.75 (dt, $J^2 = 8.7$ Hz, $J^3 = 2.5$ Hz, 2H, CHCCHC $H \times 2$), 6.83 (dt, $J^2 = 8.7$ Hz, $J^3 = 2.5$ Hz, 2H, CH2CCHC $H \times 2$), 6.97 (dt, $J^2 = 8.7$ Hz, $J^3 = 2.5$ Hz, 2H, CH2CCH $\times 2$), 7.09 (dt, $J^2 = 8.7$ Hz, $J^3 = 2.5$ Hz, 2H, CHCCH $\times 2$); ¹³C-NMR (75 MHz, CDCl₃): δ 37.9, 49.4, 55.1, 55.1, 66.4, 113.5 (2C), 113.9 (2C), 129 (2C), 129.9 (2C), 132, 133.8, 157.7, 158.2; EI-MS m/z: 272 (M⁺, 20%), 152 (12), 151 (100), 121 (75), 91 (19). HRMS calcd. (%) for $C_{17}H_{20}O_3$: 272.1412; found: 272.1400.

2-Benzylbutan-1-ol (3p).⁴

Pale yellow oil; $R_f = 0.27$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3347, 1494, 1454, 1032, 734, 698 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 0.93 (t, J = 7.5 Hz, 3H, CH₃), 1.25-1.45 (m, 2H, CH₂CH₃), 1.54 (s, br, 1H, OH), 1.65-1.75 (m, 1H, CH), 2.6, 2.65 (2 dd, $J^1 = 18.2$ Hz, $J^2 = 9.5$ Hz, 2H, PhCH₂), 3.51 (d, J = 5.3 Hz, 2H, CH₂OH), 7.15-7.3 (m, 5H, Ph); ¹³C-NMR (75 MHz, CDCl₃): δ 11.2, 23.2, 37.2, 44.1, 64.4, 125.8, 128.2 (2C), 129.1 (2C), 140.8; EI-MS m/z: 164 (M⁺, 17%), 146 (24), 131 (21), 117 (53), 103 (22), 92 (60), 91 (100).

2-(4-Chlorobenzyl)butan-1-ol (3q).

Pale yellow oil; $R_f = 0.27$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3330, 1491, 1406, 1089, 1037, 1012, 837, 798 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 0.92 (t, J = 7.54 Hz, 3H, CH₂CH₃), 1.3-1.45 (m, 3H, CH₂CH₃ and OH), 1.6-1.75 (m, 1H, CHCH₂CH₃), 2.5-2.7(m, 2H, CCH₂CH), 3.51 (d, J = 5.3 Hz, 2H,

C H_2 OH), 7.1 (d, J = 8.3 Hz, 2H, CICCHC $H \times 2$), 7.24 (d, J = 8.3 Hz, 2H, CICCH $\times 2$); ¹³C-NMR (75 MHz, CDCl₃): δ 11.3, 23.1, 36.5, 44, 64.1, 128.2 (2C), 130.5 (2C), 133.3, 139.2; EI-MS m/z: 198 (M⁺, 23%), 180 (17), 165 (12), 153 (18), 151 (56), 145 (20), 138 (25), 128 (10), 127 (35), 126 (25), 125 (100), 115 (13), 91 (36), 77 (10). HRMS calcd. (%) for $C_{11}H_{15}$ ClO: 198.0811; found: 198.0800.

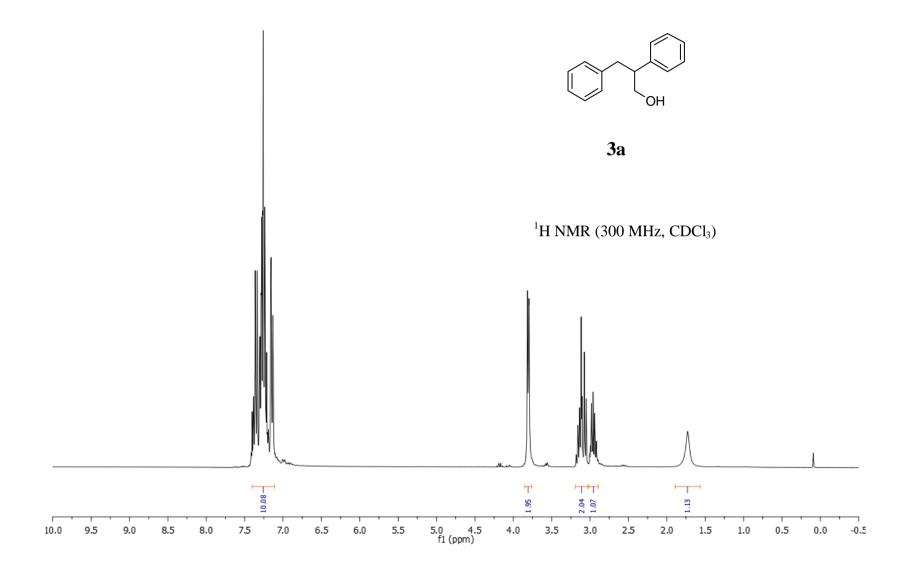
2-(4-Methoxybenzyl)butan-1-ol (3r).

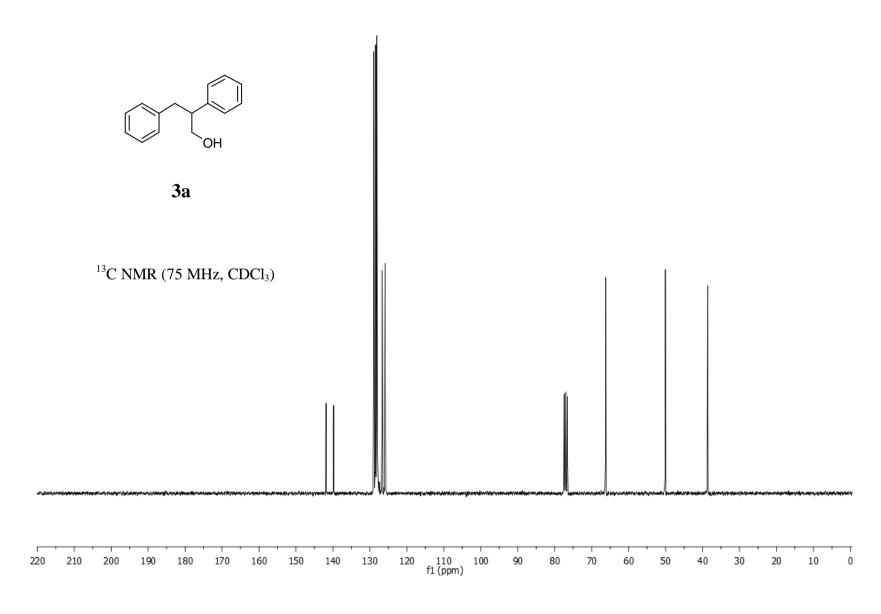
Pale yellow oil; $R_f = 0.1$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3367, 1610, 1510, 1463, 1442, 1299, 1244, 1176, 1034, 834, 822 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 0.93 (t, J = 7.5 Hz, 3H, CH₂CH₃), 1.3-1.45 (m, 3H, CH₂CH₃ and OH), 1.65-1.75 (m, 1H, CHCH₂CH₃), 2.57 (d, J = 7.1 Hz, 2H, CCH₂CH), 3.53 (d, J = 5.3 Hz, 2H, CH₂OH), 3.79 (s, 3H, OCH₃), 6.82 (dt, $J^2 = 8.6$ Hz, $J^3 = 2.6$ Hz, 2H, OCCH × 2), 7.1 (dt, $J^2 = 8.6$ Hz, $J^3 = 2.6$ Hz, 2H, OCCHCH × 2); ¹³C-NMR (75 MHz, CDCl₃): δ 11.3, 23.2, 36.3, 44.2, 55.2, 64.5, 113.6 (2C), 130 (2C), 132.7, 157.7; EI-MS m/z: 194 (M⁺, 13%), 122 (11), 121 (100). HRMS calcd. (%) for C₁₂H₁₈O₂: 194.1307; found: 194.1306.

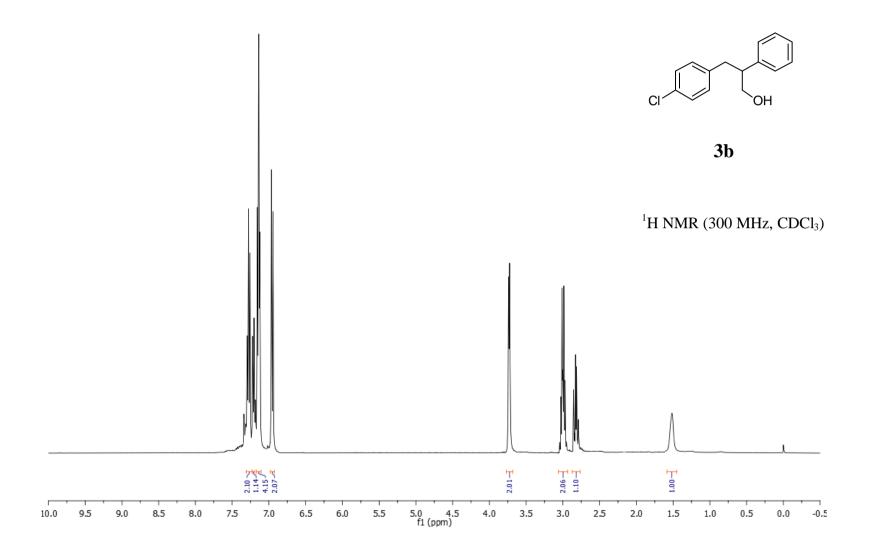
2-Benzyldodecan-1-ol (3s).

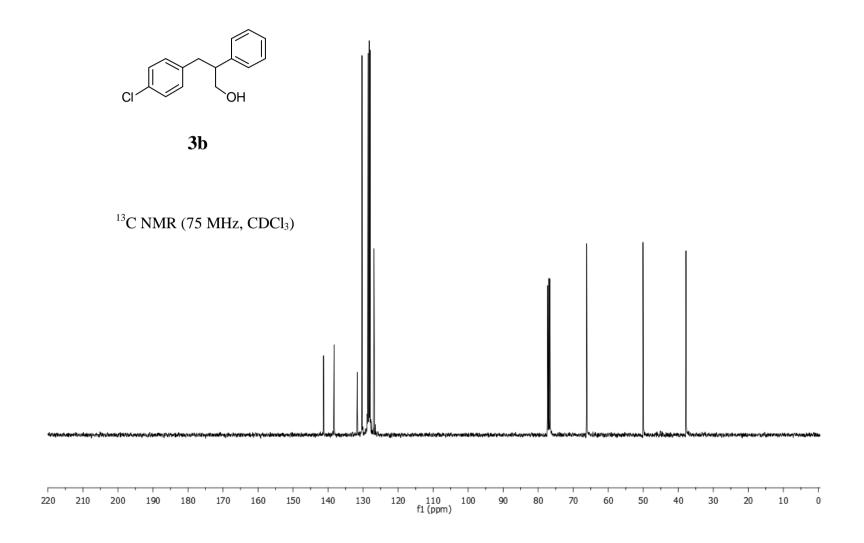
Pale yellow oil; $R_f = 0.37$ (hexane/ethyl acetate: 4/1); IR (ATR): v 3331, 1602, 1495, 1465, 1454, 1030, 739, 698 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 0.92 (t, J = 6.6 Hz, 3H, CH₃), 1.25-1.45 (m, 18H, CH₂ × 9), 1.52 (s, br, 1H, OH), 1.75-1.9 (m, 1H, PhCH₂CH), 2.66 (d, J = 7.2 Hz, 2H, PhCH₂), 3.54 (d, J = 5.3 Hz, 2H, CH₂OH), 7.15-7.35 (m, 5H, Ph); ¹³C-NMR (75 MHz, CDCl₃): δ 14.1, 22.7, 26.9, 29.3, 29.6 (3C), 29.9, 30.7, 31.9, 37.6, 42.5, 64.8, 125.8, 128.2 (2C), 129.1 (2C), 140.8; EI-MS m/z: 276 (M⁺, 7%), 258 (25), 131 (17), 118 (14), 117 (40), 105 (15), 104 (100), 92 (74), 91 (79), 69 (11). HRMS calcd. (%) for C₁₉H₃₂O: 276.2453; found: 276.2459.

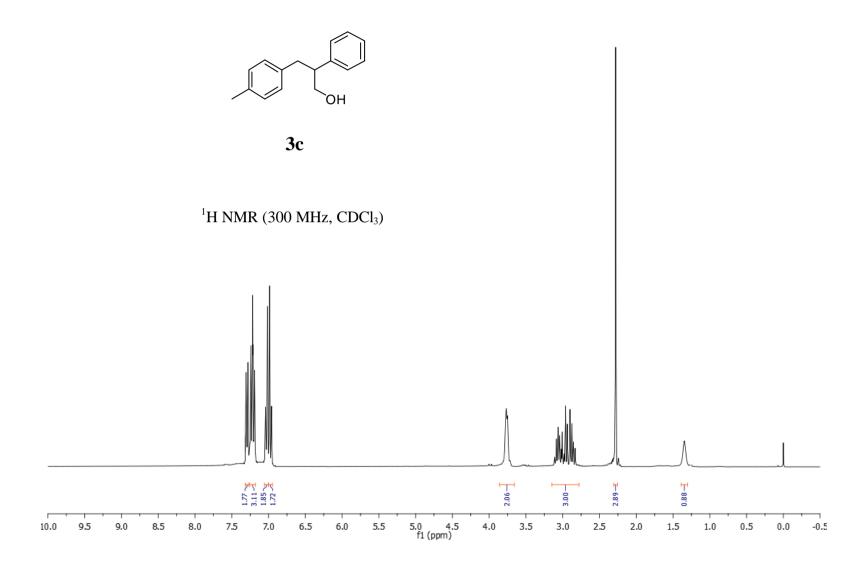
(E)-Prop-1-ene-1,3-diyldibenzene (4).


Pale yellow oil; $R_f = 0.8$ (hexane/ethyl acetate: 4/1); IR (ATR): v 1600, 1495, 1452, 1088, 1019 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 3.54 (d, J = 3.4 Hz, 2H, CH₂), 6.3-6.5 (m, 2H, CH₂CHCH), 7.15-7.4 (m, 10H, Ph × 2); ¹³C-NMR (75 MHz, CDCl₃): δ 39.3, 126.1 (2C), 126.2, 127.1, 128.5 (4C), 128.6 (2C), 129.2, 131, 137.4, 140.1; EI-MS m/z: 195 (M⁺+1, 16%), 194 (M⁺, 100), 193 (59), 179 (49), 178 (40), 165 (19), 117 (18), 116 (45), 115 (77), 103 (15), 91 (30), 89 (12), 77 (13).


1,1,3,3-Tetradeuthero-2,3-diphenylpropan-1-ol (3a').


R_f= 0.33 (hexane/ethyl acetate: 4/1); IR (ATR): v 3357, 1494, 1447, 1078, 973, 696 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 1.31 (s, br, 1H, OH), 3.06 (s, 1H, CH), 7-7.5 (m, 10H, Ph × 2); ¹³C-NMR (75 MHz, CDCl₃): δ 37.9 (p, J = 17.7 Hz), 49.8, 65.6 (p, J = 20.1 Hz), 126, 126.8, 128.1 (2C), 128.2 (2C), 128.6 (2C), 129 (2C), 139.8, 141.8; EI-MS m/z: 216 (M⁺, 13%), 213 (26), 198 (22), 197 (58), 196 (14), 184 (17), 183 (44), 182 (10), 181 (14), 180 (18), 179 (18), 168 (15), 167 (22), 166 (15), 124 (25), 123 (98), 122 (15), 121 (24), 107 (11), 106 (42), 105 (100), 104 (33), 94 (26), 93 (59), 92 (35), 80 (12), 79 (16), 78 (24), 77 (26).


References


- (1) K. Sasaki, T. Hayashi, Angew. Chem. Int. Ed., 2010, **51**, 8145-8147.
- (2) R. Boschke, N. C. Cohen, J. M. Wood, J. Maibaum, *Bioorg. Med. Chem. Lett.* 1997, **7**, 2735-2740.
- (3) W.-C. Lu, X.-F. Cao, M. Hu, F. Li, G.-A. Yu, S.-H. Liu, Chem. Biodivers. 2011, 8, 1497-1511.
- (4) Q. Zhu, Y. Lu, Org. Lett. 2008, 10, 4803-4806.

