Electronic Supplementary Information

Top-down Patterning of Zeolitic Imidazolate Framework Composite Thin Films by deep X-ray Lithography

Constantinos Dimitrakakis, Benedetta Marmiroli, Heinz Amenitsch, Gianluca Grenci, Lisa Vaccari, Luca Malfatti, Plinio Innocenzi, Anita J. Hill, Bradley P. Ladewig, Matthew R. Hill and Paolo Falcaro

S.1	Experimental Detail	2
S.2	Optical Microscope Images	3
S.3	SEM images	5
S.4	X-Ray Diffraction Patterns	7
S.5	FTIR data	8

S.1 Experimental Detail

ZIF-9 was prepared in bulk powder form by dissolving 133.3 g $Co(NO_3)_2.6H_2O$ (Sigma-Aldrich) and 400 g PhIM (Koch-Light) in 4L of dimethylformamide (DMF) (Merck) at room temperature (molar ratio $Co(NO_3)_2.6H_2O$: PhIM : DMF = 1 : 7.39 : 113) and heating the solution to 130°C for 48 hrs. The solution was left to cool down naturally and collected by vacuum filtration overnight. The resulting purple powder was solvent-exchanged with dry methanol under a nitrogen atmosphere twice to remove entrained DMF and filtered and dried under vacuum to obtain 14.3 g of powder. Approximately 1 g of this powder was taken and milled using a mortar and pestle for subsequent experiments.

Lithography experiments were conducted using the Deep X-Ray Lithography (DXRL) beamline at the ELETTRA Synchrotron Light Laboratory (Trieste, Italy). Samples were exposed to X-rays through a micropatterned mask. X-ray doses of 2165 J cm⁻² at the top surface were used for the patterning process with a total exposure time of 1186 s. Samples were then gently rinsed post-exposure with ethanol and gently dried with compressed air.

XRD patterns were collected using a Bruker GADDS X-ray diffractometer using Cu K α radiation with a 0.020° step size at 71.6 s per step.

Gas sorption analysis was conducted on a Micromeritics ASAP 2420 Accelerated Surface Area and Porosimetry System using an ice bath to maintain the sample temperature at 273K.

SEM imaging was performed with a Zeiss Supra 40 instrument (Carl Zeiss MicroImaging GmbH, Germany) using secondary electrons as measuring signal, equipped with an EDX (Energy dispersive X-ray spectroscopy) system (EDAX Inc., NY) with a nominal resolution of 140 eV.

FTIR images were acquired using a Bruker Hyperion 3000 Vis–IR coupled with a Bruker Vertex 70 interferometer in reflection mode utilising a Focal Plane Array (FPA) detector to produce a 64 pixel x 64 pixel 2D chemical map of the surface, averaging 64 scans per point.

S.2 Optical Microscope Images

Fig S.1 – ~1mm features of ZIF-9/PhTES film on silicon wafer. Square pillars presented in paper are evident to the left; some have been subjected to excessive force during rinsing and have detached from the silicon wafer surface.

Fig S.2 - \sim 50µm square gaps etched away from an exposed film.

Fig S.3 - \sim 250µm microgear of ZIF-9/PhTES with sharp edge definition.

Fig S.4 - ~25µm hexagonal pillars of ZIF-9/PhTES.

S.3 SEM Images

Fig S.5 – Imaging of 50μm x 50μm pillars showing surface roughness from ZIF-9 agglomeration.

Fig S.6 – Imaging of ZIF-9/PhTES pillars from a 45° angle, showing height of film as 33.64µm.

Fig S.7 – Close-up of ZIF-9/PhTES pillar at 45° angle emphasising sharp definition of edges of PhTES region due to X-ray exposure.

Fig S.8 – Additional wide view of regular pillar arrangement at 45° angle, showing some agglomeration of ZIF-9 not entirely rinsed away.

Fig S.9 – Powder XRD experiments show no difference between irradiated ZIF-9 (blue, top) and as-synthesised ZIF-9 (red, middle) as the structure and powder pattern predicted by theory (black, bottom) is maintained.

S.5 FTIR Data

Fig S.10 – FTIR comparison of unirradiated and irradiated ZIF-9 powder showing little chemical change through X-ray exposure. The peak that was integrated over the imaged surface to generate **Fig. 3d** is indicated by the yellow arrow (inset).

Table S.1 – Peak assignments for recorded powder ZIF-9 FTIR spectra in Fig**S.10** above. Calculated frequencies from reference data for benzimidazole wereused for peak assignments.¹ Peak signal strengths are also reported (vs = very
strong; s = strong; m = medium; w = weak; vw = very weak).

Observed Frequency	Calculated Frequency	Assignment ¹
(cm ⁻¹)	(cm ⁻¹) ¹	
650 m	628	C-C-C in-plane bending
739 vs	739	C-H out-of-plane bending
774 m	774	C-H out-of-plane bending
844 vw	827	C-C ring breathing mode
888 w	881	C-H out-of-plane bending
904 m	906	C-H out-of-plane bending
1004 m	1012	C-C-C trigonal bending
1116 m	1130	C-H in-plane bending
1146 w	1146	C-H in-plane bending
1179 m	1185	C-H in-plane bending
1237 s	1241	C-C stretching
1275 m	1265	C-H in-plane bending
1297 m	1308	C-N stretching
1347 w	1352	C-N stretching
1363 w	1358	C-N stretching
1454 s	1449	C=C stretching
1462 s	1471	C=C stretching
1607 w	1619	C=C stretching

1. S. Mohan, N. Sundaraganesan and J. Mink, *Spectrochimica Acta Part A: Molecular Spectroscopy*, 1991, 47, 1111-1115.