Supplementary Data for:

Stoichiometric CO₂ Reductions using a *Bis*-Borane-based Frustrated Lewis Pair[†]

Michael J. Sgro, Johannes Dömer and Douglas W. Stephan*

1,2-Bis(dichloroboryl)benzene (1): This was prepared as reported in D. Kaufmann, *Chem. Ber.* **1987**, *120*, 901-905. and V. C. Williams, W. E. Piers, W. Clegg, M. R. J. Elsegood, S. Collins, T. B. Marder, *J. Am. Chem. Soc.*, **1999**, *121*, 3244-3245.

Synthesis of C₆H₄(BCl₂)₂PtBu₃ (2): 1,2-Bis(dichloroboryl)benzene (1) (24 mg, 0.10 mmol) was dissolved in bromobenzene (2 mL). *tert*-Butyl-Phosphine (20 mg, 0.10 mmol, 1.0 eq) was added and the reaction mixture was allowed to stir for 15 min at ambient temperature. The reaction mixture was cooled to 260K overnight. A white precipitate formed, was collected, washed with pentane (2 x 3 mL), and dried *in vacuo*. Yield: 37 mg, 84%. C₁₈H₃₁B₂Cl₄P M: 441.85 g/mol Elemental Analysis: calculated for C₁₈H₃₁B₂Cl₄P C 48.93; H 7.07; found: C 49.03; H 7.08. ¹H NMR (400 MHz, CD₂Cl₂, 300K): δ = 7.55 (br, 2 H), 7.74 (br, 2 H), 1.72 (br, 9 H) ppm. ¹³C NMR (100 MHz, CD₂Cl₂, 300K): δ = 37.3 (d, ¹J_{PC}=27.1 Hz, PC(CH₃)₃), 30.3 (CH₃) ppm. Carbons of the C₆H₄B₂ ring were not observed. ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 300K): δ = 28.5 (br) ppm, ¹¹B NMR (128 MHz, CD₂Cl₂, 300K): δ = 22.3 (br), 12.9 (br) ppm.

Synthesis of C₆H₄(BCl₂)₂O(CH₂)₄PtBu₃ (3): A solution of tBu₃P (24 mg, 0.117 mmol) in C₆H₆ (2 mL) added to a neat sample of (1) (34 mg, 0.117 mmol) in a 4 dram scintillation vial. The clear colorless solution was stirred and THF was added drop wise (0.25 mL) giving a cloudy white suspension. CH₂Cl₂ was added to the mixture which was then stirred for an additional 12 h. Pentane was added to precipitate a white solid that was collected by filtration. The solid was washed 3 times with pentane and recrystallized from a layered mixture of DCM and pentane. The product was obtained as colorless needles in 97 % yield (64 mg, 0.113 mmol). ¹H NMR (400 MHz, CD₂Cl₂, \delta ppm) 7.34 (d of d, 2H, ³J_{HH} 5.38 Hz, ⁴J_{HH} 2.20 Hz Ar-CH), 7.19 (d of d, 2H, ³J_{HH} 5.38 Hz, ⁴J_{HH} 2.20 Hz Ar-CH), 4.70 (bt, 2H, ³J_{HH} 5.38 Hz, 0-CH₂), 2.29 (m, 6H, CH₂), 1.57 (d, 27H, ³J_{HP} 13.9 Hz, C(CH₃)₃). ¹¹B (128 MHz, CD₂Cl₂, \delta ppm) 12.00 (bs); ¹³C {¹H} (100MHz, CD₂Cl₂, \delta ppm) 127.67 (s, Ar-C), 127.62 (s, Ar-C), 67.73 (d, ⁴J_{CP} 2.2 Hz, CH₂), 39.63 (d, ¹J_{CP} 29.3 Hz, C(CH₃)₃), 30.97 (d, ³J_{CP} 13.9 Hz, CH₂), 30.14 (s, C(CH₃)₃), 22.35 (d, ²J_{CP} 5.9 Hz, CH₂), 19.16 (d, ¹J_{CP} 36.0 Hz, CH₂) [partial]; ³¹P {¹H} (161 MHz, CD₂Cl₂, \delta ppm) 48.80 (s); Elemental Analysis C₂₂H₃₉PB₂OCl₄: Calculated C, 51.35 %; H, 7.65 %; Measured C, 51.78 %; H, 8.04 %.

Synthesis of C₆H₄(BCl₂)₂CO₂PtBu₃ (4): In a 100 mL Schlenk flask, 1,2-bis(dicloroboryl)benzene (100 mg, 0.42 mmol) was dissolved in toluene (15 mL). *tert*-Butyl-phosphine (84 mg, 0.42 mmol, 1.0 eq), dissolved in 5 mL of toluene, was added and the reaction mixture was allowed to stir for 15 min at ambient temperature. The solution was subjected to 3 freeze-pump-thaw cycles and backfilled with 1.0 bar CO₂. The reaction mixture was allowed to stand at room temperature overnight, during which time a

white, microcrystalline solid formed. The solvent was removed via pipette and the remaining solid was washed with toluene (2 x3 mL), and dried *in vacuo*. Yield 157 mg, 77%. C₁₉H₃₁B₂Cl₄O₂P, M: 485.86 g/mol Elemental Analysis: calculated for C₁₉H₃₁B₂Cl₄O₂P+1/6(C₇H₈): C 48.33; H 6.50; Found: C 48.28; H 6.46. ¹H NMR (400 MHz, CD₂Cl₂, 300K): δ = 7.36 (dd, ³J_{HH}=2.9 Hz, 3.4 Hz, 2H), 7.18 (dd, ³J_{HH}=2.9 Hz, 3.4 Hz, 2H), 1.58 (d, ³J_{PH}=14.8 Hz, 9 H) ppm. ¹³C NMR (100 MHz, CD₂Cl₂, 300K): δ = 156.3 (d, ¹J_{PC}=94.6 Hz, *C*O₂), 129.6 (CH), 127.9 (CH), 41.7 (d, ¹J_{PC}=19.8 Hz, PC(CH₃)₃), 30.7 (CH₃) ppm. Quarternary carbons of C₆H₄B₂ ring were not observed. ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 300K): δ = 48.4 (s) ppm, ³¹P{¹H} NMR (161 MHz, CD₂Cl₂, 300K): δ = 18.0 ppm. IR: 1718.96 cm⁻¹ (CO₂)

Synthesis of [B(C₆F₅)₃][C₅H₆Me₄NH₂]: As reported in V. Sumerin, F. Schulz, M. Nieger, M. Leskel, T. Repo, B. Rieger, *Angew. Chem. Int. Ed.* 2008, 47, 6001–6003.

Synthesis of [NorbonylHB(C₆**F**₅**)**₂**]**[**C**₅**H**₆**Me**₄**NH**₂**] (5)**: In a thick walled Young reaction flask equipped with a Teflon cap, bis-(pentafluorophenyl)borane (100 mg, 0.29 mmol) was suspended in pentane (2 mL). Norbornylene (27mg, 0.29 mmol), dissolved in pentane (2 mL) was added drop wise. The reaction mixture was allowed to stir for 10 minutes. 2,2,6,6-Tetramethylpiperidin (41mg, 0.29 mmol), dissolved in pentane (2 mL) was added and the reaction mixture was allowed to stir for 10 minutes. The solution was subjected to 3 freeze-pump-thaw cycles and backfilled with 1.0 bar H₂ at 77 K (approx. 4 bar at 293 K). The reaction mixture was allowed to stir overnight. The white precipitate was separated from the solution, washed with pentane (2 x 3 mL) and dried *in vacuo*. Yield: 91 mg, 54%. C₂₈H₃₂BF₁₀N, M: 583,36 g/mol, Elemental Analysis, calculated for C₂₈H₃₂BF₁₀N: C 57.65; H 5.53; N 2.40, found: C 57.54; H 6.16; N 2.82. ¹H NMR (400 MHz, CD₂Cl₂, 300K): δ = 5.52 (br, 2H, NH₂), 1.55 (s, 12H, CH₃), 2.10 (s, 1H), 1.87 (m, 3H), 1.80 (m, 4H), 1.50, (br, 2H), 1.30 (m, 4H), 1.19, (m, 1H), 1.09 (br, 1H), 0.98 (m, 1H) ppm. ¹³C NMR (100 MHz, CD₂Cl₂, 300K): δ = 58.4 (NC(CH₃)₂), 40.1 (BCH), 37.7, 37.2, 35.8 (NC(CH₃)₂CH₂), 34.8, 34.7, 34.1, 29.0, 27.8 (CH₃), 16.0 (NC(CH₃)₂CH₂CH₂) ppm, Carbons of C₅F₆ ring were not observed. ¹⁹F NMR (376MHz, CD₂Cl₂, 300K): δ = -132.2 (d, ³J_{FF}=20.6 Hz, 4F, *o*-C₆F₅), -164.5 (dd, ³J_{FF}=20.6 Hz, 19.5 Hz 2F, *p*-C₆F₅), -166.5 (m, 4F, *m*-C₆F₅) ppm, ¹¹B NMR (128 MHz, CD₂Cl₂, 300K): δ = -17.2 (d, ¹J_{BH}=81.0 Hz) ppm.

Reductions: All experiments to reduce the activated CO_2 were performed with *in situ* formed Ph(BCl₂)₂CO₂PtBu₃ in J-Young NMR tubes in an analogous fashion to the following procedure.

1,2-Bis(dicloroboryl)benzene (12 mg, 0.05 mmol) and *tert*-butyl-phosphine (10 mg, 0.05 mmol, 1.0 eq.) were dissolved in 0.75 mL CD₂Cl₂. The solution was subjected to 3 freeze-pump-thaw cycles and backfilled with 1.0 bar ¹³CO₂. After 15 min, the formation of Ph(BCl₂)₂CO₂PtBu₃ was verified by NMR measurements. After addition of 3.0 equivalents of the reducing agent (Me₂NHBH₃, [B(C₆F₅)₃][HTMP], or [NorbonylHB(C₆F₅)₂][HTMP]), the mixture was allowed to react for various reaction times at room temperature. D₂O (0.75 mL) was injected into the NMR tube. After 5 min, the aqueous layer was separated and injected into a NMR tube containing a pre-weight amount of 1,4-dioxane. Successful reduction to MeOD was verified by NMR spectroscopy: ¹H NMR (400 MHz, CD₂Cl₂, 300K): δ = 3.22 (d, ¹J_{CH}=142Hz) ppm. ¹³C NMR (100 MHz, CD₂Cl₂, 300K): δ = 48.8 (q, ¹J_{CH}=142Hz) ppm.

The yield was determined by 'H NMR spectroscopy using the 1,4-dioxane as internal standard.

Reaction times and yields:		
Reducing agent	Reaction time at rt	Yield (based on PtBu ₃)
Me ₂ NHBH ₃	15 min	34%
$[B(C_6F_5)_3][HTMP]$	24 h	15%
[NorbonyIHB(C ₆ F ₅) ₂][HTMP]	60 min	57%