Electronic Supplementary Information

Self-assembly of a ternary architecture driven by cooperative Hg²⁺ ion binding between cucurbit[7]uril and crown ether macrocyclic hosts

Ekaterina Chernikova,^{*a*} Daria Berdnikova,^{*a*} Yuri Fedorov,^{*a*} Olga Fedorova,^{**a*} Alexander Peregudov,^{*a*} and Lyle Isaacs^{**b*}

 ^a A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, 28
Vavilova st., 119991 Moscow, Russian Federation. Tel.: +7 499 135 9253. E-mail: fedorova@ineos.ac.ru

^b Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA. Fax: +1 301-314-9121; Tel: +1 301-405-1884; E-mail: Llsaacs@umd.edu

Table of contents				
1.	Materials and equipment	2		
2.	Synthesis and characterization	3–10		
3.	Stability constants determination	11–12		
4.	UV-Vis spectroscopy data	13–15		
5.	Study of complex formation by NMR spectroscopy	16–23		
6.	References	24		

1. Materials and equipment

All reagents and solvents were obtained from commercial sources and used as received. Preparation of the dye **1** solution and all experiments were carried out in a laboratory environment of red light.

The absorption spectra measurements were performed using a Varian-Cary 100 spectrophotometer.

The NMR experiments were carried out using a Bruker Avance[™] spectrometer operating at 600.22 MHz for ¹H and 150.93 MHz for ¹³C. The spectrometer was equipped with an inverse gradient probe-head. All 1D ¹H and ¹³C as well as 2D experiments (COSY, ROESY, HSQC, HMBC) were performed at 298 K using standard pulse sequences from the Bruker library. Chemical shifts were determined with an accuracy of 0.01 ppm (¹H) and 0.1 ppm (¹³C) and are given relative to the residual signal of the solvent that was used as internal reference. Spin–spin coupling constants were determined with an accuracy of 0.1 Hz.

2. Synthesis

Cucurbit[7]uril was synthesized according to known procedures^{1,2}.

$$H_{3}C - N_{4}^{+} \xrightarrow{7}_{6} 5 8 \xrightarrow{7}_{14} 13 \xrightarrow{10}_{k} N \xrightarrow{7}_{j} \xrightarrow{10}_{h} g$$

Compound **1.** (E)-4-(4-(1,4-dioxa-7,13-dithia-10-azacyclopentadecan-10-yl)styryl)-1methylpyridinium perchlorate (**1**) was synthesized according to the reported methods from 1,4-dimethylpyridinium perchlorate and 4-(1,4-dioxa-7,13-dithia-10-azacyclopentadecan-10yl)benzaldehyde in 71% yield³. M.p. 232 °C; ¹H-NMR (600 MHz, DMSO- d_6 , *J* [Hz]): 2.75 (m, 4H, H-c, H-h), 2.83 (m, 4H, H-b, H-j), 3.58 (s, 4H, H-e, H-f), 3.67 (m, 4H, H-a, H-k), 3.70 (m, 4H, H-d, H-g), 4.17 (s, 3H, *CH*₃), 6.72 (d, 2H, H-11, H-13, ³*J*=8.9), 7.15 (d, 1H, H-8, ³*J*=15.9), 7.58 (d, 2H, H-10, H-14, ³*J*=8.7), 7.89 (d, 1H, H-7, ³*J*=16.1), 8.05 (d, 2H, H-3, H-5, ³*J*=6.9), 8.68 (d, 2H, H-2, H-6, ³*J*=6.9); ¹³C-NMR (600 MHz, DMSO- d_6 , δ [ppm]): 29.1 (C-b, C-j), 30.7 (C-c, C-h), 46.4 (*C*H₃), 51.3 (C-a, C-k), 70.0 (C-e, C-f), 72.9 (C-d, C-g), 111.8 (C-11, C-13), 117.3 (C-8), 122.2 (C-3, C-5), 122.7 (C-9), 130.5 (C-10, C-14), 141.6 (C-7), 144.4 (C-2, C-6), 148.9 (C-12), 153.3 (C-4); elemental analysis calcd. (%) for C₂₄H₃₃ClN₂O₆S₂: C 52.88, H 6.10, N 5.14; found: C 53.04, H 5.98, N 5.06; ESI-MS in MeCN *m/z*: 445.2 [1⁺].

Fig. S1 ¹H-NMR spectrum of 1 in DMSO- d_6

Fig. S2 ¹³C-NMR spectrum of **1** in DMSO- d_6

Fig. S3 {1H, 1H}-COSY spectrum of 1 in DMSO- d_6 .

Fig. S4 $\{1H, 1H\}$ -ROESY spectrum of 1 in DMSO- d_6 .

Fig. S5 HMQC spectrum of 1 in DMSO-*d*₆.

Fig. S6 HMBC spectrum of 1 in DMSO- d_6 .

Fig. S6 HMBC spectrum of 1 in DMSO- d_6 (expansion of aromatic region).

Fig. S6 HMBC spectrum of 1 in DMSO- d_6 (expansion of aliphatic region).

3. Stability constants determination

Stability constant of CB[7]-1 complex. Complex formation of dye **1** with CB[7] in H_2O+CH_3CN (1-2%) at 20 ± 1 °C was studied by spectrophotometric titration. The ratio of dye **1** to CB[7] was varied by adding aliquots of a solution containing known concentrations of **1** and CB[7] to a solution of **1** alone of the same concentration. The absorption spectrum of each solution was recorded and the stability constants of the complexes were determined using the «SPECFIT/32» program (Spectrum Software Associates, PMB 361, 197M Boston Post Road, West Marlborough, MA 01752, U.S.A.). One equilibrium was considered in the fitting (L = dye **1**; M = CB[7]):

$$L + M \Leftrightarrow LM, \qquad K_{11} = \frac{[LM]}{[L] \cdot [M]}$$

Relative stability constants of $1 \cdot \text{Hg}^{2+} \cdot \text{CB[7]}$ and $1 \cdot \text{Hg}^{2+} \text{complexes}$. Ratio of the ternary complex stability constant to the binary complex stability constant K_B/K_A was determined by competitive spectrophotometric titration with phenyl-dithia-dioxa-monoaza crown ether 2 as competitor.

To achieve this goal the titration of $1 \cdot \text{Hg}^{2+}$ and $1 \cdot \text{Hg}^{2+} \cdot \text{CB}[7]$ complexes with increasing competitor concentration were carry out as illustrated in scheme:

Specifically, the competition for Hg^{2+} ions in a solution containing 1 and competitor or CB[7]•1 and competitor, is described by three equilibria, given below:

$$\begin{split} L + Hg^{2+} \Leftrightarrow [HgL]^{2+} &\equiv L_A \quad K_A = \frac{[HgL]}{[Hg][L]}, \\ L_D + Hg^{2+} \Leftrightarrow [HgL_D]^{2+} &\equiv L_B \quad K_B = \frac{[HgL_D]}{[Hg][L_D]}, \\ L_C + Hg^{2+} \Leftrightarrow [HgL_C]^{2+}, \quad K_C = \frac{[HgL_C]}{[Hg][L_C]} \end{split}$$

where L – dye 1, $L_B - 1 \cdot Hg^{2+} \cdot CB[7]$ complex, $L_A - 1 \cdot Hg^{2+}$ complex, L_C – phenyl-dithia-dioxamonoaza crown ether 2, $L_D - CB[7] \cdot 1$ complex.

Ratio of the stability constant $K_{\rm B}/K_{\rm A}$ was determined using the «SPECFIT/32» program.

Fig. S7 Electronic absorption spectra of dye **1** and complex CB[7]•**1** obtained by a global fit of the spectrophotometric titration data using the SpecFit/32 program. Concentration of dye **1** and complex CB[7]•**1** in the system (**1**+CB[7]) as a function of [CB[7]] (inset).

Fig. S8 UV-Vis spectra of dye 1 (2.0×10^{-5} M) with increasing Hg(ClO₄)₂ concentration (0 – 1.6×10^{-4} M) in H₂O. Absorption of dye 1 at 455 nm in the system (1+Hg²⁺) as a function of [Hg²⁺] (inset).*

*The distortion of an isosbestic point and ambiguous UV-Vis binding curves (see red ring) were observed upon titration indicating complicated binding model.

Fig. S9 UV-Vis spectra of $1 \cdot \text{Hg}^{2+}$ complex ([1] = $2.0 \times 10^{-5} \text{ M}$, [Hg²⁺] = $1.0 \times 10^{-4} \text{ M}$) with increasing concentration of $2 (0 - 3.2 \times 10^{-4} \text{ M})$ in H₂O.

Fig. S10 UV-Vis spectra of CB[7]•Hg²⁺•1 complex ([1] = 2.0×10^{-5} M, [Hg²⁺] = 1.0×10^{-4} M, [CB[7]] = 1×10^{-4} M) with increasing concentration of 2 ($0 - 3.2 \times 10^{-4}$ M) in H₂O.

5. Study of complex formation by NMR spectroscopy

¹H NMR spectra of free dye 1 and $1 \cdot \text{Hg}^{2+}$, CB[7] $\cdot 1$, CB[7] $\cdot \text{Hg}^{2+} \cdot 1$ complexes in D₂O:

Dye 1. ¹H-NMR (D₂O, δ [ppm], *J* [Hz]): 2.74 (m, 4H, H-c, H-h), 2.88 (m, 4H, H-b, H-j), 3.63 (s, 4H, H-e, H-f), 3.70 (m, 4H, H-d, H-g), 3.71 (m, 4H, H-a, H-k), 4.10 (s, 3H, *CH*₃), 6.76 (d, 2H, H-11, H-13, ³*J*=8.8), 7.00 (d, 1H, H-8, ³*J*=16.1), 7.54 (d, 2H, H-10, H-14, ³*J*=8.6), 7.64 (d, 1H, H-7, ³*J*=16.1), 7.80 (d, 2H, H-3, H-5, ³*J*=6.9), 8.32 (d, 2H, H-2, H-6, ³*J*=6.6).

Dye 1 in the presence of the 1.1 eq. CB[7]. ¹H-NMR (D₂O, δ [ppm], *J* [Hz]): 2.82 (m, 4H, H-c, H-h), 3.07 (m, 4H, H-b, H-j), 3.70 (s, 4H, H-e, H-f), 3.77 (m, 4H, H-d, H-g), 3.85 (m, 4H, H-a, H-k), 4.09 (d, 14H, H-y, *J*=15.4), 4.13 (s, 3H, *CH*₃), 5.39 (s, 14H, H-z), 5.63 (d, 14H, H-x, *J*=15.4), 6.38 (d, 1H, H-8, *J*=16.0), 6.91 (d, 1H, H-7, *J*=16.0), 7.08 (d, 2H, H-11, H-13, ³*J*=7.9), 7.26 (m, 2H, H-10, H-14), 7.48 (m, 2H, H-3, H-5), 8.08 (m, 2H, H-2, H-6).

Dye 1 in the presence of the 1.6 eq. Hg(ClO₄)₂. ¹H-NMR (D₂O, δ [ppm], *J* [Hz]): 3.08-3.67 (m, 16H, H-a, H-b, H-c, H-d, H-g, H-h, H-j, H-k), 3.88 (s, 4H, H-e, H-f), 4.19 (s, 3H, CH₃), 7.50 (d, 2H, H-11, H-13, ³*J*=8.2), 7.27 (d, 1H, H-8, ³*J*=16.3), 7.71 (d, 1H, H-7, ³*J*=16.3), 7.78 (d, 2H, H-10, H-14, ³*J*=8.5), 7.96 (d, 2H, H-3, H-5, ³*J*=6.7), 8.49 (d, 2H, H-2, H-6, ³*J*=6.7).

Dye 1 in the presence of the 1 eq. CB[7] and 1.3 eq. Hg(ClO₄)₂. ¹H-NMR (D₂O, δ [ppm], *J* **[Hz]): 3.31 (m, 4H, H-c, H-h), 3.34 (m, 4H, H-b, H-j), 3.54 (m, 4H, H-d, H-g), 3.80 (s, 4H, H-e, H-f), 3.83 (m, 4H, H-a, H-k), 4.08 (d, 14H, H-y,** *J***=15.4), 4.13 (s, 3H,** *CH***₃), 5.37 (s, 14H, H-z), 5.63 (d, 14H, H-x,** *J***=15.4), 6.38 (d, 1H, H-8, ³***J***=15.9), 6.91 (d, 1H, H-7, ³***J***=15.9), 7.19 (d, 2H, H-11, H-13, ³***J***=8.2), 7.27 (m, 2H, H-3, H-5), 7.49 (m, 2H, H-10, H-14), 8.00 (m, 2H, H-2, H-6).**

The complexity in study of the complex formation by NMR spectroscopy is consisted in extremely poor solubility of free dye **1** in aqueous solution. Despite the fact that the NMR spectrum of dye **1** in DMSO- d_6 reveals high purity of the obtained sample (Fig. S1), ¹H-NMR spectrum of **1** in D₂O represents two combinations of proton signals. We assumed that the second family of proton signals may be associated with dye **1** in the form of tosylate, which could remain after the synthesis in an amount less than 5% due to higher solubility of tosylates in water. To identify correctly the proton signals of dye **1** in the form of perchlorate in D₂O and make conclusions about the chemical shifts that occur upon complexation with CB[7] and Hg(ClO₄)₂, the NMR spectrum of dye **1** was recorded in a mixture of D₂O/DMSO- d_6 at a ratio of 5/2 (Fig. S11). This impurity is only apparent when the ¹H NMR spectrum is measured in D₂O alone where the impurity is more soluble than the compound itself. Under the conditions used in the rest of the paper where complexation with Hg²⁺ and/or CB[7] are involved homogenous solutions are obtained so we are confident that our results are not affected.

Fig. S11 ¹H-NMR spectra of dye **1** in the D₂O (a) and in the mixture of D₂O and DMSO- d_6 , the ratio D₂O: DMSO- $d_6 = 5:2$ (b).

Fig. S12 ¹H-NMR spectra (600MHz, D₂O) of dye **1** in the presence of: a) 1.6 eq. of $Hg(ClO_4)_2$, b) 1.1 eq. of CB[7], and c) 1 eq. of CB[7] and 1.3 eq. of $Hg(ClO_4)_2$.*

* violet color – upfield shift, yellow color – downfield shift.

Table S1. Change in the chemical shift in ¹H-NMR spectra of protons resonance for dye **1** in the presence of CB[7] and Hg(ClO₄)₂ in D₂O.

Systems	$\Delta \delta_{\rm H}$, ppm ($\Delta \delta_{\rm H} = \delta_{\rm complex} - \delta_{\rm L}$)						
	CH ₃	H - 2,6	H-3,5	H - 7	H-8	H-10,14	H-11,13
CB[7]•1	0.03	-0.24	-0.32	-0.73	-0.62	-0.28	0.32
1 •Hg ²⁺	0.09	0.17	0.16	0.07	0.27	0.24	0.74
CB[7]•Hg ²⁺ •1	0.03	-0.32	-0.53	-0.62	-0.57	-0.05	0.43

a) Aromatic part

b) Aliphatic part

Systems	$\Delta \delta_{\rm H}$, ppm ($\Delta \delta_{\rm H} = \delta_{\rm complex} - \delta_{\rm L}$)							
	H - a,k	H-b,j	H-c,h	H-d,g	H-e,f			
CB[7]•1	0.14	0.19	0.08	0.07	0.07			
1 •Hg ²⁺	broader	ned signa	ls; Δδ _H up	to 0.34	0.25			
CB[7]•Hg ²⁺ •1	0.13	0.46	0.57	-0.16	0.17			

The 2D NMR spectra of the discussed complexes are presented below. The ROESY-signals, which are relevant to the molecular structure, are marked with blue color.

Fig. S13 {1H, 1H}-COSY spectrum of dye 1 in the presence of 1.1 eq. of CB[7] in D_2O .

Fig. S14 {1H, 1H}-ROESY spectrum of dye 1 in the presence of 1.1 eq. of CB[7] in D_2O (aliphatic part).

Fig. S15 {1H, 1H}-ROESY spectrum of dye 1 in the presence of 1.1 eq. of CB[7] in D_2O (aliphatic-aromatic part).

Fig. S16 {1H, 1H}-COSY spectrum of dye 1 in the presence of 1.6 eq. of $Hg(ClO_4)_2$ in D_2O (aromatic part).

Fig. S17 {1H, 1H}-COSY spectrum of dye 1 in the presence of 1 eq. of CB[7] and 1.3 eq. of $Hg(ClO_4)_2$ in D_2O .

Fig. S18 {1H, 1H}-ROESY spectrum of dye 1 in the presence of 1 eq. of CB[7] and 1.3 eq. of Hg(ClO₄)₂ in D₂O (aliphatic-aromatic part).

Fig. S19 {1H, 1H}-ROESY spectrum of dye 1 in the presence of 1 eq. of CB[7] and 1.3 eq. of Hg(ClO₄)₂ in D₂O (aromatic part).

Fig. S20 {1H, 1H}-ROESY spectrum of dye 1 in the presence of 1 eq. of CB[7] and 1.3 eq. of Hg(ClO₄)₂ in D₂O (aliphatic part).

6. References

¹ A. Day, A.P. Arnold, R.J. Blanch, B. Snushall, J. Org. Chem., 2001, 66, 8094.

² W.-H. Huang, S. Liu, L. Isaacs, *Cucurbit[n]urils*, Diederich, F.; Stang, P. J.; Tykwinski, R.

R. Ed.; in Modern Supramolecular Chemistry, Wiley-VCH, 2008, 113-142.

³ E.V. Tulyakova, O.A. Fedorova, Yu.V. Fedorov, G. Jonusauskas, A.V. Anisimov, *J. Phys. Org. Chem.*, 2008, **21**, 372.