Electronic supplementary information

Helical Folding in α/β -hybrid peptides Without Inter-Residual backbone hydrogen bonding.

Gowri Priya,^a Amol S. Kotmale,^b Rupesh L. Gawade,^c Deepti Mishra,^d Sourav Pal,^d Vedavadi G. Puranik,^c Pattuparambil R Rajamohanan,^b and Gangadhar J. Sanjayan^{*a}

^aDivision of Organic Chemistry, ^bCentral NMR Facility, ^cCentre for Materials Characterization, ^dDivision of Physical Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

E-mail: gj.sanjayan@ncl.res.in

Contents	S1
General methods	S2
Synthetic Scheme	S3
Experimental procedures and crystal data	S5-S18
Mass spectra of all new compounds	S19-S27
¹ H NMR spectra of all new compounds	S28-S36
¹³ C and ¹³ C-DEPT-135 spectra of all new compounds	S36-S53
Titration studies of 3f , 4f , 5a , 6a , 5b , 6b	S54-S59
Variable Temperature studies of 3f , 5a , 5b , 6a , 6b	S60-S64
2D NMR Spectra of 3d and 4d (COSY, TOCSY, HSQC, HMBC and NOESY)	S65-S74
Circular Dichroism studies	S75
Details of the <i>ab initio</i> MO Calculations	S76-S77

General Methods.

Unless otherwise stated, all chemicals and reagents were obtained commercially. Dry solvents were prepared by the standard procedures. Analytical thin layer chromatography was done on pre-coated silica gel plates (Kieselgel $60F_{254}$, Merck). Column chromatographic purifications were done with 100-200 mesh silica gel. NMR spectra were recorded in CDCl₃ on AV 200 MHz, AV 400 MHz or AV 500 MHz spectrometers. All chemical shifts are reported in δ ppm downfield to TMS and peak multiplicities are referred to as singlet (s), doublet (d), quartet (q), broad singlet (bs), and multiplet (m). The titration studies were done in CDCl₃. Elemental analyses were performed on an Elmentar-Vario-EL (Heraeus Company Ltd., Germany). Elemental analyses were performed on an Elmentar-Vario-EL (Heraeus Company Ltd., Germany). IR spectra were recorded in CHCl₃ using Shimadzu FTIR-8400 spectrophotometer. Melting points were determined on a Buchi melting point B-540 instrument. Electron Scattered Ionization (ESI) Mass Spectrometric measurements were done with API QSTAR Pulsar mass Spectrometer. Circular Dichroism studies have been carried out using JASCO-815 Spectro Photometer.

Scheme 1. Reagents and conditions: (i) Boc ^LPro-OH, ethyl chloroformate, Et₃N, THF, 80 °C, 48 h; (ii) aq. LiOH, MeOH, rt, 4 h; (iii) TFA:DCM (1:1), rt, 2 h; (iv) DCC, HOBt, Et₃N, DCM, rt, 12h; (v) Piv-Cl, Et₃N, DCM, rt, 4 h; (vi) ^tBuNH₂, Et₃N, EDC.HCl, CH₃CN, (vii) HBTU, HOBt, Et₃N, CH₃CN, rt, 12h.

Compound 7 was synthesized by the reported procedure.¹

References:

(1) Gaschow, M.; Kuerschner, L.; Neumann, U.; Pietsch, M.; Laser, R.; Koglin, N.; Eger, K. J. *Med. Chem.* **1999**, *42*, 5437.

Scheme 2: Reagents and conditions: (i) Boc ^LPro-OH, ethyl chloroformate, Et₃N, DCM, 80 °C, 48 h; (ii) aq. LiOH, MeOH, rt, 4 h; (iii)TFA:DCM (1:1), rt, 2 h; (iv) DCC, HOBt, Et₃N, DCM, rt, 12h; (v) 2N NaOH, 60 °C, 5h; (vi) ^tBuNH₂, EDC.HCl, Et₃N, CH₃CN, rt, 12h; (vii) **2b**, DCC, HOBt, Et₃N, DCM, rt, 12h; (viii) Piv-Cl, Et₃N, DCM, rt, 4 h.

General Method for the preparation of Dipeptides 1a and 2a:

To a solution of Boc ^LProline (0.2 g, 0.9 mmol, 1 equiv) in THF at 0 °C, ethyl chloroformate (0.11 g, 1.0 mmol, 1.2 equiv), Et₃N (0.14 mL, 1.0 mmol, 1.2 equiv) were added followed by the addition of amino esters **7** (0.15 g, 0.8 mmol, 1 equiv) in case of **1a** and **8** (0.17 g, 1.02 mmol, 1.1 equiv) in case of **2a**, respectively, and stirred for 30 min at 0 °C. Then the reaction mixture was refluxed for 48 h at 80 °C. Later, the reaction mixture was filtered and the solvent was stripped off under reduced pressure. The residue was taken into DCM and the organic layer was washed sequentially with sat. KHSO₄, brine, sat. NaHCO₃ and water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude products which were purified by column chromatography.

tert-butyl 2-((3-(ethoxycarbonyl)thiophen-2-yl)carbamoyl)pyrrolidine-1-carboxylate (1a):

Compound **1a** was isolated as a yellow solid (0.3 g, 85%); m.p: 66-69 °C; $[\alpha]^{26}_{D}$: -120° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3276, 3019, 2982, 2400, 1685, 1550, 1498, 1478, 1238, 1215, 1034, 927, 747, 702, 668. ¹H NMR (400 MHz, CDCl₃) δ : 11.54_{rotamer}(0.45H), 11.38_{rotamer}(0.55H), 7.20-7.17 (d, J = 5.4 Hz, 1H), 6.73-6.71 (d, J = 4.5 Hz, 1H), 4.53_{rotamer} (0.45H), 4.50_{rotamer} (0.55H), 4.36-4.25 (q, J =7.1 Hz, 2H), 3.61-3.45 (m, 2H), 2.24-2.14 (m, 4H), 1.95-1.88 (t, J = 6.8 Hz, 3H), 1.48_{rotamer} (4H), 1.33_{rotamer} (5H); ¹³C NMR (100 MHz, CDCl₃) δ : 170.4, 169.9, 164.9, 123.8, 115.9, 113.3, 80.5, 61.3, 60.6, 46.7, 31.2, 29.6, 28.2, 24.4, 23.8,

14.2; ESI-MS: 369.3233 $(M+H)^+$, 391.3003 $(M+Na)^+$, 407.2976 $(M+K)^+$; Elemental analysis calculated for $C_{17}H_{24}N_2O_5S$: C, 55.42; H, 6.65; N, 8.56; S, 8.70; Found: C, 55.6; H, 6.65; N, 8.56; S, 8.76.

tert-butyl 2-((3-(methoxycarbonyl)thiophen-2-yl)carbamoyl)pyrrolidine-1-carboxylate (2a):

Compound **2a** was isolated as a white solid (0.3 g, 90%); m.p: 67-70 °C; $[\alpha]^{26}_{D}$: -138° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3308, 3015, 1684, 1570, 1388, 1282, 1216, 1160, 1095, 755; ¹H NMR (400 MHz, CDCl₃) δ : 10.75_{rotamer} (0.45H), 10.62_{rotamer} (0.55H), 8.15-8.12 (d, J = 5.6 Hz, 1H), 7.47 (bs, 1H), 4.44_{rotamer} (0.45H), 4.30_{rotamer} (0.55H), 4.16-4.06 (q, ethyl acetate), 3.87 (s, 3H), 3.64-3.58 (m, 2H), 2.20-2.17 (m, 2H), 2.04 (s, ethyl acetate), 1.93 (m,2H), 1.49_{rotamer} (4H), 1.33_{rotamer} (5H); ¹³C NMR (100 MHz, CDCl₃) δ : 171.0, 170.4, 164.1, 154.1,

 $\begin{array}{c} \textbf{2a} \\ 1.35_{rotamer} (3H); \\ \textbf{C} \\ \textbf{NMR} (100 \\ \textbf{MHZ}, CDC1_3) \\ \textbf{0}: 171.0, 170.4, 104.1, 134.1, \\ 143.8, 131.6, 122.0, 110.7, 80.4, 61.9, 61.3, 51.9, 46.8, 31.3, 30.0, 28.1 \\ \textbf{23.1}, 14.0; \\ \textbf{ESI-MS:} \end{array}$

355.3549 $(M+H)^+$, 377.3449 $(M+Na)^+$, 393.2878 $(M+K)^+$; Elemental analysis calculated for $C_{16}H_{22}N_2O_5S$: C, 54.22; H, 6.26; N, 7.90; S, 9.05; Found: C, 55.56; H, 6.50, N, 6.85; S, 10.66.

General method for ester hydrolysis:

To the solutions of esters **1a**, **2a**, **3a** and **4a** (10 mmol, 1 equiv) in methanol, LiOH·H₂O (40 mmol, 4 equiv) was added in water (12 mL) at 0 °C and the reaction mixture was stirred for 12 h. After the complete consumption of the starting material, the solvent was evaporated under reduced pressure and the residue was treated with sat. KHSO₄ solution followed by extraction with DCM (2 X 25 mL). The corresponding acid derivatives **1b**, **2b**, **3b** and **4b**, respectively, obtained after evaporation of the solvent were carried forward for the next reaction without any purification.

3-(1-(tert-butoxycarbonyl)pyrrolidine-2-carboxamido)thiophene-2-carboxylic acid (2b):

 Compound **2b** was isolated as a yellow solid; mp: 155-158 °C; $[\alpha]^{26}_{D}$: -110° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3684, 3303, 3018, 2980, 2621, 2401, 1681, 1566, 1409, 1216, 1161, 769, 667; ¹H NMR (400 MHz, CDCl₃) δ : 10.72_{rotamer} (0.45H), 10.68_{rotamer} (0.55H), 8.17-8.16 (d, J = 4.9 Hz, 1H), 7.57-7.50 (m, 1H), 4.64_{rotamer} (0.55H), 4.35_{rotamer} (0.45H), 3.64-3.47 (m, 2H), 2.32-2.24 (m, 1H), 2.18 (bs, 1H), 1.96 (bs, 2H), 1.49_{rotamer} (5H), 1.33_{rotamer} (4H); ¹³C NMR (100 MHz, CDCl₃) δ : 170.9, 170.4, 167.8, 167.2, 155.2, 154.2, 145.0, 144.5, 132.8, 122.2, 110.7, 110.2,

80.9, 62.0, 61.1, 47.2, 46.8, 31.3, 30.4, 28.3, 24.3, 23.7; ESI-MS: $341.0 (M+H)^+$, 362.54 (M+Na-1)⁺, 363.87 (M+Na+1)⁺, 364.94 (M+Na+2)⁺, Elemental analysis calculated for C₁₅H₂₀N₂O₅S: C, 52.93; H, 5.92; N, 8.23; S, 9.42; Found: C, 53.65; H, 6.21, N, 7.99; S, 10.50.

General method for Boc deprotection:

The solutions of Boc-peptides **1a**, **2a**, **3a**, **4a**, **5a** and **6a** (3 mmol) were subjected to deprotection using DCM/TFA (1:1, 5 mL) at 0°C. After completion of the reaction (~2 h), the solvent was stripped off, the residue was taken into DCM (30 mL), washed with sat.NaHCO₃ solution (3x10 mL) and the product was repeatedly extracted. The organic layer was dried over anhydrous Na₂SO₄. The residues **1c**, **2c**, **3c**, **4c**, **5b** and **6b**, respectively, obtained after evaporation of the solvent were carried forward for the next step without any purification.

tert-butyl-2((3-(2-((3-(ethoxycarbonyl)thiophen-2-yl)carbamoyl)pyrrolidine-1-carbonyl) thiophen-2-yl)carbamoyl)pyrrolidine-1-carboxylate (3a):

The acid **1b** (0.18 g, 0.5 mmol, 1 equiv) was coupled with the amine **1c** (0.14 g, 0.5 mmol, 1 equiv) using DCC (0.12 g, 0.5 mmol, 1.1 eqiv) and HOBt (0.01 g, 0.1 mmol, 0.2 equiv) in DCM. Work up, as that described for **1a** followed by column chromatographic purification yielded compound **3a** as a white solid (0.2 g, 63%); mp: 86-90 °C; $[\alpha]^{26}_{D}$: -190° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3272, 3019, 1681, 1551, 1399, 1215, 702, 668; ¹H NMR (400 MHz, CDCl₃) δ : 11.73 (s, 1H), 11.60 (s, 1H), 7.27-7.25 (bs, 1H), 7.21-7.18 (d, J = 5.8 Hz, 1H), 6.82-6.80 (m, 1H), 6.75-6.73 (d, J = 5.7 Hz, 1H), 4.97-4.91 (m, 1H), 4.51-4.48 (m, 1H), 4.34-4.24 (q, J = 6.9 Hz, 2H), 4.04-3.87 (m, 2H), 3.53-3.33 (m, 2H), 2.37-1.85 (m, 8H), 1.49_{rotamer} (4H), 1.40-

1.33 (m, 3H), 1.29_{rotamer} (5H); ¹³C NMR (100 MHz, CDCl₃) δ : 170.5, 169.9, 168.9, 166.6, 165.1, 155.0, 153.7, 148.0, 147.2, 123.7, 123.2, 115.9, 115.2, 113.4, 96.0, 80.2, 80.1, 79.4, 61.1, 60.5, 57.4, 50.0, 46.9, 46.5, 36.5, 31.2, 29.8, 28.3, 25.7, 25.1, 24.2, 23.7, 14.2; ESI-MS: 613.4067 (M+Na)⁺; Elemental analysis calculated for C₂₇H₃₄N₄O₇S₂: C, 54.90; H, 5.80; N, 9.48; S, 10.86; Found: C, 52.54; H, 5.42; N, 10.01; S, 10.66.

tert-butyl-2-((2-((2-((2-((2-(methoxycarbonyl)thiophen-3-yl)carbamoyl)pyrrolidine-1-carbonyl) thiophen-3-yl)carbamoyl)pyrrolidine-1-carboxylate (4a):

The acid **2b** (0.28 g, 0.8 mmol, 1 equiv) was coupled with the amine **2c** (0.21 g, 0.8 mmol, 1 equiv) using DCC (0.19 g, 0.9 mmol, 1.1 eqiv) and HOBt (0.02 g, 0.1 mmol, 0.2 equiv) in DCM. Work up, as that described for **1a** followed by column chromatographic purification yielded compound **4a** as white solid (0.3 g, 62%); mp: 140-143 °C; $[\alpha]^{26}_{D}$: -120° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3309, 3019, 1557, 1422, 1446, 1403, 1355, 1283, 1246, 1215, 755, 668, 649; ¹H NMR (500 MHz, CDCl₃) δ : 11.65-11.58 (m, 1H), 10.67 (s, 1H), 8.22-8.20 (m, 1H), 8.13-8.10 (m, 1H), 7.48-7.43 (m, 2H), 4.90_{rotamer} (0.4H), 4.83_{rotamer} (0.6H), 4.39_{rotamer} (0.5H), 4.23_{rotamer} (0.5H), 4.15 (bs, 1H), 4.0-3.97 (m, 1H),

3.82-3.80 (m, 3H), 3.60_{rotamer} (0.5H), 3.48-3.42 (m, 1H), 3.32_{rotamer} (0.5H), 2.24 (bs, 4H), 2.11 (bs,2H), 2.04_{rotamer} (0.55H), 1.94-1.89 (m, 0.45H) 1.79-1.74 (m, 1H), 1.47_{rotamer} (4H), 1.28_{rotamer}

The acid **3b** (0.19 g, 0.3 mmol, 1 equiv) was coupled with the amine **3c** (0.16 g, 0.3 mmol, 1 equiv) using HBTU (0.15 g, 0.4 mmol, 1.2 eqiv), DIPEA (0.08 mL, 0.5 mmol, 1.5 equiv) and HOBt (0.02 g, 0.1 mmol, 0.2 equiv) in dry CH₃CN. Work up, as that described for **1a** followed by column chromatographic purification yielded compound **5a** as white solid (0.21 g, 60%); mp: 180-184 °C; $[\alpha]_{D}^{26}$: -272° (*c* = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3270, 3019, 2400, 1685, 1676, 1596, 1545, 1492, 1432, 1400, 1356, 1215, 1034, 927, 755, 668; ¹H NMR (400 MHz, CDCl₃) δ : 12.07 (s, 1H), 11.88, (bs, 1H), 11.61 (s, 1H), 11.54_{rotamer} (0.5H), 11.46_{rotamer} (0.5H), 7.39 (bs, 1H), 7.34-7.29 (m, 3H), 7.25-7.22 (d, *J* = 5.8 Hz, 1H), 6.86-6.84 (d, *J* = 5.8 Hz, 2H), 6.80-6.77 (d, *J* = 5.7 Hz, 1H), 5.01-4.90 (m, 1H), 4.82-4.75 (m, 2H), 4.52-4.48 (m, 1H), 4.39-4.28 (q, *J* = 7.1 Hz, 2H), 4.04-3.90 (m, 4H), 3.80-3.70 (m, 2H), 3.59-3.34 (m, 2H), 2.41-1.98 (m, 10H), 1.89 (bs, 6H), 1.50_{rotamer} (4H), 1.38 (t, J = 7.1 Hz, 3H), 1.31_{rotamer} (5H); ¹³C NMR (100

MHz, CDCl₃) δ : 171.0, 169.1, 166.5, 165.4, 153.8, 148.1, 147.3, 146.8, 123.8, 123.2, 116.0, 115.7, 115.5, 113.4, 80.1, 61.4, 61.0, 60.6, 60.2, 50.1, 49.9, 47.0, 46.6, 38.5, 31.1, 28.9, 28.2, 28.0, 25.7, 25.6, 23.7, 20.9, 20.4, 14.2, 14.1; MALDI-TOF: 1056.4635 (M+Na-1)⁺, 1057.4781 (M+Na)⁺, 1058.4454 (M+Na+1)⁺, 1059.5731 (M+Na+2)⁺, 1072.4297 (M+K-1)⁺, 1073.4417 (M+K)⁺, 1074.4271 (M+K+1)⁺, 1075.3999 (M+K+2)⁺; Elemental analysis calculated for C₄₇H₅₄N₈O₁₁S₄: C, 54.53; H, 5.26; N, 10.82; S, 12.39; Found: C, 56.6; H, 6.3; N, 10.5; S, 12.8.

HN

The acid 4b (0.12 g, 0.2 mmol, 1 equiv) was coupled with the amine 4c (0.14 g, 0.2 mmol, 1

equiv) using DCC (0.05 g, 0.2 mmol, 1.1 eqiv), HOBt (0.007 g, 0.05 mmol, 0.2 equiv) in dry DCM. Work up, as that described for **1a** followed by column chromatographic purification yielded compound **6a** as white solid (0.17 g, 65%); mp: 155-158 °C; $[\alpha]^{26}_{D}$: -154° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3610, 3445, 3308, 3131, 3018, 2934, 2858, 1694, 1682, 1574, 1567, 1557, 1435, 1446, 1403, 1366, 1283, 1246, 1215, 1435, 1446, 1403, 1366, 1283, 1246, 1215, 1062, 1025, 969, 889, 844, 771, 667, 648; ¹H NMR (400 MHz, CDCl₃) &: 11.84_{rotamer} (0.5H), 11.80_{rotamer} (0.5), 11.76_{rotamer} (0.5), 11.74_{rotamer} (0.5H), 11.51_{rotamer} (0.5H), 11.38_{rotamer} (0.5H), 10.60 (s, 1H), 8.23-8.22 (d, J = 5.2 Hz, 1H), 8.14-8.09 (m, 2H), 8.04 (bs, 2H), 7.49-7.47 (m, 2H), 7.44-7.43 (m, 2H), 4.82_{rotamer} (0.5H), 4.77_{rotamer} (0.5H), 4.70-4.65 (m, 1H), 4.55-4.50 (m, 1H), 4.34_{rotamer} (0.5H), 4.17_{rotamer} (0.5H), 3.52_{rotamer} (0.5H), 3.46_{rotamer} (0.5H), 3.33_{rotamer} (0.5H), 2.25-1.89 (m, 15H), 1.77-1.72 (m, 1H), 1.43_{rotamer} (4H), 1.27_{rotamer} (5H); ¹³C NMR (100

MHz, CDCl₃) δ : 170.9, 169.4, 164.6, 164.3, 154.8, 153.9, 144.9, 144.2, 131.6, 129.1, 122.1, 121.7, 112.5, 111.9, 110.6, 110.4, 96.0. 79.9, 62.9, 61.8, 61.3. 51.9, 48.9, 48.6, 46.9, 46.5, 31.3, 30.4, 29.04, 28.3, 28.1, 25.4, 24.0, 23.6; MALDI-TOF: 1042.8814 (M+Na-1)⁺, 1043.8922 (M+Na)⁺, 1044.8918 (M+Na+1)⁺, 1058.8540 (M+K-1)⁺, 1059 (M+K)⁺; Elemental analysis calculated for C₄₆H₅₂N₈O₁₁S₄: C, 54.96; H, 5.21; N, 11.15; S, 12.76; Found: C, 55.5; H, 5.8; N, 10.9; S, 12.8.

tert-butyl 2-((3-(2-((3-(tert-butylcarbamoyl) thiophen-2-yl)carbamoyl)pyrrolidine-1carbonyl)thiophen-2-yl)carbamoyl)pyrrolidine-1-carboxylate (4e):

The acid **3b** (0.18 g, 0.33 mmol, 1equiv) was coupled with ^tBuNH₂ (0.1 mL, 1.01 mmol, using HBTU (0.19 g, 0.5 mmol, 1.5 equiv) and DIPEA (0.11 mL, 0.6 mmol, 2 equiv). Work up, as that described for **1a** followed by column chromatographic purification yielded compound **4e** (0.1 g, 50%) as brownish yellow solid; mp: 83-86 °C; $[\alpha]^{26}_{D}$: -142° (*c* = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹):

3368, 2976, 1682, 1548, 1453, 1313, 1216, 1161, 917, 853, 759, 694, 663; ¹H NMR (200 MHz, CDCl₃) δ: 11.69_{rotamer} (0.4H), 11.63 (s, 1H), 11.58, rotamer (0.6H), 8.20-8.17 (d, J = 5.6 Hz, 1H), 8.12-8.10 (m, 1H), 7.48-7.43 (m, 1H), 7.27-7.24 (d, J = 5.4 Hz, 1H), 5.44, (s, 1H), 4.90-4.82 (m, 1H), 4.41-4.36 (m, 1H), 4.28-4.18 (m, 1H), 4.04-3.96 (m, 1H), 3.66-3.23 (m, 2H), 2.23-1.62 (m, 8H), 1.47_{rotamer} (4H), 1.34 (s, 9H), 1.28_{rotamer} (5H); ¹³C NMR (100 MHz, CDCl₃) δ: 169.4, 166.5, 164.7, 146.4, 145.7, 123.7, 120.7, 115.9, 115.3, 80.1, 60.9, 51.5, 50.6, 49.9, 46.7, 38.4, 28.6, 28.0, 24.3; MALDI-TOF: 639.7768 (M+Na-1)⁺, 640.7768 (M+Na)⁺, 641.7773 (M+Na+1)⁺, 655.7349 (M+K-1)⁺, 656.7327 (M+K)⁺, 657.7293 (M+Na+1)⁺; Elemental analysis calculated for C₂₉H₃₉N₅O₆S₂: C, 54.96; H, 5.21; N,

11.15; S, 12.76; Found: C, 55.5; H, 5.8; N, 10.9; S, 12.8.

3-amino-N-(tert-butyl)thiophene-2-carboxamide (10):

The amino ester **8** (0.1 g, 0.5 mmol, 1 equiv) was subjected to hydrolysis using 5N NaOH (4 mL) by heating the reaction mixture at 60 °C for 12 h. Later, the solvent was evaporated under reduced pressure, the residue obtained was taken into DCM, and washed with sat KHSO₄ solution (2x10 mL), The organic layer

was dried over Na_2SO_4 , and evaporated, which gave the free amino acid **9** as a yellow solid. This amino acid **9** (0.09 g, 0.58 mmol, 1 equiv) was coupled with ^tBuNH₂ (0.3 mL, 2.92 mmol, 5 equiv) using HBTU (0.33 g, 0.87 mmol, 1.5 equiv) and DIPEA (0.2 mL, 1.16 mmol, 2 equiv).

Work up, as that described for **1a** followed by column chromatographic purification yielded compound **10** as a pasty mass (0.1 g, 80%); ¹H NMR (200 MHz, CDCl₃) δ : 7.07-7.04 (d, *J* = 5.3Hz, 1H), 6.54-6.52 (d, *J* = 5.3 Hz, 1H), 5.26 (bs, 1H), 1.42 (s, 9H); ¹³C NMR (50 MHz, CDCl₃) δ : 164.6, 152.0, 125.7, 121.4, 104.0, 51.4, 29.1; ESI-MS: 221.2014 (M+Na)⁺; Elemental analysis calculated for C₉H₁₄N₂OS: C, 54.52; H, 7.12; N, 14.13; S, 16.17; Found: C, 53.5; H, 7.8; N, 15.9; S, 16.8.

tert-butyl 2-((2-(tert-butylcarbamoyl)thiophen-3-yl)carbamoyl)pyrrolidine-1-carboxylate (2d):

To a solution of Boc ^LProline (0.47 g, 2.22 mmol, 1.1 equiv) in THF at 0 °C, ethyl chloroformate (0.2 mL, 2.42 mmol, 1.2 equiv), Et₃N (0.33 mL, 2.42 mmol, 1.2 equiv) were

added followed by the addition of **10** (0.4 g, 2.02 mmol, 1 equiv) and stirred for 30 min at 0 °C. Then the reaction mixture was refluxed for 48 h at 80 °C. Later, the reaction mixture was filtered and the solvent was stripped off under reduced pressure. The residue was taken into DCM and the organic layer was washed sequentially with sat. KHSO₄, brine, sat. NaHCO₃ and water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which after purification by column chromatography gave **2d**

2d as a brownish yellow solid; mp: 53-55 °C; $[\alpha]^{26}_{D}$: +2° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3681, 3483, 3423, 3352, 3012, 2967, 2400, 1629, 1535, 1475, 1364, 1306, 1218, 1096, 1082, 772, 669; ¹H NMR (200 MHz, CDCl₃) δ : 11.50_{rotamer} (0.4H), 11.42_{rotamer} (0.6H), 8.15-8.13 (d, J = 5.3 Hz, 1H), 7.24-7.20 (m, 1H), 5.46 (bs, 1H), 4.45-4.40_{rotamer} (0.5H), 4.28-4.22_{rotamer}(0.5H), 3.68-3.42 (m, 2H), 2.25-1.83 (m, 4H), 1.49_{rotamer} (4H), 1.42_{rotamer} (5H); ¹³C NMR (50 MHz, CDCl₃) δ : 176.4, 175.1, 170.9, 170.4, 163.2, 154.7, 153.9, 142.2, 125.8, 125.4, 122.7, 113.7, 113.6, 79.8, 61.6, 61.1, 58.7, 52.0, 46.7, 46.4, 46.0, 31.2, 30.5, 28.6, 28.0, 24.0, 23.5, 23.4; ESI-MS: 418.7926 (M+Na)⁺; Elemental analysis calculated for C₁₉H₂₉N₃O₄S: C, 57.70; H, 7.39; N, 10.62; S, 8.11; Found: C, 59.6; H, 8.4; N, 11.2; S, 7.9.

tert-butyl-2-((2-((2-((2-((tert-butylcarbamoyl)thiophen-3-yl)carbamoyl)pyrrolidine-1-carbonyl)thiophen-3-yl)carbamoyl)pyrrolidine-1-carboxylate (4e):

Compound **2d** was subjected to Boc deprotection following the similar procedure mentioned to obtain **2c**. The free amine obtained was coupled with **2b** (0.31 g, 0.93 mmol, 1.1 equiv) using DCC (0.19 g, 0.93 mmol, 1.1 equiv) and HOBt (0.02 g, 1.69 mmol, 0.2 equiv) in dry DCM. Later, the reaction mixture was dilute dwith DCM and washed sequentially with sat. KHSO₄, brine, sat. NaHCO₃ and water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which was purified by column chromatography yielded **4e** as a white solid (0.31 g, 60%), mp: 116-119 °C; $[\alpha]^{26}_{D}$: -140° (*c* = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3246, 3019, 2979, 1686, 1560, 1403, 1289, 1215, 1092,

890; ¹H NMR (400 MHz, CDCl₃) δ: 11.65_{rotamer} (0.4H), 11.59, (s, 1H), 11.56_{rotamer} (0.6H), 8.17-8.16 (d, J = 5.3 Hz) 8.09-8.08 (m, 1H), 7.45-7.39 (dd, J = 4.5Hz, 1H), 7.24-7.22 (d, J = 5.3 Hz,

1H), 5.44 (s, 1H), 4.88_{rotamer} (0.5H), 4.80_{rotamer} (0.5H), 4.36_{rotamer} (0.5H), 4.19_{rotamer} (1.5H), 3.96 (bs, 1H), $3.58_{rotamer}$ (0.5H), 3.48-3.45 (m, 1H), $3.29_{rotamer}$ (0.5H), 2.22-2.18 (bs, 4H), 2.10-2.07 (m, 2H), 1.90-1.87 (m, 1H), 1.76 (bs, 1H), $1.45_{rotamer}$ (4H), 1.32 (s, 9H), $1.26_{rotamer}$ (5H); ¹³C NMR (50 MHz, CDCl₃) δ : 171.0, 170.5, 169.3, 164.5, 163.4, 154.8, 153.9, 144.5, 142.5, 128.8, 125.8, 122.9, 121.9, 113.7, 112.6, 112.3, 79.9, 62.6, 61.8, 61.3, 52.1, 48.8, 46.8, 46.5. 31.2, 28.7, 28.0, 24.0, 23.6; ESI-MS: 640.6573 (M+Na)⁺; Elemental analysis calculated for C₂₉H₃₉N₅O₆S₂: C, 56.38; H, 6.36; N, 11.34; S, 10.38; Found: C, 57.1; H, 6.9; N, 11.1; S, 10.1.

General Method for Pivolyl protection:

To the solutions of amines **3c**, **4c**, and the amines obtained from the Boc deprotection of **3e**, **4e**, **5a**, and **6a** (10 mmol, 1equiv) in DCM, Piv-Cl (12 mmol, 1.2 equiv) and Et₃N (15 mmol, 1.5 equiv) were added at 0 °C, and the reaction mixture was stirred for 12 h. After the complete consumption of the starting material, the reaction mixture was diluted with DCM and washed sequentially with sat. KHSO₄ solution, brine, sat. NaHCO₃ solution and water, the organic layer was dried over Na₂SO₄. Later, the solvent was evaporated and the residues obtained were purified by column chromatography to yield the products **3d**, **4d**, **3f**, **4f**, **5b** and **6b**, respectively.

Ethyl 2-(1-(2-(1-pivaloylpyrrolidine-2-carboxamido)thiophene-3-carbonyl)pyrrolidine-2carboxamido)thiophene-3-carboxylate (3d):

Compound **3d** was isolated as a yellow solid (0.20 g, 70%), mp: 168-172 °C; $[\alpha]^{26}_{D}$: -102° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3018, 1671, 1616, 1542, 1405, 1290, 1215, 1089, 1033, 922, 853, 756, 668; ¹H NMR (400 MHz, CDCl₃) δ : 11.63 (s, 1H), 11.54 (s, 1H), 7.24 (bs, 1H), 7.21-7.20 (d, J = 5.8 Hz, 1H), 6.79-6.77, (d, J = 6.2 Hz, 1H), 6.75-6.74 (d, J = 5.8 Hz, 1H), 4.84-4.81 (m 1H), 4.74-4.70 (m, 1H), 4.33-4.27 (q, J = 7Hz, 2H), 4.0-3.94 (m, 1H), 3.90-3.85 (m,1H), 3.82-3.77 (m,1H), 3.73-3.67 (m, 1H), 2.36-2.29 (m,1H), 2.21-2.09 (m, 3H), 2.07-1.95 (m, 3H), 1.93-1.87 (m, 1H), 1.36-1.33

3d (t, J = 7Hz, 3H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.8, 169.7, 169.1, 165.1, 148.0, 147.5, 123.7, 122.9, 115.9, 115.5, 115.0, 62.7, 60.5, 49.9, 48.2, 39.0, 28.4, 27.2, 25.6, 14.2; ESI-MS: 575.4474 (M+H)⁺, 597.4312 (M+Na)⁺; Elemental analysis calculated for C₂₇H₃₄N₄O₆S₂: C, 56.43; H, 5.96; N, 9.75; S, 11.16; Found: C, 55.93; H, 5.91; N, 10.70; S, 10.1.

methyl 3-(1-(3-(1-pivaloylpyrrolidine-2-carboxamido)thiophene-2-carbonyl)pyrrolidine-2carboxamido)thiophene-2-carboxylate (4d):

Compound **4d** was isolated as a white solid (0.20 g, 70%), mp: 156-158 °C; $[\alpha]^{26}_{D}$: -128° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3309, 3017, 1680, 1572, 1445, 1361, 1282, 1246, 1215, 1088, 754, 667, 649; ¹H NMR (400 MHz, CDCl₃) δ : 11.48 (s, 1H), 10.63 (s, 1H), 8.21-8.20 (d, J = 5.5 Hz, 1H), 8.12-8.10 (d, J = 5.5 Hz, 1H), 7.47-7.46 (d, J = 5.5 Hz, 1H), 7.43-7.42 (d, J = 5.5 Hz, 1H), 4.77 (bs, 1H), 4.61-4.58 (dd, J = 8.7 Hz, 1H), 4.15-4.12 (m, 1H), 4.00-3.96 (m, 1H), 3.82 (s, 3H), 3.77-3.74 (m, 1H), 3.68-3.63 (m, 1H), 2.23 (bs, 3H), 2.11-2.07 (m, 2H), 2.03-1.94 (m, 2H), 1.85-1.80 (m, 1H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.6, 170.4, 169.4, 164.6, 164.4, 145.0, 144.0, 131.5,

128.7, 122.4, 122.1, 111.7, 63.6, 62.9, 51.9, 48.8, 48.2, 39.0, 28.6, 27.3, 25.5; ESI-MS: 583.5084 $(M+Na)^+$; Elemental analysis calculated for $C_{26}H_{32}N_4O_6S_2$: C, 55.70; H, 5.75; N, 9.99; S, 11.44; Found: C, 54.8; H, 5.5; N, 10.10; S, 10.9.

N-(3-(tert-butylcarbamoyl)thiophen-2-yl)-1-(2-(1-pivaloylpyrrolidine-2-carboxamido) thiophene-3-carbonyl)pyrrolidine-2-carboxamide (3f):

Compound **3f** was isolated as a yellow solid (0.20 g, 70%), mp: 106-109 °C; $[\alpha]^{26}_{D}$: -102° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3019, 1674, 1626, 1547, 1485, 1405, 1361, 1215, 758, 668; ¹H NMR (400 MHz, CDCl₃) δ : 12.59 (s, 1H), 11.54 (s, 1H), 7.33 (bs, 1H), 6.87-6.86 (d, J = 5.8 Hz, 1H), 6.76-6.75 (d, J = 4.6 Hz, 2H), 5.73 (s, 1H), 4.84-4.82 (m, 1H), 4.73-4.71 (m, 1H), 4.04-4.01 (m, 1H), 3.89-3.84 (m, 1H), 3.81-3.77 (m, 1H), 3.72-3.67 (m, 1H), 3.50-3.46 (q, ethyl acetate), 2.37-2.32 (m, 1H), 2.17-2.10 (m, 3H), 2.07-2.01 (m, 1H), 2.0-1.94 (m, 2H), 1.91-1.87 (m, 1H), 1.41 (s, 9H), 1.30 (s. 9H), 1.24-1.23 (ethyl acetate); ¹³C NMR (100 MHz, CDCl₃) δ : 178.0, 169.7, 169.4, 166.5, 164.8, 147.1, 146.1, 123.4, 120.5, 116.2, 115.6, 115.3, 65.8, 62.8, 61.3,

51.7, 50.0, 48.3, 39.1, 28.9, 27.4, 25.7, 15.2; ESI-MS: 603.11 $(M+H)^+$, 624.04 $(M+Na)^+$; Elemental analysis calculated for $C_{29}H_{39}N_5O_5S_2$: C, 57.88; H, 6.53; N, 11.64; S, 10.66; Found: C, 58.2; H, 7.1; N, 10.30; S, 9.8.

N-(2-(tert-butylcarbamoyl)thiophen-3-yl)-1-(3-(1-pivaloylpyrrolidine-2-carboxamido) thiophene-2-carbonyl)pyrrolidine-2-carboxamide (4f):

Compound **4f** was isolated as a white solid (0.20 g, 70%), mp: 118-120 °C; $[\alpha]_{D}^{26}$: 158° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3019, 2400, 1685, 1628, 1559, 1423, 1404, 1365, 1289, 1215, 928, 771, 668; ¹H NMR (400 MHz, CDCl₃) δ : 11.55 (s, 1H), 11.51 (s, 1H), 8.18-8.17 (d, J = 5.5 Hz, 1H), 8.13-8.11 (d, J = 5.5 Hz, 1H), 7.40-7.39 (d, J = 5.3 Hz, 1H), 7.25-7.24 (d, J = 5.5Hz, 1H), 5.45 (s, 1H), 4.74 (bs, 1H), 4.61-4.58 (dd, J = 8.5 Hz, 1H), 4.19-4.18 (m, 1H), 4.00-3.94 (m, 1H), 3.78-3.72 (m, 1H), 3.66-3.61 (m, 1H), 2.29-2.15 (m, 3H), 2.09-2.04 (m, 2H), 2.01—1.90 (m, 2H), 1.85-1.75 (m, 1H), 1.36 (s, 9H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.6, 170.3,

169.5, 164.4, 163.5, 144.7, 142.7, 128.4, 125.7, 123.0, 122.3, 113.5, 112.1, 63.6, 62.9, 52.1, 48.8, 48.2, 39.0, 28.8, 27.4, 25.5; ESI-MS: 601.84 (M)⁺, 603.11 (M+2H)⁺, 624.11 (M+Na)⁺; Elemental analysis calculated for $C_{29}H_{39}N_5O_5S_2$: C, 57.88; H, 6.53; N, 11.64; S, 10.66; Found: C, 58.1; H, 6.5; N, 11.30; S, 9.91.

ethyl-2-(1-(2-(1-(2-(1-(2-(1-pivaloylpyrrolidine-2-carboxamido)thiophene-3-carbonyl) pyrrolidine-2-carboxamido)thiophene-3-carbonyl)pyrrolidine-2-carboxamido)thiophene-3carbonyl)pyrrolidine-2-carboxamido)thiophene-3-carboxylate (5b):

Compound **5b** was isolated as a white solid (0.20 g, 70%), mp: 170-174 °C; $[\alpha]^{26}_{D}$: -266° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3439, 3263, 3114, 3015, 2982, 2447, 1674, 1600, 1489, 1435, 1403, 1357, 1179, 1097, 1033, 912, 876, 852, 833, 754, 699, 666; ¹H NMR (400 MHz, CDCl₃) δ : 12.04 (s, 1H), 11.86 (s, 1H), 11.57 (s, 1H), 11.42 (s, 1H), 7.31-7.27 (m, 3H), 7.22-7.20 (d, J = 5.5 Hz, 1H), 6.83-6.81 (d, J = 5.8 Hz, 2H), 6.79-6.78 (d, J = 5.5 Hz, 1H), 6.77-6.75 (d, J = 5.8 Hz, 1H), 4.83-4.80 (t, J = 7.3 Hz, 1H), 4.77-4.74 (m, 1H), 4.72-4.68 (m, 1H), 4.67-4.64 (dd, J = 8.4 Hz, 3.9Hz, 1H), 4.33-4.20 (q, J = 7 Hz, 2H), 4.14-4.09 (q, ethyl acetate), 4.01-3.94 (m, 1H), 3.91-3.85 (m, 4H), 3.76-3.71 (m, 3H), 2.34-2.25 (m, 3H), 2.18-1.95 (m, 10H), 1.92-1.84 (m, 3H), 1.36-1.33 (t, J = 7.2 Hz, 3H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.6, 169.6, 168.9, 166.4, 165.3, 148.0, 147.1, 147.0, 146.6, 123.7, 123.6, 123.1, 116.0 115.5, 115.3, 115.2, 62.7, 60.6, 50.0, 48.3, 38.9,

HN

6b

28.8, 28.3, 27.2, 25.6, 14.1; MALDI-TOF: 1018.7148 (M)⁺, 1019.7191 (M+H)⁺, 1020.7153 (M+2H)⁺, 1043.7069 (M+Na-1)⁺, 1041.7144 (M+Na)⁺, 1042.7101 (M+Na+1)⁺, 1043.7061 (M+Na+2)⁺, 1056.6581 (M+K-1)⁺, 1057.6554 (M+K)⁺, 1058.6558 (M+K+1)⁺, 1059.6614 (M+K+2)⁺; Elemental analysis calculated for $C_{47}H_{54}N_8O_{10}S_4$: C, 55.38; H, 5.34; N, 10.99; S, 12.58; Found: C, 56.5; H, 5.8; N, 10.80; S, 12.60.

methyl-3-(1-(3-(1-(3-(1-(3-(1-pivaloylpyrrolidine-2-carboxamido)thiophene-2-carbonyl) pyrrolidine-2-carboxamido)thiophene-2-carbonyl)pyrrolidine-2-carboxamido)thiophene-2carbonyl)pyrrolidine-2-carboxamido)thiophene-2-carboxylate (6b):

Compound **6b** was isolated as a white solid (0.20 g, 70%), mp: 170-174 °C; $[\alpha]^{26}_{D}$: -158° (c = 1, CHCl₃); IR (CHCl₃) v (cm⁻¹): 3243, 3131, 3019, 2400, 1681, 1563, 1557, 1444, 1404, 1360, 1283, 1246, 1215, 1096, 668, 648; ¹H NMR (400 MHz, CDCl₃) δ : 11.83 (s, 1H), 11.76 (s, 1H), 11.38 (s, 1H), 10.60 (s, 1H), 8.23-8.22 (d, J = 5.5 Hz, 1H), 8.14-8.12 (d, J = 5.5 Hz, 1H), 8.10-8.08 (d, J = 5.5 Hz, 1H), 8.06-8.04 (d, J = 5.3 Hz, 1H), 7.49-7.48 (d, J = 5.3 Hz, 2H), 7.44-7.43 (d, J = 5 Hz, 2H), 4.69 (bs, 2H), 4.55-4.52 (dd, J = 8.3 Hz, 3.8 Hz, 2H), 4.17 (bs, 1H), 4.14-4.08 (q, ethyl acetate), 4.04-3.94 (m, 3H), 3.83 (s, 3H), 3.80-3.75 (m, 2H), 3.73-3.70 (m, 1H), 3.67-3.61 (m, 1H), 2.27-2.16 (m, 6H), 2.13-2.01 (m, 6H), 1.95-1.89 (m, 4H), 1.80-1.77 (m, 1H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.6, 170.3, 169.6, 169.4, 164.5, 164.5, 164.3, 144.9, 144.5, 144.1, 131.9, 129.2, 129.0, 122.1, 121.7, 112.3, 112.1, 111.8, 110.5, 63.6, 62.9, 60.3, 51.9, 48.8, 48.3, 38.9, 29.6, 29.0, 27.3, 25.5; MALDI-TOF: 1018.7148 (M)⁺, 1019.7191

 $(M+H)^+$, 1020.7153 $(M+2H)^+$, 1026.9773 $(M+Na-1)^+$, 1027.1059 $(M+Na)^+$, 1028.7229 $(M+Na+1)^+$, 1029.7169 $(M+Na+2)^+$, 1042.6831 $(M+K-1)^+$, 1043.6793 $(M+K)^+$, 1044.6777 $(M+K+1)^+$, 1047.6775 $(M+K+2)^+$; Elemental analysis calculated for C₄₆H₅₂N₈O₁₀S₄: C, 54.96; H, 5.21; N, 11.15; S, 12.76; Found: C, 56.2; H, 6.1; N, 10.6; S, 11.9. **Crystal Data:** Data for the compounds **1a**, **2b**, **3a** and **4d** were collected on SMART APEX CCD Single Crystal X-ray diffractometer using Mo-K α radiation ($\lambda = 0.7107$ Å) to a maximum θ range of 25.00°. Crystal to detector distance 6.05 cm, 512 x 512 pixels / frame, Oscillation / frame -0.3°, maximum detector swing angle = -30.0°, beam center = (260.2, 252.5), in plane spot width = 1.24, SAINT integration with different exposure time per frame and SADABS correction applied.

Data for the compound **4f** was collected on SMART APEX-II CCD using Mo-K α radiation ($\lambda = 0.7107$ Å) to a maximum θ range of 25.00°. Crystal to detector distance 5.00 cm, 512 x 512 pixels / frame, Oscillation / frame -0.5°, maximum detector swing angle = -30.0°, beam center = (260.2, 252.5), in plane spot width = 1.24, SAINT integration with different exposure time per frame and SADABS correction applied.

All the structures were solved by direct methods using SHELXTL. All the data were corrected for Lorentzian, polarisation and absorption effects. SHELX-97 (ShelxTL) was used for structure solution and full matrix least squares refinement on F^2 . Hydrogen atoms were included in the refinement as per the riding model. The refinements were carried out using SHELXL-97.

Crystal data for 1a:

Single crystals of the compound **1a** were grown by slow evaporation of the solution a mixture of pet. ether and ethyl acetate. Pale yellow plate-like crystal of approximate size 0.42 x 0.17 x 0.04 mm³, was used for data collection. Multi-run data acquisition. Total scans = 5, total frames = 2809, exposure / frame = 20.0 sec / frame, θ range = 1.75 to 25.50°, completeness to θ of 25.50° is 100.0 %. C₁₇H₂₄N₂O₅S, *M* = 368.44. Crystals belong to Tetragonal, space group P4₃2₁2, *a* = 9.2214(4), *b* = 9.2214 (4), *c* = 46.482(2) Å, *V* = 3952.6(3) Å³, *Z* = 8, D_c = 1.238 g /cc, μ (Mo–K α) = 0.191 mm⁻¹, 44585, reflections measured, 3674 unique [I>2 σ (I)], R value 0.0454, wR2 = 0.1193. Largest diff. peak and hole 0.159 and -0.173 e. Å⁻³.

Crystal data for 2b:

Single crystals of the compound **2b** were grown by slow evaporation of a solution of ethyl acetate. Colorless plate-like crystal of approximate size 0.29 x 0.20 x 0.04 mm³, was used for data collection. Multi-run data acquisition. Total scans = 5, total frames = 1271, exposure / frame = 20.0 sec / frame, θ range = 2.06 to 25°, completeness to θ of 25° is 100.0 %. C₁₅H₂₀N₂O₅S, *M*

= 340.39. Crystals belong to Orthorhombic, space group P2₁2₁2₁, a = 7.8940(7) Å b = 10.9470(9) Å, c = 19.7800(2) Å, V = 1709.3(2) Å³, Z = 4, D_c = 1.323 g/cc, μ (Mo–K α) = 0.215 mm⁻¹, 7939, reflections measured, 3001 unique [I>2 σ (I)], R value 0.0436, wR2 = 0.0826. Largest diff. peak and hole 0.223 and -0.217 e.Å⁻³.

Crystal data for 3a:

Single crystals of the compound **3a** were grown by slow evaporation of the solution a mixture of pet. ether and ethyl acetate. Colorless needle-like crystal of approximate size 0.14 x 0.04 x 0.04 mm³, was used for data collection. Multi-run data acquisition. Total scans = 5, total frames = 1271, exposure / frame = 20.0 sec / frame, θ range = 2.18 to 25.00°, completeness to θ of 24.00° is 100.0 %. C₂₇H₃₄N₄O₇S₂, *M* = 590.70. Crystals belong to Orthorhombic, space group P2₁2₁2₁, *a* = 11.077(1) Å, *b* = 16.0203(2) Å, *c* = 17.3250(2) Å, *V* = 3074.4(6) Å³, *Z* = 4, D_c = 1.276 g /cc, μ (Mo–K α) = 0.221 mm⁻¹, 15654, reflections measured, 5415 unique [I>2 σ (I)], R value 0.0586, wR2 = 0.1467. Largest diff. peak and hole 0.345 and -0.275 e.Å⁻³.

Crystal data for 4d:

Single crystals of the compound **4d** were grown by slow evaporation of the solution of methanol. Colorless plate-like crystal of approximate size $0.45 \times 0.15 \times 0.13 \text{ mm}^3$, was used for data

collection. Multi-run data acquisition. Total scans = 5, total frames = 1271, exposure / frame = 20.0 sec / frame, θ range = 2.09 to 25.00°, completeness to θ of 25.00° is 99.8 %. C₂₆H₃₂N₄O₆S₂, *M* = 560.68. Crystals belong to Monoclinic space group P2₁, *a* = 7.3385(4)Å, *b* = 38.880(2)Å, *c* = 9.7776(6) Å, *V* = 2780.7(3) Å³, *Z* = 4, D_c = 1.339 g /cc, μ (Mo–K α) = 0.238 mm⁻¹, 14101, reflections measured, 9614 unique [I>2 σ (I)], R value 0.0424, wR2 = 0.0961. Largest diff. peak and hole 0.216 and -0.161 e.Å⁻³. It has been observed that two molecules with a slight different conformation at the C terminus are packed in the unit cell of the molecule (see Fig-1).

Figure-1: Overlay of the two molecules present in the unit cell of 4d

Crystal data for 4f:

Single crystals of the compound **4f** were grown by slow evaporation of the solution of methanol. Colorless plate-like crystal of approximate size 0.45 x 0.31 x 0.14 mm³, was used for data collection. Multi-run data acquisition. Total scans = 5, total frames = 669, exposure / frame = 20.0 sec / frame, θ range = 1.59 to 25.00°, completeness to θ of 25.00° is 100.0 %. C₂₉H₃₅N₅O₅S₂, M = 601.77. Crystals belong to Orthorhombic, space group P2₁2₁2₁, a = 9.3121(9) Å, b = 17.9909(2) Å, c = 18.1542(2) Å, V = 3041.4(5) Å³, Z = 4, D_c = 1.314 g/cc, μ (Mo–K α) = 0.221 mm⁻¹, 13111, reflections measured, 5244 unique [I>2 σ (I)], R value 0.0317, wR2 = = 0.0766. Largest diff. peak and hole 0.164 and -0.177 e.Å⁻³.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Volume of DMSO-d6	Chemical Shift (in ppm)				
added (in μ L)	δNH1	δΝΗ2	δΝΗ3		
0	11.54	12.59	5.70		
5	11.53	12.58	5.75		
10	11.51	12.57	5.80		
15	11.50	12.57	5.85		
20	11.48	12.56	5.89		
25	11.46	12.55	5.94		
30	11.44	12.54	5.97		
35	11.42	12.53	6.01		
40	11.41	12.53	6.05		
45	11.39	12.52	6.08		
50	11.36	12.50	6.12		

Table S1. Titration study of tetrapeptide 3f in $CDCl_3(10 \text{ mmol})$ with DMSO-d6 (volume of DMSO-_{d6} added at each addition = 5 μ l)

ŃН NH3

Volume of DMSO-d6	Chemical Shift (in ppm)				
added (In µL)	δNH1	δNH2	δNH3		
0	11.57	11.52	5.43		
5	11.55	11.50	5.44		
10	11.53	11.48	5.45		
15	11.51	11.46	5.46		
20	11.49	11.44	5.47		
25	11.48	11.42	5.48		
30	11.46	11.40	5.49		
35	11.44	11.38	5.50		
40	11.43	11.36	5.52		
45	11.41	11.34	5.53		
50	11.40	11.20	5 5 1		

Table S2. Titration study of tetrapeptide 4f in $CDCl_3(10 \text{ mmol})$ with DMSO-d6 (volume of DMSO-d6 added at each addition = 5 μ l)

NH3

Volume of	Chemical Shift (in ppm)				
added (in µL)	δNH1	δNH2	δNH3	δNH4	
0	11.45	11.85	12.01	11.55	
5	11.47	11.86	12.03	11.57	
10	11.44	11.85	12.01	11.55	
15	11.42	11.83	11.98	11.52	
20	11.41	11.82	11.96	11.50	
25	11.39	11.80	11.94	11.49	
30	11.37	11.79	11.92	11.47	
35	11.35	11.78	11.90	11.45	
40	11.34	11.77	11.89	11.44	
45	11.33	11.75	11.87	11.42	
50	11.31	11.73	11.84	11.40	

Table S3. Titration study of octapeptide 5a (10 mmol, 400 MHz, CDCl₃) with DMSO-d6 (volume of DMSO-d6 added at each addition = 5μ l)

Table

Volume of DMSO-d6	Chemical Shift (in ppm)				
added (in µL)	δNH1	δNH2	δΝΗ3	δNH4	
0	11.41	11.85	12.04	11.57	
5	11.40	11.85	12.03	11.56	
10	11.39	11.83	12.00	11.54	
15	11.37	11.81	11.98	11.52	
20	11.36	11.80	11.97	11.51	
25	11.35	11.79	11.96	11.50	
30	11.34	11.78	11.94	11.48	
35	11.32	11.76	11.91	11.45	
40	11.31	11.75	11.90	11.44	
45	11.29	11.73	11.87	11.42	
50	11.27	11.71	11.85	11.40	

Table S4. Titration study of octapeptide 5b (10 mmol, 400 MHz, CDCl₃) with DMSO-d6 (volume of DMSO-d6 added at each addition = 5μ l)

Volume of	Chemical Shift (in ppm)					
added (in µL)	δNH1	δNH2	δNH3	δNH4		
0	11.45	11.83	11.76	10.61		
5	11.39	11.77	11.70	10.55		
10	11.36	11.75	11.67	10.53		
15	11.33	11.72	11.64	10.50		
20	11.30	11.70	11.61	10.47		
25	11.28	11.68	11.58	10.45		
30	11.25	11.65	11.55	10.42		
35	11.22	11.62	11.52	10.39		
40	11.20	11.60	11.49	10.37		
45	11.17	11.57	11.48	10.34		
50	11.15	11.55	11.44	10.32		

Table S5. Titration study of octapeptide 6a (10 mmol, 400 MHz, CDCl₃) with DMSO-d6 (volume of DMSO-d6 added at each addition = 5μ l)

Volume of	Chemical Shift (in ppm)				
added (in µL)	δNH1	δNH2	δNH3	δΝΗ4	
0	11.39	11.84	11.77	10.61	
5	11.37	11.82	11.75	10.58	
10	11.35	11.80	11.72	10.57	
15	11.31	11.78	11.69	10.53	
20	11.29	11.75	11.67	10.52	
25	11.27	11.72	11.64	10.49	
30	11.24	11.70	11.62	10.47	
35	11.22	11.67	11.59	10.44	
40	11.19	11.64	11.56	10.41	
45	11.17	11.62	11.54	10.39	
50	11.14	11.60	11.51	10.37	

Table S6. Titration study of octapeptide 6b (10 mmol, 400 MHz, CDCl₃) with DMSO-d6 (volume of DMSO-d6 added at each addition = 5μ l)

Temperature	Chemical shift (in ppm)					
(in K)	δNH1	δNH2	δNH3			
263	11.61	12.63	5.80			
273	11.58	12.62	5.77			
278	11.57	12.61	5.76			
283	11.56	12.60	5.75			
288	11.55	12.60	5.74			
293	11.54	12.59	5.73			
295	11.55	12.59	5.73			
298	11.53	12.58	5.71			
303	11.54	12.58	5.71			
308	11.52	12.56	5.69			
313	11.51	12.55	5.69			
318	11.50	12.54	5.68			
323	11.49	12.53	5.67			

Table S7. Variable temperature study of tetrapeptide 3f (10 mmol, 400 MHz, CDCl₃)

Chemical Shift in ppm

Figure-2. Variable temperature study of octapeptide 5a (10 mmol, 400 MHz, CDCl₃)

Temperature	δNH1	δNH2	δNH3	δNH4
(in K)				
268	11.40	11.84	12.06	11.61
273	11.40	11.85	12.06	11.61
278	11.40	11.85	12.05	11.60
283	11.40	11.85	12.05	11.59
288	11.40	11.85	12.05	11.59
293	11.41	11.85	12.05	11.58
298	11.41	11.85	12.04	11.57
303	11.41	11.86	12.04	11.56
308	11.41	11.86	12.03	11.55
313	11.41	11.86	12.02	11.55
318	11.41	11.86	12.02	11.54
323	11.41	11.85	12.01	11.53

Table S8.	Variable tem	perature study	y of octape	ptide 5b (10) mmol, 400 N	(Hz, CDCl ₃)
-----------	--------------	----------------	-------------	--------------	---------------	--------------------------

Figure-3. Variable temperature study of octapeptide 5a (10 mmol, 400 MHz, CDCl₃)

Temperature	δNH1	δNH2	δNH3	δNH4
(in K)				
268	11.41	11.91	11.82	10.64
273	11.41	11.90	11.82	10.64
278	11.40	11.89	11.81	10.63
283	11.40	11.88	11.80	10.63
288	11.40	11.87	11.79	10.63
293	11.39	11.85	11.78	10.62
298	11.39	11.84	11.77	10.61
303	11.38	11.83	11.76	10.60
308	11.37	11.81	11.75	10.59
313	11.36	11.80	11.74	10.59
318	11.35	11.79	11.72	10.58
323	11.34	11.78	11.71	10.57

Гable S9.	Variable	temperature	study of	octapeptide	6b (10	mmol, 400	MHz,	CDCl ₃)
-----------	----------	-------------	----------	-------------	--------	-----------	------	---------------------

Partial COSY spectra of 3d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

Partial HSQC spectra of 3d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

Partial TOCSY spectra of 3d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

(a)

Partial HMBC spectra of 3d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

Partial COSY spectra of 4d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

Partial HSQC spectra of 4d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

Partial TOCSY spectra of 4d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

Partial HMBC spectra of 4d (400MHz, CDCl₃): Aromatic (a) and aliphatic (b) regions

2D NOESY excerpts of 3d (400 MHz, CDCl₃).

2D NOESY excerpts of 4d (400 MHz, CDCl₃).

Figure-4. Circular dichroism (CD) spectra of tetrapeptides (3a and 4a) and octapeptides (5a, 5b, 6a and 6b); 0.2mmol solution in trifluoro ethanol.

Details of the quantum chemical calculations

All quantum chemical calculations were performed at the HF/6-31G**++ level of *ab initio* MO theory employing the Gaussian03 software package. The backbone torsion angles and total energies for the derivatives 3a, 4a, 5a and 6a are given below.

Table S10. Backbone Torsion Angles (in degrees)^a for **3a** according to the HF/6-31G**++

Pro1		Atc1			Pro2		Atc2		
φ	ψ	φ	θ	ψ	φ	ψ	φ	θ	Ψ
-86.10	-5.76	179.21	-1.10	-157.37	-58.07	145.04	-178.99	1.39	178.46
-84.75	-12.27	173.33	-1.14	152.75	-61.57	148.15	-179.7	0.22	179.0

^aFirst row includes the data of the crystal **3a**, second row includes the data of the model **3a** obtained using HF/6-31G**++. $E_T(HF/6-31G^{**}++) = -2579.3011$ a.u

Table S11. Backbone Torsion Ang	gles (in de	egrees) [*] for	4d according	to the	HF/6-31C	j**++
--	-------------	--------------------------	--------------	--------	----------	-------

Pro1		Atc1			Pro2		Atc2		
φ	ψ	¢	θ	ψ	φ	ψ	φ	θ	ψ
-83.35	-3.67	158.12	1.43	-165.69	-56.45	144.51	-170.90	0.35	176.34
-75.02	-24.65	179.2	-2.96	167.55	-62.62	140.20	-176.28	-0.32	179.30

^aFirst row includes the data of the crystal **4d**, second row includes the data of the model **4a** obtained using HF/6-31G**++. $E_T(HF/6-31G^{**}++) = -2465.3680$ a.u

Figure-5. A: Overlay of crystal of 3a (red) with its model (blue). B: Overlay of crystal of 4d (red) with its model (blue). Hydrogens have been removed for clarity.

Pro1		Atc1			Pro2		Atc2		
¢	ψ	¢	θ	ψ	¢	ψ	¢	θ	ψ
-87.51	-7.62	173.92	-0.10	-151.79	-61.82	151.71	-178.97	0.16	-168.04
Pı	Pro3 Atc3		Pro4		Atc4				
φ	Ψ	¢	θ	ψ	¢	ψ	φ	θ	ψ
-64.86	134.06	164.49	-2.64	-153.33	-62.01	142.16	178.62	-0.38	-179.19

Table S12. Backbone Torsion Angles (in degrees) for 5a according to the HF/6-31G**++

The data of the model **5a** obtained using HF/6-31G**++. $E_T(HF/6-31G^{**}++) = -4660.7033$ a.u.

Table S13. Backbone Torsion Angles (in degrees) for 6a according to the HF/6-31G**++

Pro1		Atc1			Pro2		Atc2		
φ	ψ	φ	θ	ψ	φ	ψ	¢	θ	ψ
-88.33	-6.90	169.72	2.97	-159.85	-64.69	151.69	-179.92	2.24	-174.66
Pro3		Atc3			Pro4		Atc4		
¢	ψ	φ	θ	Ψ	φ	ψ	¢	θ	Ψ
-66.95	143.77	137.12	1.74	-158.57	-64.08	143.77	-178.37	0.06	179.75

The data of the model **6a** obtained using HF/6-31G**++. $E_T(HF/6-31G^{**}++) = -4621.6695$ a.u.

Figure-6. Models of octapeptides 5a (left) and 6a (right) obtained at HF/6-31G**++ level.