A New Type of Insulated Molecular Wire: A Rotaxane Derived from A MetalCapped Conjugated Tetrayne

Nancy Weisbach, Zuzana Baranová, Sébastien Gauthier, Joseph H. Reibenspies, and John

> A. Gladysz*

Department of Chemistry, Texas A\&M University, PO Box 30012, College Station, Texas 77842-3012, USA

General Data. Reactions were conducted under dry argon atmospheres using Schlenk techniques, but workups were carried out in air. THF was dried using a solvent dispensing system (Seca Solvent System). Hexanes, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ethyl acetate ($3 \times \mathrm{ACS}$ grade), $\mathrm{I}_{2}(99.9 \%$, Fisher), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (99% Alfa Aesar), silica gel (Acros or Fluoroflash), and alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, neutral, Brockmann I, for chromatography, 50-200 $\mu \mathrm{m}$, Acros) were used as received.

NMR spectra were recorded on a Varian NMRS 500 MHz spectrometer and referenced as follows: ${ }^{1} \mathrm{H}$ NMR, residual $\mathrm{CHCl}_{3}(\delta, 7.24 \mathrm{ppm}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, internal $\mathrm{CDCl}_{3}(\delta, 77.0$ ppm); ${ }^{19} \mathrm{~F}$ NMR, external $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta,-164.9 \mathrm{ppm}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ external $\mathrm{H}_{3} \mathrm{PO}_{4}(\delta, 0.00 \mathrm{ppm})$. Melting and thermal behavior was assayed using an OptiMelt MPA 100 apparatus. IR spectra were recorded on a Shimadzu IRAffinity-1 spectrometer with a Pike MIRacle ATR system (diamond crystal). UV-visible spectra were recorded on a Shimadzu UV-1800 spectrometer. Thin-layer chromatography (TLC) was carried out on EMD Silica Gel 60 F254 or EMD Aluminum oxide 60 F254 (neutral) plates that were visualized with 254 nm or 365 nm UV light.
trans,trans- $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\boldsymbol{p}\right.$-tol $\mathbf{3}_{3} \mathrm{P}_{\mathbf{2}} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{C})_{\mathbf{4}} \mathrm{Pt}\left(\mathrm{Pp}\right.$-tol $\mathbf{3}_{\mathbf{2}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \cdot(\mathbf{2 , 9}-(\mathbf{1 , 1 0}$-phenanthrolinedi$\mathbf{y l})\left(p-\mathbf{C}_{6} \mathbf{H}_{4} \mathrm{O}\left(\mathbf{C H}_{2}\right)_{\mathbf{6}} \mathrm{O}\right)_{\mathbf{2}}\left(\mathbf{1 , 3}-\mathrm{C}_{\mathbf{6}} \mathrm{H}_{4}\right)(\mathbf{2} \cdot \mathbf{3})$. A. A Schlenk flask was charged with trans-($\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)(p-$ $\left.\operatorname{tol}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{H}(\mathbf{1} ; 0.051 \mathrm{~g}, 0.050 \mathrm{mmol}), \mathbf{3} \cdot \mathrm{CuI}$ (see text; $0.017 \mathrm{~g}, 0.021 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.011 \mathrm{~g}, 0.083 \mathrm{mmol}$), and THF (5 mL). The suspension was warmed to $55^{\circ} \mathrm{C}$ (oil bath) to give an orange solution. Then $\mathrm{I}_{2}\left(7.7 \times 10^{-3} \mathrm{M}\right.$ in THF, $\left.5.0 \mathrm{~mL}, 0.039 \mathrm{mmol}\right)$ was added dropwise with stirring over a period of 6 h . The solvent was removed by rotary evaporation. The procedure was repeated using $1(0.054 \mathrm{~g}, 0.053 \mathrm{mmol}), 3 \cdot \mathrm{CuI}(0.018 \mathrm{~g}, 0.022 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.012 \mathrm{~g}$, $0.087 \mathrm{mmol})$, THF $(5 \mathrm{~mL})$, and $\mathrm{I}_{2}\left(7.7 \times 10^{-3} \mathrm{M}\right.$ in THF, $\left.5.0 \mathrm{~mL}, 0.039 \mathrm{mmol}\right)$. The combined residues were chromatographed on a silica gel column $(2.5 \times 30 \mathrm{~cm}$, packed in hexanes, eluted first with hexanes then with an ethyl acetate gradient until $1: 2 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexanes) to give $\mathbf{2 . 3}$ accompanied by the free macrocycle 3. B. A round bottom flask was charged with $\mathbf{1}(0.099 \mathrm{~g}$, $0.097 \mathrm{mmol}), \mathbf{3} \cdot \mathrm{CuI}(0.041 \mathrm{~g}, 0.049 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.026 \mathrm{~g}, 0.19 \mathrm{mmol})$, and THF (20 mL). The suspension was warmed to $50^{\circ} \mathrm{C}$ (oil bath) and oxygen was bubbled through the solution. The reaction was monitored via TLC (silica, $1: 2 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexanes). After 6 h and 14 h ,
more 3.CuI was added ($0.042 \mathrm{~g}, 0.051 \mathrm{mmol} ; 0.020 \mathrm{~g}, 0.024 \mathrm{mmol}$). After 22 h (TLC showed no remaining educt) the solvent was removed by rotary evaporation. The residue was chromatographed on a silica gel column $(2.5 \times 30 \mathrm{~cm}$, packed in hexanes, eluted first with hexanes then with an ethyl acetate gradient until 1:2 v / v ethyl acetate/hexanes) to give $\mathbf{2} \cdot \mathbf{3}$ accompanied by the free macrocycle 3. C. (purification) The materials from A and B were chromatographed on an alumina column $(2.5 \times 30 \mathrm{~cm}$, packed in hexanes, eluted first with hexanes then with an increasing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient up to $10: 1 \mathrm{v} / \mathrm{v}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes). The solvent was removed from the product containing fractions by rotary evaporation and oil pump vacuum. This gave $\mathbf{2 . 3}$ as a light yellow solid ($0.025 \mathrm{~g}, 0.0093 \mathrm{mmol}$, average yield 9%), which slightly darkened at $163^{\circ} \mathrm{C}$, turned black at $277{ }^{\circ} \mathrm{C}$, and liquefied at $281{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{146} \mathrm{H}_{126} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pt}_{2}$: $\mathrm{C}, 65.51 ; \mathrm{H}, 4.74$; N, 1.05. Found: C, 66.35; H, 5.32; N, 1.06. ${ }^{\text {s1 }}$ Subsequent fractions from the column gave 3 $(0.053 \mathrm{~g}, 0.083 \mathrm{mmol})$.

NMR $\left(\delta(\mathrm{ppm}), \mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 8.43\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.28(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenanthroline $), 8.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, phenanthroline), $7.76(\mathrm{~s}, 2 \mathrm{H}$, phenanthroline), 7.38-7.34 (m, 24H, o to P$), 7.21\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{OCCHC} \underline{)}\right.$), 6.90 (overlapping d, ${ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 24 \mathrm{H}, m$ to P), 6.88 (overlapping d, ${ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{C}_{6}{ }^{-}$ $\left.\mathrm{H}_{4}\right), 6.55\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{OCCHCH}\right), 6.21($ distorted $\mathrm{t}, 1 \mathrm{H}, m-$ $\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{OCCHCO}$), 3.31 (br t, ${ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}$), 3.26 (br t, ${ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2}$), $2.10\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.16-1.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \underline{H}_{2}\right), 0.74$ (br s, $8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz})^{\mathrm{s} 2} 160.6,160.3,156.2,146.1$ (4 s , macrocycle), 140.8 (s, p to P), 136.4 (s , macrocycle), 134.1 (virtual $\mathrm{t},{ }^{\mathrm{s} 3}{ }^{2} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, o$ to P), 131.3, 129.3 (2 s, macrocycle), $128.8\left(\mathrm{~s}, \mathrm{CH}\right.$ of $\left.p-\mathrm{C}_{6} \mathrm{H}_{4}\right),{ }^{\mathrm{s} 4} 128.5$ (virtual $\mathrm{t},{ }^{\mathrm{s} 3}{ }^{3} J_{\mathrm{CP}}=5.6 \mathrm{~Hz}, m$ to P), 127.3 (virtual t, ${ }^{\mathrm{s} 3}$ ${ }^{1} J_{\mathrm{CP}}=30.2 \mathrm{~Hz}, i$ to P), 127.2, 125.3, 118.5 (3 s , macrocycle), $114.8\left(\mathrm{~s}, \mathrm{CH}\right.$ of $p-\mathrm{C}_{6} \mathrm{H}_{4}$), ${ }^{\mathrm{s} 4} 108.5$ (s , macrocycle), 100.2 ($\mathrm{br} \mathrm{s}, \mathrm{PtC} \equiv \mathrm{C}$), $96.8\left(\mathrm{~s}, \mathrm{PtC} \equiv \mathrm{C}\right.$), 96.7 ($\mathrm{s}, \mathrm{OC} \underline{\mathrm{HCO}}$), ${ }^{\mathrm{s} 5} 67.2,66.7$ (2 s , $\left.\mathrm{OCH}_{2} / \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 63.8(\mathrm{~s}, \mathrm{PtC} \equiv \mathrm{CC} \equiv \mathrm{C}), 58.3(\mathrm{~s}, \mathrm{PtC} \equiv \mathrm{CC} \equiv \mathrm{C})$, 28.9, $28.7\left(2 \mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} / \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2}{ }^{-}\right.$ $\underline{\mathrm{C}}^{\prime} \mathrm{H}_{2}$), 24.8, $24.3\left(2 \mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} / \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right.$), $21.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(202 \mathrm{MHz})$ $17.76\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=2660 \mathrm{~Hz}\right),{ }^{66}{ }^{19} \mathrm{~F}(470 \mathrm{MHz})-116.10\left(\mathrm{~m},{ }^{3} J_{\mathrm{FPt}}=291 \mathrm{~Hz}, 2 \mathrm{~F}, o\right.$ to Pt$),{ }^{\mathrm{s} 6}-163.84$
$(\mathrm{m}, 2 \mathrm{~F}, m$ to Pt$),-164.68\left(\mathrm{t},{ }^{3} J_{\mathrm{FF}}=19.5 \mathrm{~Hz}, 1 \mathrm{~F}, p\right.$ to Pt$)$.
IR (ATR, $\left.\mathrm{cm}^{-1}\right) 2149 \mathrm{~m}\left(v_{\mathrm{C} \equiv \mathrm{C}}\right), 2008 \mathrm{w}\left(\mathrm{v}_{\mathrm{C} \equiv \mathrm{C}}\right)$. UV-vis ($\mathrm{nm}, 4.37 \times 10^{-6} \mathrm{M}^{\mathrm{M}}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left.\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right) 267$ (69000), 293 (120000), 325 (129000), 355 (27000), 381 (9000), 414 (5000). MS (MALDI ${ }^{+}$, matrix: sinapic acid with $\left.\mathrm{CF}_{3} \mathrm{COOK}\right) 2714\left([\mathbf{2} \cdot \mathbf{3}+\mathrm{K}]^{+}, 2 \%\right), 2676\left([\mathbf{2} \cdot \mathbf{3}+1]^{+}\right.$, $2 \%), 1304\left(\left[\left(\operatorname{tol}_{3} \mathrm{P}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Pt} \cdot 3\right]^{+}, 75 \%\right), 1137\left(\left[\left(\operatorname{tol}_{3} \mathrm{P}\right) \mathrm{Pt} \cdot 3\right]^{+}, 100 \%\right), 803\left(\left[\left(\mathrm{tol}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\right]^{+}, 95 \%\right)$.

Data for $\mathbf{2}$ under identical conditions (for literature data under similar conditions, see reference 8 b of text):

NMR ($\left.\delta(\mathrm{ppm}), \mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 7.47-7.43(\mathrm{~m}, 24 \mathrm{H}, o$ to P$), 7.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8\right.$ $\mathrm{Hz}, 24 \mathrm{H}, m$ to P), $2.34\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz})^{\mathrm{s} 2} 140.6$ (s, p to P), 134.2 (virtual $\mathrm{t},{ }^{\mathrm{s} 3}$ ${ }^{2} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, o$ to P), 128.6 (virtual $\mathrm{t},{ }^{\mathrm{S} 3}{ }^{3} J_{\mathrm{CP}}=5.6 \mathrm{~Hz}, m$ to P), 127.2 (virtual $\mathrm{t},{ }^{\mathrm{S} 3}{ }^{1} J_{\mathrm{CP}}=30.2$ Hz, i to P), 100.5 ($\mathrm{br} \mathrm{s}, \mathrm{Pt} \underline{\mathrm{C}} \equiv \mathrm{C}$), $96.7(\mathrm{~s}, \mathrm{PtC} \equiv \mathrm{C}), 64.1$ ($\mathrm{s}, \mathrm{PtC} \equiv \mathrm{CC} \equiv \mathrm{C}$), 58.1 ($\mathrm{s}, \mathrm{PtC} \equiv \mathrm{CC} \equiv \mathrm{C}$), 21.3 $\left(\mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}(202 \mathrm{MHz}): 17.84\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=2648 \mathrm{~Hz}\right) .{ }^{\mathrm{s} 6} \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right) 2139 \mathrm{~m}\left(v_{\mathrm{C} \equiv \mathrm{C}}\right), 1996 \mathrm{w}$ $\left(v_{\mathrm{C} \equiv \mathrm{C}}\right)$. UV-vis ($\mathrm{nm}, 4.12 \times 10^{-6} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$) 267 (61000), 275 (87000), 295 (91000), 326 (126000), 355 (8100), 383 (6000), 414 (4000).

Data for $\mathbf{3}$ under identical conditions (for literature data, see reference 9 of text):
NMR ($\left.\delta(\mathrm{ppm}), \mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz}) 8.45-8.42\left(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}$, phenanthroline), $8.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, phenanthroline) , $7.63(\mathrm{~s}, 2 \mathrm{H}$, phenanthroline), $7.17\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{OCCHCH}\right), 7.11-7.08\left(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{4}\right)$, $6.55\left(\mathrm{t},{ }^{4} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{OCCHCO}\right), 6.51\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.m-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{OCCHCH}\right), 4.05\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.97\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2}\right)$, 1.91-1.85 (m, 4H, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), 1.85-1.80 (m, 4H, $\left.\mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \underline{H}_{2}\right)$, 1.57-1.56 (m, 8 H , $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$) ; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}) 160.28,160.25,156.0,145.8,136.5,131.8,129.7$ (7 s), $128.8\left(\mathrm{~s}, \mathrm{CH}\right.$ of $\left.p-\mathrm{C}_{6} \mathrm{H}_{4}\right),{ }^{\mathrm{s} 4} 127.2,125.3,118.9(3 \mathrm{~s}), 114.6\left(\mathrm{~s}, \mathrm{CH}\right.$ of $\left.p-\mathrm{C}_{6} \mathrm{H}_{4}\right),{ }^{\mathrm{S} 4} 106.7$ (s), 100.9 (s, OCCHCO), ${ }^{5}$ 67.9, $67.6\left(2 \mathrm{~s}, \mathrm{OCH}_{2} / \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 29.4,28.9\left(2 \mathrm{~s}, \mathrm{OCH}_{2} \underline{\mathrm{CH}}_{2} / \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2} \underline{\mathrm{C}}^{\prime} \mathrm{H}_{2}\right), 25.82$, $25.77\left(2 \mathrm{~s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} / \mathrm{O}^{\prime} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right)$. UV-vis ($\mathrm{nm}, 2.52 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\varepsilon, \mathrm{M}^{-}\right.$ $\left.{ }^{1} \mathrm{~cm}^{-1}\right)$) 238 (34000), 286 (50000), 326 (25000), 339 (24000).

Data for a 1:1 mixture of $\mathbf{2}$ and $\mathbf{3}$ under identical conditions:

UV-vis ($\left.\mathrm{nm}, \mathbf{2}=1.03 \times 10^{-5} \mathrm{M}, \mathbf{3}=1.01 \times 10^{-5} \mathrm{M}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right) 267$ (81000), 277 (103000), 292 (106000), 325 (123000), 355 (22000), 382 (6000), 415 (3000).

Cyclic voltammetry. A BASi Epsilon potentiostat (Cell Stand C3) with the program BASi Epsilon-EC (version 2.12.77_USB) was employed. Cells were fitted with Pt working and Pt wire auxiliary electrodes, and a $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode containing saturated aqueous AgCl that was 3.0 M in NaCl . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions were $8.0 \times 10^{-4} \mathrm{M}$ in substrate, 0.10 M in $n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{PF}_{6}{ }^{-}$(Fluka, electrochemical grade, used as received), and prepared under argon. Ferrocene was subsequently added, and calibration voltammograms recorded ($E^{\circ}=0.46 \mathrm{~V}$). The laboratory temperature was $23.0 \pm 1^{\circ} \mathrm{C}$.

Crystallography. $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2 . 3}$ was layered with hexanes and kept at room temperature. After 3 d, yellowish prisms were analyzed as outlined in Table s1. Cell parameters were obtained from 1080 frames using a 0.5° scan and refined with 9961 reflections. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program SAINT. ${ }^{s 7}$ The program SADABS was used for absorption corrections. ${ }^{58}$ The space group was determined from systematic reflection conditions and statistical tests. The structure was solved by direct methods using SHELXTL (SHELXS). ${ }^{59}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions. The parameters were refined by weighted least squares refinement on F^{2} to convergence. ${ }^{59}$ Additional electron density was observed, and tentatively assigned to a disordered methylcyclopentane molecule (a major component of hexanes), although hexane or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ could not be excluded. Thus, the electron density contribution was extracted with the program PLATON/SQUEEZE. ${ }^{\text {s10 }}$ Two methylene carbon atoms (C127 and C128) were disordered over two positions, and refined to 0.546:0.454 occupancy ratios. Restraints were used to keep the bond distances and thermal ellipsoids chemically meaningful. Only the dominant conformation was considered in all analyses.

■ REFERENCES

(s1) This sample cannot be represented as analytically pure, but the microanalytical data are provided to illustrate the best result obtained to date. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Figures $2, \mathrm{~s} 1, \mathrm{~s} 2$) confirm the high level of purity.
(s2) The $\mathrm{C}_{6} \mathrm{~F}_{5}$ signals were not observed.
(s3) The J values given for the virtual triplets represent the apparent couplings between adjacent peaks, and not the mathematically rigorously coupling constants. See Hersh, W. H. J. Chem. Educ. 1997, 74, 1485.
(s4) This assignment was based upon peak intensity (ca. $2 \times$ as compared to other macrocycle signals).
(s5) This chemical shift is characteristic of the CH carbon atom of resorcinol or resorcinol ethers that is flanked by CO carbon atoms: (a) Nakai, Y.; Yamada, F. Org. Mag. Res. 1978, 11, 607. (b) Makriyannis, A.; Fesik, S. J. Am. Chem. Soc. 1982, 104, 6462.
(s6) This coupling represents a satellite $\left(\mathrm{d},{ }^{195} \mathrm{Pt}=33.8 \%\right)$, and is not reflected in the peak multiplicity given.
(s7) SAINT, "Program for Data Reduction from Area Detectors", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
(s8) SADABS, Sheldrick, G.M. "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
(s9) Sheldrick, G.M. Acta Cryst. 2008, A64, 112.
(s10) Spek, A. L. J. Appl. Cryst. 2003, 36, 7.

Table s1: Crystallographic data for $\mathbf{2 \cdot 3}$.

empirical formula	$\mathrm{C}_{148} \mathrm{Cl}_{4} \mathrm{H}_{130} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pt}_{2}{ }^{a}$
formula weight	2846.54
temperature [K]	100(2)
diffractometer	Bruker D8 GADDS
wavelength [\AA]	1.54178
crystal system	triclinic
space group	$P-1$
unit cell dimensions	
$a[\AA]$	18.5889(8)
b [\AA]	20.1664(9)
c [\AA]	21.3140 (10)
$\alpha\left[{ }^{\circ}\right]$	117.641(3)
$\beta\left[{ }^{\circ}\right]$	93.431(3)
$\gamma\left[{ }^{\circ}\right]$	103.009
Volume [\AA^{3}]	6770.4(5)
Z	2
$\rho_{\text {calcd }}\left[\mathrm{Mg} \mathrm{m}^{-3}\right]$	1.40
$\mu\left[\mathrm{mm}^{-1}\right]$	4.788
F(000)	2708
crystal size [mm^{3}]	$0.27 \times 0.22 \times 0.03$
range for data collection	2.38 to 60.00
Index ranges	$-20 \leq h \leq 20,-22 \leq k \leq 22,-23 \leq 1 \leq 23$
reflections collected	126786
independent reflections	19677 [R(int) $=0.0524]$
max. and min. transmission	0.8697 and 0.3580
data / restraints / parameters	19677 / 15 / 1512
goodness-of-fit on F^{2}	1.098
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$R 1=0.0339, w \mathrm{R} 2=0.0844$
R indices (all data)	$R 1=0.0449, w \mathrm{R} 2=0.0880$
Largest diff. peak and hole [e^{-3}]	0.994 and -0.650

[^0]Table s2. Key crystallographic distances $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{2 \cdot 3}$ and $\mathbf{2} \cdot\left(\right.$ toluene). ${ }^{a}$

	$2 \cdot 3$	2•(toluene) ${ }^{a}$
Pt1-C1	1.993(3)	1.951(5)
$\mathrm{C} 1 \equiv \mathrm{C} 2$	1.207(5)	1.252(6)
C2-C3	$1.358(6)$	$1.365(6)$
C3 $=$ C4	$1.206(7)$	$1.209(6)$
C4-C5	$1.359(7)$	1.351(8)
C5 $=$ C6	$1.213(6)$	1.209 (6)
C6-C7	$1.346(5)$	$1.365(6)$
$\mathrm{C} 7 \equiv \mathrm{C} 8$	$1.213(6)$	$1.252(6)$
C8-Pt2	1.990(5)	1.951(5)
Pt1-C ${ }_{\text {ipso }}{ }^{\text {b }}$	2.071(3)	2.059(4)
Pt2-C ${ }_{\text {ipso }}{ }^{\text {b }}$	2.080(4)	2.059(4)
av. $\mathrm{C}_{s p}-\mathrm{C}_{s p}$	1.354	1.360
av. $\mathrm{C}_{s p} \equiv \mathrm{C}_{s p}$	1.210	1.231
$\mathrm{Pt} \cdots \mathrm{Pt}$	12.8395(7)	12.895(3)
sum of bond lengths Pt1 to Pt2	12.885	12.905
P1-Pt1-P2	170.18(4)	172.28(4)
P3-Pt2-P4	174.39(4)	172.28(4)
$\mathrm{C}_{\text {ipso }}{ }^{\text {b }}$-Pt1-C1	178.6(2)	177.9(2)
C8-Pt2-C ${ }_{\text {ipso }}{ }^{\text {b }}$	178.6(2)	177.9(2)
Pt1-C1-C2	176.7(4)	177.6(4)
C1-C2-C3	176.0(5)	179.2(5)
C2-C3-C4	177.7(5)	177.1(5)
C3-C4-C5	177.3(5)	178.5(6)
C4-C5-C6	178.4(5)	178.5(6)
C5-C6-C7	178.9(5)	177.1(5)
C6-C7-C8	177.8(5)	179.2(5)
C7-C8-Pt2	175.7(4)	177.6(4)
average $\mathrm{Pt}-\mathrm{C}_{s p}-\mathrm{C}_{s p}$	176.2	177.9
average $\mathrm{C}_{s p}-\mathrm{C}_{s p}-\mathrm{C}_{s p}$	177.7	178.2
average π stacking ${ }^{c}$	3.847	3.688
angle stacking ${ }^{\text {d }}$	154.3	147.5
average sp/sp ${ }^{3}$ distance e	4.207	-
average sp/sp ${ }^{2}$ distance ${ }^{f}$	6.081	-
average sp/O distance ${ }^{g}$	5.317	-
average sp/ N distance ${ }^{h}$	6.982	-
average sp/macrocycle distance ${ }^{i}$	5.439	-
closest atoms to Pt-Pt vector	C138: 3.403; C139: 3.320	-
(P1-Pt1-P2)Pt2 vs. (P3-Pt2-P4)Pt1 ${ }^{j}$	46.4	0
$\left(\mathrm{C}_{i p s o}-\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{P} 2\right)$ vs. ($\left.\mathrm{P} 3-\mathrm{Pt} 2-\mathrm{P} 4-\mathrm{C}_{i p s o}\right)^{j}$	46.8	0

$\mathrm{C}_{s p}-\mathrm{C}_{s p}{ }^{k}$
9.629
11.936
${ }^{a}$ Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. Chem. Eur. J. 2003, 9, 3324-3340. ${ }^{b}$ C ${ }_{i p s o}$ is the platinum bound $\mathrm{C}_{6} \mathrm{~F}_{5}$ carbon atom. ${ }^{c}$ Average distance between midpoints of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}$ rings. ${ }^{d}$ angle of midpoints of the three rings in $c .{ }^{e}$ Average distance from every CH_{2} group to the Pt - Pt vector. ${ }^{f}$ Average distance from every $\mathrm{C}_{s p^{2}}$ atom of the 33 membered rings to the $\mathrm{Pt}-\mathrm{Pt}$ vector. ${ }^{g}$ Average distance from every oxygen atom to the $\mathrm{Pt}-\mathrm{Pt}$ vector. ${ }^{h}$ Average distance from every nitrogen atom to the $\mathrm{Pt}-\mathrm{Pt}$ vector. ${ }^{i}$ Average distance from all of the atoms in $e-h$ to the Pt-Pt vector. ${ }^{j}$ Angle between planes defined by these atoms on each endgroup. ${ }^{k}$ The shortest carbon-carbon distance between parallel sp chains in the crystal lattice.

f average distance $\mathrm{C}_{s p^{2}}$ to $\mathrm{Pt}-\mathrm{Pt}$ vector

${ }^{e}$ average distance CH_{2} groups to $\mathrm{Pt}-\mathrm{Pt}$ vector

${ }^{g, h}$ average distance N, O atoms to $\mathrm{Pt}-\mathrm{Pt}$ vector

${ }^{j}$ angle between planes of endgroups

Table s3. Cyclic voltammetry data.

Substrate a	$E_{\mathrm{p}, \mathrm{a}}[\mathrm{V}]$	$E_{\mathrm{p}, \mathrm{c}}[\mathrm{V}]$	$E^{\circ}[\mathrm{V}]$	$\Delta E[\mathrm{mV}]$	$i_{\mathrm{c} / \mathrm{a}}$
$\mathbf{2}$	1.227	1.136	1.182	91	0.94
$\mathbf{2}^{b}$	1.261	1.143	1.202	118	0.48
$\mathbf{3}$	$1.403,1.710^{c}$	-	-	-	0
$1: 1$ mixture $\mathbf{2 : 3} \mathbf{3}^{d}$	$1.266,1.399$	-	-	-	0^{d}
$\mathbf{2 . 3}$	$-e$	-	-	-	-

${ }^{a}$ Conditions: $8 \times 10^{-4} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{PF}_{6}{ }^{-}, 23.0{ }^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}$; Pt working and auxiliary electrodes, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode; scan rate, $100 \mathrm{mV} \mathrm{s}^{-1}$; ferrocene, $E^{\circ}=0.46 \mathrm{~V}$.
${ }^{b}$ Older data from reference Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. Chem. Eur. J. 2003, 9, 3324-3340; as the sample for the present study was repeatedly crystallized, the $i_{\mathrm{c} / \mathrm{a}}$ value progressively increased. Conditions: (7-9) $\times 10^{-4} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{BF}_{4}^{-}, 22.5^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}$; Pt working and counter electrodes, Ag wire pseudoreference electrode; scan rate, $100 \mathrm{mV} \mathrm{s}^{-1}$; ferrocene, $E^{\circ}=0.46 \mathrm{~V}$.
${ }^{c}$ The onset of another peak is apparent with further anodic scaning.
${ }^{d}$ When the switching potential is shifted to 1.350 V (prior to reaching the second anodic peak), the first oxidation becomes partially reversible, with an $i_{\mathrm{c} / \mathrm{a}}$ value of 0.66 .
${ }^{e}$ See Figure 44.

I
i
i
i

C

$p-\mathrm{C}_{6} \mathrm{H}_{4}$

Figure s1. Additional shifts in ${ }^{1} \mathrm{H}$ NMR signals upon rotaxane formation.

Figure s2. Shifts in ${ }^{13} \mathrm{C}$ NMR signals upon rotaxane formation.

Figure s3. UV-visible spectra.

Figure s4. Cyclic Voltammograms.

[^0]: ${ }^{a}$ The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of crystallization implicit in the empirical formula and carried over to the formula weight and density has been added at the suggestion of a crystallographic reviewer; for additional comments on the nature of the solvate, see the narrative paragraph "Crystallography" in the text of the supporting information.

