Dimethylamine borane dehydrogenation chemistry: syntheses, X-ray and neutron diffraction studies of 18electron aminoborane and 14-electron aminoboryl complexes

Christina Y. Tang, Nicholas Phillips, Joshua I. Bates, Amber L. Thompson, Matthias J. Gutman, and Simon Aldridge

10 Supporting Information

General details of synthetic procedures and instrumentation

Materials: All reactions involving air- or moisture-sensitive ¹⁵ compounds were carried out under an inert atmosphere by using Schlenk-type glassware or in a glovebox. Solvents were dried using an MBraun SPS800 prior to use. NMR-solvents were dried over molecular sieves and degassed before use when necessary. Solid starting materials were dried on high vacuum before use

 $_{20}$ when necessary. Unless otherwise noted, all starting materials were commercially available and were used without further purification. M(IMes)_2(H)_2Cl (**1a/b**) and Na[BAr^f_4] were prepared via literature routes. $^{\rm s1,s2}$

Techniques: The following instruments were used for physical

²⁵ characterization of the compounds: IR: Nicolet Magna-IR 560; NMR: Bruker AVC500 (¹H: 500 MHz; ¹³C: 125 MHz); Bruker DRX500 (¹¹B: 160 MHz), Varian Unity500 (¹H: 500 MHz; ¹³C: 125 MHz, ¹¹B: 160 MHz), Varian Mercury VX-300 (³¹P: 122 MHz, ¹⁹F: 282 MHz, ¹¹B: 96 MHz). Details of the
³⁰ crystallographic studies are contained within the manuscript itself

and within the respective CIFs.

Syntheses and characterizing data for new compounds

- ³⁵ **2**: To a suspension of **1a** and Na[BAr^f₄] (0.25 mmol of each) in fluorobenzene (50 cm³) at -30°C was added Me₂NH[•]BH₃ (0.295g, 5 mmol) and the reaction mixture warmed to 20 °C over a period of 1 h. After stirring for a further 24 h, the resulting light yellow solution was filtered, concentrated in *vacuo* and light yellow
- ⁴⁰ crystals suitable for X-ray diffraction obtained by layering with pentane and storage at 20 °C. Isolated yield 0.33 g, 76 %. ¹H NMR (toluene- d_8 , 300 MHz, 20 °C): δ_H -15.24 (s, 2H, IrH), -6.31 (br s, 2H, BH₂), 1.49 (s, 24H, *ortho*-Me of IMes), 1.61 (s, 6H, Me of NMe₂), 2.21 (s, 12H, *para*-Me of IMes), 5.98 (s, 4H, NCH of
- ⁴⁵ IMes), 6.63 (s, 8H, *meta*-CH of IMes), 7.69 (s, 4H, *para*-CH of $[BAr_4^{f_4}]$), 8.31 (s, 8H, *para*-CH of $[BAr_4^{f_4}]$). ¹³C NMR (toluened₈, 75 MHz, 20 °C): (i) signals due to cation: $\delta_{\rm C}$ 17.1 (*ortho*-Me of IMes), 17.9 (*para*-Me of IMes), 39.6 (Me of NMe₂), 121.6 (NCH of IMes), 129.1 (*ortho*-quaternary C of IMes) 134.4 (*meta*-
- ⁵⁰ CH of IMes), 138.8 (*para*-quaternary C of IMes), carbene quaternary of IMes and N-bound aryl quaternary signals not observed; (ii) signals due to anion: $\delta_{\rm C}$ 117.6 (*para*-CH), 124.9 (q, ${}^{1}J_{\rm CF}$ = 273.6 Hz, CF₃), 129.5 (q, ${}^{2}J_{\rm CF}$ = 34.5 Hz, *meta*-quaternary

C), 135.1 (*ortho*-CH), 162.2 (q, ${}^{1}J_{CB} = 50.3$ Hz, *ipso*-quaternary 55 C). ${}^{11}B$ NMR (toluene- d_8 , 96 MHz, 20 °C): δ_B -6.1 ([BAr^f_4]⁻ anion), 36 (br, H₂BNMe₂). ${}^{19}F$ NMR (toluene- d_8 , 282 MHz, 20 °C): δ_F -61.3. IR (ν_{BH} , cm⁻¹): 2360, 2343. Elemental microanalysis: calcd for C₇₆H₇₀N₅B₂F₂₄Ir: C, 52.94; H, 4.09, N, 4.06; measd: C, 52.94; H, 3.92; N, 3.93. *Crystallographic data*:

- ⁶⁰ (X-ray) $C_{76}H_{70}N_5B_2F_{24}Ir$, $M_r = 1723.2$, monoclinic, *C1c1*, a = 22.8105(2), b = 19.0153(2), c = 19.9792(2) Å, $\beta = 117.1045(4)^{\circ}$, V = 7714.2(1) Å³, Z = 4, $\rho_c = 1.484$ Mg m⁻³, T = 150(2) K, $\lambda = 0.71073$ Å. 66010 reflections collected, 17099 independent [R(int) = 0.051], which were used in all calculations. $R_1 = 0.0360$,
- ⁶⁵ $wR_2 = 0.0813$ for observed unique reflections $[F^2 > 2\sigma(F^2)]$ and $R_1 = 0.0423$, $wR_2 = 0.0866$ for all unique reflections. Max. and min. residual electron densities 1.19 and -0.96 e Å⁻³. CSD refs: 880791 (X-ray), 880792 (neutron).
- ⁷⁰ **3**: was synthesized from **1b** as per the synthesis of **2**, and yellow crystals suitable for X-ray diffraction obtained from a fluorobenzene/pentane layering at 20 °C. Isolated yield 0.29 g, 71 %. ¹H NMR (toluene- d_8 , 300 MHz, 20 °C): $\delta_{\rm H}$ -23.59 (d, ¹ $J_{\rm RhH}$ = 43.5 Hz, 1H, RhH), 0.51 (br s, 1H, BH), 1.41 (s, 3H, NMe), 1.51
- ⁷⁵ (s, 24H, *ortho*-Me of IMes), 1.59 (s, 3H, NMe), 2.19 (s, 12H, *para*-Me of IMes), 6.01 (s, 4H, NCH of IMes), 6.65 (s, 8H, *meta*-CH of IMes), 7.68 (s, 4H, *para*-CH of [BAr^f₄]⁻), 8.30 (s, 8H, *para*-CH of [BAr^f₄]⁻). ¹³C NMR (toluene-*d*₈, 75 MHz, 20 °C): (i) signals due to cation: $δ_C$ 17.7 (*ortho*-Me of IMes), 21.8 (*para*-Me
- ⁸⁰ of IMes), 31.5 (Me of NMe₂), 41.3 (Me of NMe₂), 122.9 (NCH of IMes), 129.8 (*ortho*-quaternary C of IMes) 135.5 (*meta*-CH of IMes), 140.1 (*para*-quaternary C of IMes), 183.7 (d, ${}^{1}J_{RhC} = 46.5$ Hz, carbene quaternary C), N-bound aryl quaternary signals not observed; (ii) signals due to anion: δ_C 118.3 (*para*-CH), 125.7 (q,
- ⁸⁵ ${}^{1}J_{CF} = 273.1$ Hz, CF₃), 130.2 (q, ${}^{2}J_{CF} = 31.5$ Hz, *meta*-quaternary C), 135.9 (*ortho*-CH), 163.0 (q, ${}^{1}J_{CB} = 49.1$ Hz, *ipso*-quaternary C). ¹¹B NMR (toluene- d_8 , 96 MHz, 20 °C): $\delta_{\rm B}$ -6.0 ([BAr^f₄]⁻ anion), 53 (br, H₂BNMe₂). ¹⁹F NMR (toluene- d_8 , 282 MHz, 20 °C): $\delta_{\rm F}$ -62.2. IR ($\nu_{\rm BH}$, cm⁻¹): 2394. Elemental microanalysis: ⁹⁰ calcd for C₇₆H₆₈B₂F₂₄N₅Rh: C, 55.90; H, 4.20, N, 4.29; measd: C, 55.67; H, 3.99; N, 4.00. *Crystallographic data:* (X-ray) C₇₆H₆₈B₂F₂₄N₅Rh, $M_{\rm r} = 1631.9$, monoclinic, $P2_1/n$, a =12.7501(1), b = 14.1549(1), c = 21.1993(2) Å, $\beta = 93.0899(3)$ °, V = 3820.4(1) Å³, Z = 2, $\rho_c = 1.419$ Mg m⁻³, T = 150(2) K, $\lambda =$ 95 0.71073 Å. 61210 reflections collected, 8721 independent [R(int) = 0.024], which were used in all calculations. $R_1 = 0.0666$, $wR_2 =$ 0.1801 for observed unique reflections [$F^2 > 2\sigma(F^2)$] and $R_1 =$ 0.0824, $wR_r = 0.1922$ for all unique reflections Max, and min
- 0.0824, $wR_2 = 0.1922$ for all unique reflections. Max. and min. residual electron densities 1.40 and -0.98 e Å⁻³. CSD ref.: 880793 ¹⁰⁰ (X-ray), 880794 (neutron).

Fig. S1 Molecular structure of the cationic component of 3 as determined by X-ray diffraction (left; one disorder component ⁵ only) and Density Functional Theory (right). Counter-ion, mesityl Me groups and H atoms (except Rh- and B-bound Hs for DFT structure) omitted for clarity. Thermal ellipsoids set at the 30 % probability level for X-ray structure.

10 Details of Density Functional Theory Calculations

The DFT calculations were performed using the Amsterdam Density Functional (ADF) Package Software 2012.^{s3} Calculations were performed using the Vosko-Wilk-Nusair local density ¹⁵ approximation with exchange from Becke^{s4} and correlation corrections from Lee-Yang-Parr^{s5} (BLYP). Slater-type orbitals (STOs)^{s6} were used for the triple zeta basis set with an additional set of polarization functions (TZP). The large frozen core basis set approximation was applied with no molecular symmetry. The ²⁰ general numerical integration was 6 for geometry optimization and 4 for frequency calculation. No significant imaginary frequencies were observed for the optimized geometry of

complex **3**. See below for the run file for frequency calculation which contain coordinates for the optimized geometry of complex ²⁵ **3**.

#! /bin/sh

"\$ADFBIN/adf" <<eor ATOMS

1 Rh	-0.006125429118	-0.027217775330	0.045532657890
2 C	-0.347814967700	3.910035828000	-5.439113937000
3 C	0.456697240700	1.609860997000	-4.702633100000
4 C	0.359996748300	2.987759853000	-4.462716764000
5 C	-4.756390872000	-2.717360417000	-4.645773388000
6 C	1.225367630000	-0.738996855800	-4.138374314000
7 C	1.131299223000	0.742480521300	-3.826637080000
8 C	0.962485715800	3.500739148000	-3.302468699000
9 C	-3.864550748000	-0.620473104100	-3.518319656000
10 C	-4.355474127000	-1.929990108000	-3.411211915000
11 C	1.714641870000	1.297860992000	-2.670532548000
12 C	1.653124495000	2.682156689000	-2.395769653000
13 C	-2.987132119000	1.553835047000	-2.565148214000
14 C	-3.472233582000	0.126759632200	-2.395495767000
15 C	3.855225311000	0.234356210300	-1.935132752000
16 C	-0.729365160200	-3.482593207000	-1.060408095000
17 C	-4.459402292000	-2.493549198000	-2.129994161000
18 C	2.332433666000	3.295008934000	-1.183194657000
19 C	4 260458128000	-0 547759129700	-0 903088642600
20 C	-3 567121511000	-0.490082852200	-1 130749454000
21 C	-4 076730574000	-1 795758414000	-0.973345398600
22 C	2.004663037000	-0 208019996000	-0.646924563500
23 C	3 255119416000	-3 728409136000	-0.283115072500
24 C	-0 555091472600	-4 321471920000	1 242436772000
25 C	-4 227680189000	-2 440908956000	0 392465967700
26 C	-1 986201028000	0 502824282600	0.603129394600
27 C	-0.972054812700	3 845986838000	0.853118235500
28 C	3 305731403000	-2.988451236000	1.041503235000
20 C	-4 221208332000	0.976673873000	0 777429089700
30 C	3 223707877000	-1 582166670000	1 115926993000
31 C	-3 595951284000	1 637795264000	1 784950874000
32 C	3 461279597000	-3 700652053000	2 241471975000
33 C	-0 604445841900	3 140759805000	2 146720031000
34 C	3 329410560000	-0 893447930400	2 342150366000
35 C	3 298462141000	0.621182223700	2 426030589000
36 C	-1 213398293000	1 926027947000	2 537158098000
37 C	0.338946049000	3 710254958000	3.015323070000
38 C	3 546692711000	-3 057518098000	3 485809962000
39 C	3 483429404000	-1 656392261000	3 510646993000
40 C	-0.921410766900	1 310105900000	3 772140497000
41 C	0.669449897400	3 123342996000	4 247611544000
42 C	-1 612585318000	0.035739561340	4 219049811000
42 C	3 694297540000	-3 854128695000	4 769685969000
44 C	0.029136606560	1 927746401000	4 603083085000
45 C	1 662357513000	3 790611381000	5 182049068000
46 N	2 481012612000	0.436390609500	-1 774515673000
47 N	-0 489724363900	-3 144360249000	0 352528086500
48 N	3 130784403000	-0.813318596100	-0 121759401700
49 N	-3 236300877000	0.287315493600	0.060582083110
50 N	_2 233300077000	1 342/04647000	1 6718/16811000
51 R	_0 10183003/300	1.3+2+0+0+7000 -1 875087070000	0.860303786200
57 U	0.171037034300	-1.075007525000	6 178378380000
54 11	-0.7201407/0000	5.575209514000	-0.170370307000

Page	8	of	11	
	~	ς.	•••	

53 H	0.376890889400	4.529219129000	-5.986224200000
54 H	0.000585073622	1.191555771000	-5.600383003000
55 H	-1.030334334000	4.594919466000	-4.919755678000
56 H	-5.063434779000	-2.052736810000	-5.461470265000
57 H	0.682237498900	-0.972564020700	-5.059550862000
58 H	-3.915704676000	-3.323763372000	-5.013661771000
59 H	-5 584617989000	-3 402970763000	-4 431994518000
60 H	-3 803542942000	-0 152312789900	-4 501504702000
61 H	2 268082300000	-1.057258528000	-4 271881573000
62 H	0.80/1303985300	-1 3/3675661000	-3 32635/1873000
62 H	0.004505705500	1.545075001000	3.101075205000
64 U	3 176185361000	1 000374630000	3 586274508000
04 II 65 U	-3.170185501000	0.665786066200	-3.380274308000
	4.400/323/0000	1.105226277000	-2.730736191000
00 H	0.029214527900	-4.195250577000	-1.420089275000
6/H	-1./16/43/32000	-3.950068121000	-1.186981152000
68 H	-0.690186144200	-2.577463358000	-1.66//64/84000
69 H	-1.908665084000	1.632790451000	-2.376075913000
70 H	-3.493116931000	2.240234902000	-1.874505120000
71 H	-4.860804360000	-3.501889193000	-2.021419885000
72 H	3.423856768000	3.181935722000	-1.236086387000
73 H	2.112161790000	4.365821637000	-1.123941937000
74 H	4.169951716000	-3.567360597000	-0.870393659200
75 H	5.237848865000	-0.929838518300	-0.646775915500
76 H	-0.514298088900	-0.429755931400	-1.366602946000
77 H	2.412024784000	-3.394759614000	-0.898818160300
78 H	-1.550268390000	-4.788330162000	1.193599420000
79 H	2.007391960000	2.825271564000	-0.246872173600
80 H	3.158280637000	-4.806174801000	-0.116101709600
81 H	0.187516288200	-5.076146249000	0.943970403200
82 H	-0.814340325900	3.208477220000	-0.025284223330
83 H	-4.602523036000	-3.464656207000	0.291727784600
84 H	-0 371674626000	4 752963087000	0 729978593600
85 H	-5 264309593000	0.937028822400	0.499253266200
86 H	-0 354859368700	-4 021145384000	2 272709188000
87 H	-2 029958810000	4.021145504000	0.847661129300
07 II 99 Ц	-2.029958810000	1 880/03587000	1.027613678000
00 II 90 II	-4.933808409000	-1.889403387000	0.02/0130/0000
69 П 00 Ц	-3.208393483000	-2.4/3330438000	0.924040051800
90 H	0.014005000520	-1.727725270000	2.040415894000
91 H	3.938/30430000	1.085828725000	1.00033/333000
92 H	3.529101055000	-4./8836/538000	2.19/126531000
93 H	2.282557088000	1.014030685000	2.28190/401000
94 H	-3.985427591000	2.286018916000	2.556921366000
95 H	0.816114577400	4.64/25352/000	2.725095231000
96 H	3.642645284000	0.953581427000	3.410776490000
97 H	-1.452542731000	-0.779517203800	3.503352220000
98 H	-2.697260514000	0.179175961200	4.313673424000
99 H	4.222834306000	-4.798680697000	4.596921044000
100 H	3.575287869000	-1.135066778000	4.464285085000
101 H	2.516186987000	4.204370887000	4.631492455000
102 H	2.709330057000	-4.101035191000	5.192445261000
103 H	4.244143729000	-3.287702119000	5.530338677000
104 H	1.188810666000	4.624190131000	5.720067945000
105 H	-1.230277620000	-0.283964767000	5.193700159000
106 H	0.265069513500	1.460232585000	5.559459398000
107 H	2.043264092000	3.088692524000	5.932055198000
END		• •	

GUIBONDS	60 24 78 1.0
1 1 76 1.0	61 24 86 1.0
2 1 51 3	62 24 47 1.0
3 1 22 2.0	63 25 88 1.0
4 1 26 2.0	64 25 83 1.0
5 2 55 1.0	65 25 89 1.0
6 2 53 1.0	66 26 49 1.0
7 2 52 1.0	67 26 50 1.0
8 2 4 1.0	68 27 87 1.0
9 3 54 1.0	69 27 84 1.0
10 3 4 1.5	70 27 82 1.0
11 3 7 1.5	71 27 33 1.0
12 4 8 1.5	72 28 30 1.5
13 5 59 1.0	73 28 32 1.5
14 5 56 1.0	74 29 85 1.0
15 5 58 1.0	75 29 31 2.0
16 5 10 1.0	76 29 49 1.0
17 6 61 1.0	77 30 34 1.5
18 6 57 1.0	78 30 48 1.0
196621.0	79 31 94 1.0
20671.0	80 31 50 1.0
21 / 11 1.5	81 32 92 1.0
22 8 63 1.0	82 32 38 1.5
23 8 12 1.5	83 33 37 1.5
24 9 60 1.0	84 33 30 1.5
25 9 10 1.5	85 34 39 1.5
20 9 14 1.5	80 34 33 1.0
2/ 10 1/ 1.5 28 11 12 1 5	8/ 33 91 1.0 88 35 02 1 0
20 11 12 1.5	80 35 95 1.0 80 35 06 1 0
29 11 40 1.0	00 36 40 1 5
31 13 70 1 0	90 30 40 1.3
22 12 60 1 0	91 30 30 1.0
33 13 64 1 0	93 37 41 1 5
34 13 14 1 0	94 38 39 1 5
35 14 20 1 5	95 38 43 1 0
36 15 65 1 0	96 39 100 1 0
37 15 19 2.0	97 40 44 1.5
38 15 46 1.0	98 40 42 1.0
39 16 66 1.0	99 41 44 1.5
40 16 68 1.0	100 41 45 1.0
41 16 67 1.0	101 42 98 1.0
42 16 47 1.0	102 42 105 1.0
43 17 71 1.0	103 42 97 1.0
44 17 21 1.5	104 43 99 1.0
45 18 72 1.0	105 43 103 1.0
46 18 73 1.0	106 43 102 1.0
47 18 79 1.0	107 44 106 1.0
48 19 75 1.0	108 45 101 1.0
49 19 48 1.0	109 45 104 1.0
50 20 21 1.5	110 45 107 1.0
51 20 49 1.0	111 47 51 1.0
52 21 25 1.0	112 51 90 1.0
53 22 48 1.0	END
54 22 46 1.0	
55 23 74 1.0	CHARGE 1.0
56 23 80 1.0	
57 23 77 1.0	BASIS
58 23 28 1.0	type TZP
59 24 81 1.0	core Large

createoutput None END

XC GGA BLYP END

SCANFREQ -1000 0

AnalyticalFreq END

SAVE TAPE21 TAPE13

FULLSCF INTEGRATION 4.0

NOPRINT LOGFILE

eo

References

- J. Huang, E.D. Stevens and S.P. Nolan, Organometallics, 2000, 19, 1194.
- ⁵ s2. D.L. Reger, T.D. Wright, C.A. Little, J.J.S. Lamba and M.D. Smith, *Inorg. Chem.*, 2001, **40**, 3810.
- s3. (a) G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, **22**, 931; (b) C. Fonseca Guerra, J.
- G. Snijders, G. te Velde and E. J. Baerends, *Theor. Chem. Acc.* 1998, **99**, 391; (c) E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C.
- Fonseca Guerra, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe,
- D.A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, P.R.T. Schipper, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D.
 Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L.
- Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo and A.L. Yakovlev, ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam. The Netherlands.
 <u>http://www.scm.com</u>.
- s4. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- s5. (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1998, 37, 785; (b) B.G. Johnson, P.M.W. Gill and J. A. Pople, *J. Chem. Phys.*, 1993, 98, 5612; (c) T.V. Russo, R.L. Martin and P.J. Hay, *J. Chem. Phys.*, 1994, 101, 7729.
- s6. J. G. Snijders, P. Vernooijs and E. J. Baerends, *At. Data Nucl. Data Tables*, 1982, **26**, 483.