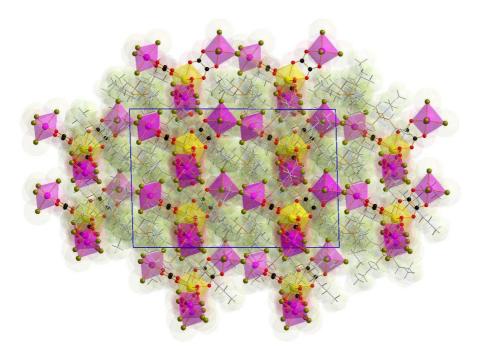
Electronic Supplementary Information (ESI)

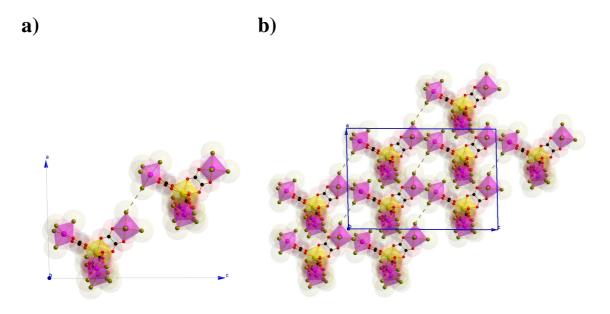
A heteropentanuclear oxalato-bridged [Re^{IV}₄Gd^{III}] complex: synthesis, crystal structure and magnetic properties

José Martínez-Lillo,*^a Laura Cañadillas-Delgado, ^b Joan Cano, ^{a,c} Francesc Lloret, ^a Miguel Julve ^a and Juan Faus*^a

a) Departament de Química Inorgànica/Instituto de Ciencia Molecular, Facultat de Química de la Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain. E-mails: juan.faus@uv.es, lillo@uv.es


Preparation of compound 1.

All starting chemicals and solvents were purchased from commercial sources and used without further purification. The mononuclear precursor (NBu₄)₂[ReBr₄(ox)] was prepared by following the procedure described for (PPh₄)₂[ReBr₄(ox)] (PPh₄⁺ = tetraphenylphosphonium cation) by using NBu₄Cl instead of PPh₄Cl as the precipitating agent (*See* Ref. 7c from the main text). Compound **1** was prepared by pouring a solution of 107.9 mg (0.1 mmol) of (NBu₄)₂[ReBr₄(ox)] in a 2-propanol/MeCN (4:1, v/v, 25 mL) mixture into another one formed by 8.6 mg (0.025 mmol) of Gd(NO₃)₃·6H₂O in 2-propanol (10 mL).


The resulting green–yellowish solution was allowed to evaporate at room temperature. X-ray suitable yellow crystals of **1** were grown after three weeks. They were filtered off and washed with diethyl ether. Yield: *ca.* 43%. Found: C, 28.2; H, 4.8; N, 1.9. Calc. for $C_{88}H_{184}Br_{16}N_5O_{18}GdRe_4$ (**1**): C, 28.0; H, 4.9; N, 1.9%. The 4:1 (Re:Gd) molar ratio in **1** was determined by X-ray microanalysis performed on a microcrystalline sample and by using a Philips XL-30 scanning electron microscope (SEM) equipped with an X-ray microanalysis system from the Central Service for the Support to Experimental Research (SCSIE) of the University of Valencia. IR (KBr pellet / cm⁻¹): bands associated to the oxalato ligand appear at 1700sh, 1682s, 1667vs (ν_{asCO}) and 807s (δ_{OCO}). Compound **1** is soluble at room temperature in common organic solvents such as acetone, acetonitrile and N,N'-dimethylformamide.

b) Instituto de Ciencia de Materiales de Aragón. CSIC-Universidad de Zaragoza C/Pedro Cerbuna 12 E-50009 Zaragoza, Spain / Institut Laue Langevin, 6 Rue Jules Horowitz, B.P. 156, 38042 Grenoble, Cedex 9, France. Current address: Centro Universitario de la Defensa. Academia General Militar. Ctra. Huesca s/n. 50090 Zaragoza, Spain.

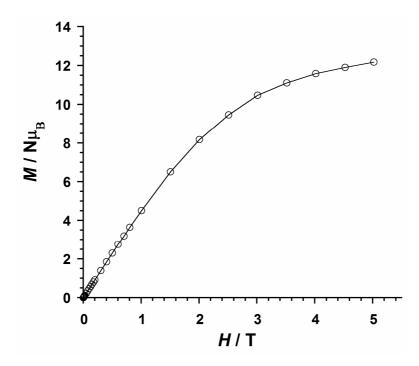

c) Fundació General de la Universitat de València (FGUV), Universitat de València, Valencia, Spain.

Figure S1. A view along the crystallographic *b* axis of the packing in **1** showing the arrangement of the $[Gd\{ReBr_4(\mu-ox)\}_4(H_2O)]^{5-}$ anions (polyhedra) and NBu_4^+ cations (sticks). Solvent H_2O molecules have been omitted for clarity.

Figure S2. (a) Shortest intermolecular $Br \cdots Br$ separation between pentanuclear $[Gd\{ReBr_4(\mu - ox)\}_4(H_2O)]^{5-}$ units. (b) View of a fragment of packing in 1 showing the arrangement of three chains of anions through the shortest intermolecular $Br \cdots Br$ interaction (dashed lines).

Figure S3. Field dependence of the magnetization at 2.0 K for **1** (the solid line is an eye guide).