Electronic Supplementary Information

Evidence of Upconversion Luminescence Contribution to the Improved Photoactivity of Erbium doped TiO₂ System

S. Obregón and G. Colón

Experimental details.

Synthesis of Photocatalysts.

TiO₂ sample was obtained by means of a hydrothermal method elsewhere described. In brief, a TiO₂ colloidal solution was obtained by adding certain amount of Ti⁴⁺-isopropanol solution (38,4 ml of *TTiP* + 38,2 ml of isopropanol) to 400 ml of distilled water at pH=2 achieved by means of acetic acid. After *TTiP* addition a white precipitate is obtained that upon stirring at room temperature for one week evolve to a milky homogeneous solution. A certain amount of triethylamine (*TEA*) was then added drop wise to the Ti-solution aliquot till the pH value was 9. Afterwards, the obtained white precipitate suspension was then placed in a Teflon recipient inside of stainless steel autoclave reactor. The hydrothermal treatment was performed at 140°C, 20 hours. The as obtained precipitate was then filtered, repeatedly washed and dried overnight at 120°C. Then TiO₂ powder was submitted to a further calcination treatment at 300°C for 2 hours.

Erbium doped TiO₂ were obtained based on the above described methods for the preparation of single pristine photocatalysts. Thus, to the TiO₂ solution the appropriate amount of $Er(NO_3)_3$ was added in order to accomplish the desired Er^{3+} -TiO₂ relationship (0,5, 1, 2, 3 and 4 at.%). Then, similar procedure is followed to achieve to the final composite photocatalyst.

Materials characterization.

BET surface area and porosity measurements were carried out by N_2 adsorption at 77 K using a Micromeritics 2010 instrument.

X-ray diffraction (XRD) patterns were obtained using a Siemens D-501 diffractometer with Ni filter and graphite monochromator. The X-ray source was Cu K α radiation (0,15406 nm). Rietveld analyses were performed by using XPert HighScore Plus software over selected samples. The diffraction patterns were recorded from 20 10° to 120° with step of 0,017° and 400 s per step.

Micro-Raman measurements were performed using a LabRAM Jobin Yvon spectrometer equipped with a microscope. Laser radiation ($\lambda = 532$ nm or 780 nm) was used as excitation source at 5 mW. All measurements were recorded under the same conditions (2 s of

integration time and 30 accumulations) using a 100x magnification objective and a 125 mm pinhole.

The morphology of the samples and the dispersion and size of surface metal deposits were studied by transmission electron microscopy (TEM) using a Philips CM 200 instrument. The microscope was equipped with a top-entry holder and ion pumping system, operating at 200 kV and employing a nominal structural resolution of 0.21 nm. Samples were prepared by dispersing the powders in ethanol using ultrasound and dropping onto a carbon grid.

UV-vis spectra (Shimadzu, AV2101) were recorded in the diffuse reflectance mode (R) and transformed to a magnitude proportional to the extinction coefficient (K) through the Kubelka–Munk function, $F(R\infty)$. Samples were mixed with BaSO₄ that does not absorb in the UV-vis radiation range (white standard). Scans range was 240–800 nm.

XPS data were recorded on 4x4 mm² pellets, 0,5 mm thick, prepared by slightly pressing the powered materials which were outgassed in the prechamber of the instrument at room temperature up to a pressure $< 2 \cdot 10^{-8}$ to remove chemisorbed water from their surfaces. The SPECS spectrometer main chamber, working at a pressure $< 6 \cdot 10^{-9}$ torr, was equipped with a PHOIBOS 100 multichannel hemispherical electron analyser with a dual X-ray source working with Al K α (hv=1486,6 eV) at 120 W, 20 mA using C 1s as energy reference (284,6 eV). Surface chemical compositions were estimated from XP-spectra, by calculating the integral of each peak after subtraction of the "S-shaped" Shirley-type background using the appropriate experimental sensitivity factors using UNIFIT 2012 software.[†]

Photocatalytic Experimental Details.

Phenol oxidation reactions were performed using a batch reactor (250 ml) using an arc lamp source (Oriel Instruments) equipped with an Hg-Xe lamp of 200 W. The intensity of the incident UVA and visible light on the solution was measured with an HD2302 photometer (Delta OHM) using LP 471 UVA and LP 471 RAD sensors (spectral responses 315-400 nm and 400-1050 nm respectively). The intensity of the lamp under different irradiation conditions is summarised in **Table 1**. In the oxidation tests, an oxygen flow was employed what produces a homogenous suspension of the catalyst in the solution. Before each experiment, the catalysts (1 g/l) were settled in suspension with the reagent mixture for 15 min. The evolution of the initial phenol concentration (ca. 30 ppm) was followed through the evolution of the characteristic 270 nm band using a centrifuged aliquot ca. 2 ml of the suspension (microcentrifuge Minispin, Eppendorf). In order to distinguish the different contributions of the different ranges of the lamp spectrum, *UV-vis-NIR*, *visible-NIR* and *visible* photocatalytic experiments were performed by using a *UV* and *IR* cut-off filters (λ <420 nm and λ >800 nm respectively). Additionally, for *vis*-

[†] Hesse, R.; UNIFIT FOR WINDOWS: Spectrum Processing, Analysis and Presentation Software for Photoelectron Spectra, Version 2012, Leipzig http://www.unifit-software.de.

NIR experiments, the degradation of methylene blue (ca. 10 ppm of MB and 1 g/l catalysts loading) was followed through the evolution of the characteristic 664 nm. Reaction rates were calculated assuming a zero order kinetic.

Tables.

Table 1. Lamp irradiance (W/m^2) under different conditions.

Luxometer sensor	UV-vis-IR	UV-vis	vis-IR	vis
LP471 UVA (315-400 nm)	124	74	0.3	0.3
LP471 RAD (400-1050 nm)	542	209	482	163

Table 2. Surface, structural and photocatalytic characterization for Er^{3+} doped TiO₂ catalysts.

					Er ³⁺ content	
Samples	Crystallite size (nm)	BET (m ² /g)	Average pore size (nm)	Band gap (eV)	(%)	
					EDX	XPS
TiO ₂	15,8	102	8,7	3,16		
Er-TiO ₂ 0,5%	14,6	110	9,5	3,16		0,4
Er-TiO ₂ 1%	14,0	110	10,9	3,18	1,2	0,9
Er-TiO ₂ 2%	14,1	110	11,1	3,18	1,9	1,8
Er-TiO ₂ 3%	12,8	112	12,2	3,18	2,7	2,8
Er-TiO ₂ 4%	12,1	116	12,5	3,20	4,0	3,7

Table 3. Photocatalytic reaction rates for phenol and methylene blue degradation by Er^{3+} doped TiO₂ catalysts under different irradiation conditions.

		k		k *
Samples		$(\cdot 10^{-11} \text{ mol/l} \cdot \text{s}^{-1})$		
	UV-vis-IR	UV-vis	vis-IR	vis-IR
TiO ₂	3,78	1,47	0,065	1,80
Er-TiO ₂ 0,5%	3,97	1,64		2,78
Er-TiO ₂ 1%	4,75	2,36	0,173	4,71
Er-TiO ₂ 2%	6,13	2,57	0,404	8,60
Er-TiO ₂ 3%	5,94	2,49	0,302	6,32
Er-TiO ₂ 4%	4,89	2,20	0,260	4,78

* Degradation of methylene blue.

Figure S1. Raman spectra for Er^{3+} -TiO₂ catalysts obtained at pH=9 after hydrothermal treatment at 140°C, 20h.

Figure S2. TEM images of a) TiO_2 , b) $Er^{3+}-TiO_2 2$ at% and c) $Er^{3+}-TiO_2 4$ at% catalysts obtained at pH=9 after hydrothermal treatment at 140°C, 20h.

