Electronic Supplementary Information (ESI)

Palladium-catalyzed cyclization of *o*-alkynyltrifluoroacetanilides followed by isocyanide insertion: synthesis of 2-substituted 1*H*-indole-3-carboxamides

Ziwei Hu, Dongdong Liang, Jiaji Zhao, Jinbo Huang, and Qiang Zhu*

State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China

E-mail: *zhu_qiang@gibh.ac.cn*

Table of Contents

1. General Information	S2
2. Preparation of the Substrates 1	S2
3. General Procedures and Product Characterization	S9
General Procedures	S9
Product characterization	S9
4. Determination of the Oxygen Source in Product 3aa	S21
5. References	
6. Copies of NMR Spectra	

1. General Information

DMSO was used without desiccation. For flash column chromatography, silica gel (200-300 mesh) was applied. Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates (GF 254). Visualization of the developed plates was performed under UV lights (GF 254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded on a 400 or 500 MHz spectrometer. Chemical shifts (δ) were reported in ppm referenced to an internal tetramethylsilane standard or the DMSO-d₆ residual peak (δ 2.50) for ¹H NMR. Chemical shifts of ¹³C NMR were reported relative to CDCl₃ (δ 77.0) or DMSO-d₆ (δ 39.5). The following abbreviations were used to describe peak splitting patterns when appropriate: br s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constant, *J*, was reported in Hertz unit (Hz). High resolution mass spectra (HRMS) were obtained on an ESI-LC-MS/MS spectrometer.

2. Preparation of the Substrates 1

o-Alkynyltrifluoroacetanilides 1 were prepared according to the reported procedure.¹

N-(2-(phenylethynyl)phenyl)-2,2,2-trifluoroacetamide 1a

¹H NMR (400 MHz, CDCl₃) δ 8.89 (br s, 1H), 8.38 (d, J = 8.3 Hz, 1H), 7.57 (dd, J = 7.8, 1.4 Hz, 1H), 7.53 (m, 2H), 7.42 (m, 4H), 7.22 (t, J = 7.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4 (q, J = 37 Hz), 136.1, 131.7, 131.5, 129.9, 129.3, 128.7, 125.5, 121.7, 119.6, 115.7 (q, J = 287 Hz), 113.5, 98.1, 82.9.

N-(4-methyl-2-(phenylethynyl)phenyl)-2,2,2-trifluoroacetamide 1b

¹H NMR (400 MHz, CDCl₃) δ 8.82 (br s, 1H), 8.24 (d, *J* = 8.5 Hz, 1H), 7.52 (m, 2H), 7.40 (m, 4H), 7.22 (d, *J* = 8.4 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.3 (q, *J* = 37 Hz), 135.4, 133.7, 132.0, 131.4, 130.6, 129.2, 128.7, 121.8, 119.6, 115.8 (q, *J* = 287 Hz), 113.4, 97.6, 83.1, 20.8.

N-(2-(phenylethynyl)-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide 1c

¹H NMR (400 MHz, CDCl₃) δ 8.98 (br s, 1H), 8.54 (d, *J* = 8.7 Hz, 1H), 7.84 (m, 1H), 7.67 (d, *J* = 8.6 Hz, 1H), 7.54 (m, 2H), 7.44 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.7 (q, *J* = 38 Hz), 138.7, 131.6, 129.9, 128.8, 128.7 (q, *J* = 4 Hz), 127.7 (q, *J* = 33 Hz), 126.6 (q, *J* = 4 Hz), 123.3 (q, *J* = 270 Hz), 121.0, 119.6, 115.5 (q, *J* = 287 Hz), 114.0, 99.6, 81.5.

N-(4-fluoro-2-(phenylethynyl)phenyl)-2,2,2-trifluoroacetamide 1d

¹H NMR (400 MHz, DMSO-d₆) δ 11.31 (br s, 1H), 7.56 (dd, J = 9.0, 2.9 Hz ,1H), 7.47 (m, 6H), 7.37 (t, J = 8.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ 160.4 (d, J = 244 Hz), 155.3 (q, J = 37 Hz), 132.3 (d, J = 3 Hz), 131.2, 129.4, 129.1 (d, J = 9 Hz), 128.9, 121.9 (d, J = 11 Hz), 121.6, 118.6 (d, J = 24 Hz), 116.7 (d, J = 22 Hz), 116.0 (q, J = 287 Hz), 95.2, 84.4 (d, J = 3 Hz).

N-(4-chloro-2-(phenylethynyl)phenyl)-2,2,2-trifluoroacetamide 1e

¹H NMR (400 MHz, CDCl₃) δ 8.83 (br s, 1H), 8.33 (d, *J* = 8.9 Hz, 1H), 7.53 (m, 3H), 7.43 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4 (q, *J* = 38 Hz), 134.6, 131.6, 131.2, 130.8, 129.9, 129.7, 128.8, 121.2, 120.8, 115.6 (q, *J* = 287 Hz), 115.1, 99.1, 81.7.

N-(4-bromo-2-(phenylethynyl)phenyl)-2,2,2-trifluoroacetamide 1f

¹H NMR (400 MHz, CDCl₃) δ 8.83 (br s, 1H), 8.28 (d, *J* = 8.9 Hz, 1H), 7.71 (d, *J* = 2.2 Hz, 1H), 7.52 (m, 3H), 7.43 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4 (q, *J* = 37 Hz), 135.1, 134.1, 132.8, 131.6, 129.7, 128.8, 121.2, 120.9, 118.2, 115.7 (q, *J* = 287 Hz), 115.4, 99.3, 81.5.

N-(4,6-dimethyl-2-(phenylethynyl)phenyl)-2,2,2-trifluoroacetamide 1g

¹H NMR (400 MHz, CDCl₃) δ 7.89 (br s, 1H), 7.48 (m, 2H), 7.37 (m, 3H), 7.27 (s, 1H), 7.08 (s, 1H), 2.33 (s, 3H), 2.25 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3 (q, J = 37 Hz), 138.1, 135.3, 132.2, 131.5, 130.5, 130.4, 128.8, 128.5, 122.5, 120.5, 116.1 (q, J = 287 Hz), 95.3, 84.9, 20.8, 18.3.

N-(2-(p-tolylethynyl)phenyl)-2,2,2-trifluoroacetamide 1h

¹H NMR (400 MHz, CDCl₃) δ 8.91 (br s, 1H), 8.37 (d, J = 8.3 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.41 (m, 3H), 7.22 (m, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4 (q, J = 38 Hz), 139.7, 136.0, 131.6, 131.4, 129.6, 129.5, 125.5, 119.6, 118.6, 115.8 (q, J = 287 Hz), 113.7, 98.3, 82.3, 21.6.

N-(2-((4-methoxyphenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide 1i

¹H NMR (400 MHz, CDCl₃) δ 8.90 (br s, 1H), 8.36 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.48 (m, 1H), 7.46 (m, 1H), 7.40 (m, 1H), 7.20 (t, J = 7.6 Hz, 1H), 6.94 (m, 1H), 6.91 (m, 1H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 154.4 (q, J = 37 Hz), 135.9, 133.0, 131.4, 129.5, 125.5, 119.5, 115.7 (q, J = 287 Hz)114.4, 113.9, 113.7, 98.2, 81.7, 55.4.

N-(2-((4-acetamidophenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide 1j

¹H NMR (400 MHz, DMSO-d₆) δ 11.26 (br s, 1H), 10.22 (br s, 1H), 7.65 (m, 3H), 7.42 (m, 5H), 2.07 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 168.6, 155.1 (q, J = 36 Hz), 140.0, 135.7, 132.1, 131.8, 129.2, 127.7, 126.8, 120.1, 118.9, 116.1, 116.0 (q, J = 287 Hz), 94.7, 84.6, 24.0.

N-(2-((4-acetylphenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide 1k

¹H NMR (400 MHz, CDCl₃) δ 8.82 (br s, 1H), 8.38 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 2H), 7.58 (m, 3H), 7.46 (t, J = 7.9 Hz, 1H), 7.24 (m, 1H), 2.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.0, 154.4 (q, J = 37 Hz), 137.1, 136.2, 131.9, 131.6, 130.5, 128.5, 126.4, 125.7, 119.8, 115.7 (q, J = 287 Hz), 112.9, 97.0, 85.9, 26.6.

methyl 4-((2-(2,2,2-trifluoroacetamido)phenyl)ethynyl)benzoate 11

¹H NMR (400 MHz, CDCl₃) δ 8.82 (br s, 1H), 8.38 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 3H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.24 (m, 1H), 3.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 154.3 (q, *J* = 38 Hz), 136.2, 131.9, 131.4, 130.5, 130.4, 129.8, 126.2, 125.6, 119.8, 115.7 (q, *J* = 287 Hz), 113.0, 97.0, 85.6, 52.4

N-(2-((4-chlorophenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide 1m

¹H NMR (400 MHz, CDCl₃) δ 8.82 (br s, 1H), 8.36 (d, J = 8.3 Hz, 1H), 7.56 (dd, J = 7.8, 1.4 Hz, 1H), 7.45 (m, 3H), 7.39 (m, 2H), 7.23 (t, J = 7.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.3 (q, J = 37 Hz), 136.1, 135.5, 132.6, 131.7, 130.1, 129.1, 125.6, 120.1, 119.7, 115.7 (q, J = 287 Hz), 113.2, 96.8, 83.8.

N-(2-((4-bromophenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide 1n

¹H NMR (400 MHz, CDCl₃) δ 8.81 (br s, 1H), 8.37 (d, *J* = 8.4 Hz, 1H), 7.53 (m, 3H), 7.46 (m, 1H), 7.39 (m, 2H), 7.21 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.3 (q, *J* = 37 Hz), 136.1, 132.8, 132.0, 131.7, 130.1, 125.6, 123.8, 120.6, 119.7, 115.7 (q, *J* = 287 Hz), 113.2, 96.9, 84.0.

N-(2-((2-chlorophenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide 10

¹H NMR (400 MHz, CDCl₃) δ 8.88 (br s, 1H), 8.42 (d, *J* = 8.4 Hz, 1H), 7.60 (m, 2H), 7.46 (m, 2H), 7.32 (m, 2H), 7.23 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.7 (q, *J* = 38 Hz), 136.3, 135.6, 133.1, 132.2, 130.24, 130.22, 129.4, 126.8, 125.5, 122.0, 119.9, 115.6 (q, *J* = 287 Hz), 113.1, 94.3, 88.1.

N-(2-((3-chlorophenyl)ethynyl)phenyl)-2,2,2-trifluoroacetamide 1p

¹H NMR (400 MHz, CDCl₃) δ 8.80 (br s, 1H), 8.37 (d, *J* = 8.3 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.52 (m, 1H), 7.45 (m, 1H), 7.40 (m, 2H), 7.34 (m, 1H), 7.23 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4 (q, *J* = 37 Hz), 136.2, 134.6, 131.9, 131.3, 130.3, 129.9, 129.59, 129.56, 125.6, 123.4, 119.8, 115.7 (q, *J* = 287 Hz), 113.0, 96.4, 84.0.

N-(2-(thiophen-2-ylethynyl)phenyl)-2,2,2-trifluoroacetamide 1q

¹H NMR (400 MHz, CDCl₃) δ 8.77 (br s, 1H), 8.36 (d, J = 8.3 Hz, 1H), 7.55 (dd, J = 7.8, 1.4 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.39 (dd, J = 5.2, 1.0 Hz, 1H), 7.34 (dd, J = 3.6, 0.9 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4 (q, J = 37 Hz), 136.0, 132.9, 131.5, 130.0, 128.6, 127.5, 125.6, 121.4, 119.7, 115.7 (q, J = 287 Hz), 113.3, 91.2, 86.5.

N-(2-(hex-1-yn-1-yl)phenyl)-2,2,2-trifluoroacetamide 1r

¹H NMR (400 MHz, CDCl₃) δ 8.82 (br s, 1H), 8.33 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.9 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 2.52 (t, J = 7.0 Hz, 2H), 1.63 (m, 2H), 1.49 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4 (q, J = 37 Hz), 136.2, 131.6, 129.0, 125.3, 119.3, 115.7 (q, J = 287 Hz), 114.1, 99.7, 74.7, 30.6, 22.0, 19.2, 13.5.

N-(2-(cyclohexylethynyl)phenyl)-2,2,2-trifluoroacetamide 1s

¹H NMR (400 MHz, DMSO-d₆) δ 10.99 (br s, 1H), 7.48 (d, *J* = 7.4 Hz, 1H), 7.39 (m, 2H), 7.33 (m, 1H), 2.65 (m, 1H), 1.78 (m, 2H), 1.67 (m, 2H), 1.46 (m, 3H), 1.32 (m, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 154.9 (q, *J* = 36 Hz), 135.7, 132.2, 128.5, 127.5, 126.5, 120.8, 116.0 (q, *J* = 287 Hz), 99.8, 76.5, 31.9, 28.8, 25.3, 24.0.

3. General Procedures and Product Characterization

General Procedures

Procedure A for the synthesis of **3**: A mixture of *o*-ethynyltrifluoroacetanilide **1** (0.2 mmol), PdCl₂ (1.8 mg, 0.01 mmol, 5.0 mol %), Na₂CO₃ (22 mg, 0.2 mmol, 1.0 equiv) and isocyanide **2** (0.3 mmol, 1.5 equiv) in DMSO (1.0 mL) was stirred at room temperature for 12-48 h under air. After complete consumption of **1** as monitored by TLC analysis, the reaction mixture was diluted with H₂O (20 mL) and extracted with EtOAc (20 mL \times 3). The combined organic layers were washed with brine and concentrated. The residue was purified by chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford the product **3**.

Procedure B for the synthesis of 4: A mixture of *o*-ethynyltrifluoroacetanilide 1 (0.2 mmol), PdCl₂ (1.8 mg, 0.01 mmol, 5.0 mol %), KOAc (24 mg, 0.24 mmol, 1.2 equiv) and *tert*-butylisocyanide **2a** (34 μ L, 0.3 mmol, 1.5 equiv) in DMSO (1.0 mL) was stirred at room temperature for 12-18 h under air. EtOAc (20 mL) and water (20 mL) were added to the reaction mixture. The organic layer was separated, and the aqueous layer was extracted with EtOAc (20 mL × 2). The combined organic layers was washed with brine and concentrated under reduced pressure. The residue was purified by chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford the desired product **4**.

Product characterization

N-tert-butyl-2-phenyl-1*H*-indole-3-carboxamide 3aa²

White solid, 54 mg, 92% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.61 (br s, 1H), 7.71 (m, 3H), 7.50 (m, 2H), 7.41 (m, 2H), 7.15 (m, 1H), 7.08 (m, 1H), 7.06 (br s, 1H), 1.31 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.9, 136.6, 135.3, 131.8, 128.4,

128.3, 128.2, 127.3, 122.0, 119.9, 119.8, 111.3, 110.9, 50.3, 28.5; HRMS (ESI): Exact mass calcd for $C_{19}H_{21}N_2O [M+H]^+$ 293.1648, found 293.1649.

N-tert-butyl-5-methyl-2-phenyl-1H-indole-3-carboxamide 3ba

White solid, 54 mg, 88% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.49 (br s, 1H), 7.70 (m, 2H), 7.49 (m, 3H), 7.40 (m, 1H), 7.29 (d, J = 8.2 Hz, 1H), 6.98 (dd, J = 8.3, 1.3 Hz, 1H), 6.94 (br s, 1H), 2.40 (s, 3H), 1.30 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.1, 136.7, 133.8, 131.9, 128.5, 128.4, 128.3, 128.2, 127.6, 123.7, 119.4, 111.0, 110.4, 50.3, 28.5, 21.3; HRMS (ESI): Exact mass calcd for C₂₀H₂₃N₂O [M+H]⁺ 307.1805, found 307.1805.

N-tert-butyl-2-phenyl-5-trifluoromethyl-1H-indole-3-carboxamide 3ca

White solid, 55 mg, 77% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 12.12 (br s, 1H), 8.05 (s, 1H), 7.74 (m, 1H), 7.73 (m, 1H), 7.60 (d, *J* = 8.5 Hz, 1H), 7.54 (m, 2H), 7.47 (m, 2H), 7.12 (br s, 1H), 1.30 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.2, 139.0, 136.9, 131.0, 128.9, 128.6, 126.8, 125.4 (q, *J* = 269 Hz), 120.8 (q, *J* = 31 Hz), 118.4 (d, *J* = 3 Hz), 117.3 (d, *J* = 4 Hz), 112.2, 111.4, 50.5, 28.4; HRMS (ESI): Exact mass calcd for C₂₀H₂₀F₃N₂O [M+H]⁺ 361.1522, found 361.1525.

N-tert-butyl-5-fluoro-2-phenyl-1*H*-indole-3-carboxamide 3da

White solid, 54 mg, 88% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.77 (br s, 1H),

7.70 (m, 2H), 7.51 (m, 2H), 7.45 (m, 1H), 7.40 (m, 2H), 7.00 (m, 1H), 6.97 (br s, 1H), 1.29 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.5, 157.4 (d, *J* = 231 Hz), 138.9, 132.0, 131.4, 128.6, 128.58, 128.50, 127.7 (d, *J* = 11 Hz), 112.5 (d, *J* = 10 Hz), 110.8 (d, *J* = 5 Hz), 110.2 (d, *J* = 26 Hz), 104.5 (d, *J* = 2Hz), 50.3, 28.4; HRMS (ESI): Exact mass calcd for C₁₉H₂₀FN₂O [M+H]⁺ 311.1554, found 311.1557.

N-tert-butyl-5-chloro-2-phenyl-1*H*-indole-3-carboxamide 3ea

White solid, 55 mg, 85% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.86 (br s, 1H), 7.70 (m, 2H), 7.68 (m, 1H), 7.52 (m, 2H), 7.45 (m, 1H), 7.41 (d, *J* = 8.6 Hz, 1H), 7.16 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.06 (br s, 1H), 1.29 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.3, 138.5, 133.8, 131.2, 128.7, 128.50, 128.47, 128.45, 124.6, 122.0, 118.9, 112.9, 110.4, 50.4, 28.4; HRMS (ESI): Exact mass calcd for C₁₉H₂₀ClN₂O [M+H]⁺ 327.1259, found 327.1260.

N-tert-butyl-5-bromo-2-phenyl-1*H*-indole-3-carboxamide 3fa

White solid, 63 mg, 84% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.87 (br s, 1H), 7.83 (d, J = 1.8 Hz, 1H), 7.70 (m, 2H), 7.52 (m, 2H), 7.45 (m, 1H), 7.37 (m, 1H), 7.27 (dd, J = 8.6, 1.9 Hz, 1H), 7.05 (br s, 1H), 1.29 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.4, 138.3, 134.1, 131.2, 129.2, 128.7, 128.53, 128.51, 124.6, 122.0, 113.4, 112.6, 110.3, 50.4, 28.4; HRMS (ESI): Exact mass calcd for C₁₉H₂₀BrN₂O [M+H]⁺ 371.0754, found 371.0755.

N-tert-butyl-5,7-dimethyl-2-phenyl-1*H*-indole-3-carboxamide 3ga

White solid, 44 mg, 69% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.23 (br s, 1H), 7.71 (m, 2H), 7.50 (m, 2H), 7.43 (m, 1H), 7.36 (s, 1H), 6.78 (s, 1H), 6.72 (br s, 1H), 2.47 (s, 3H), 2.36 (s, 3H), 1.27 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.1, 137.1, 133.3, 132.0, 128.9, 128.7, 128.22, 128.17, 127.3, 124.4, 120.4, 117.1, 110.8, 50.2, 28.5, 21.3, 16.8; HRMS (ESI): Exact mass calcd for C₂₁H₂₅N₂O [M+H]⁺ 321.1961, found 321.1965.

N-tert-butyl-2-*p*-tolyl-1*H*-indole-3-carboxamide 3ha

White solid, 58 mg, 94% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.55 (br s, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.13 (m, 1H), 7.07 (m, 1H), 7.03 (br s, 1H), 2.37 (s, 3H), 1.31 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.1, 137.7, 136.7, 135.2, 128.9, 128.2, 127.4, 121.8, 119.9, 119.7, 111.2, 110.5, 50.3, 28.5, 20.8; HRMS (ESI): Exact mass calcd for C₂₀H₂₃N₂O [M+H]⁺ 307.1805, found 307.1807.

N-tert-butyl-2-(4-methoxylphenyl)-1H-indole-3-carboxamide 3ia

White solid, 59 mg, 91% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.52 (br s, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 8.7 Hz, 2H), 7.38 (d, J = 7.9 Hz, 1H), 7.13 (t, J = 6.9 Hz, 1H), 7.06 (m, 3H), 6.97 (br s, 1H), 3.82 (s, 3H), 1.32 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.1, 159.4, 136.9, 135.2, 129.7, 127.5, 124.1, 121.7, 119.9,

119.7, 113.9, 111.1, 109.9, 55.3, 50.3, 28.5; HRMS (ESI): Exact mass calcd for $C_{20}H_{23}N_2O_2 [M+H]^+$ 323.1754, found 323.1754.

N-tert-butyl-2-(4-acetamidophenyl)-1H-indole-3-carboxamide 3ja

White solid, 57 mg, 82% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.54 (br s, 1H), 10.10 (br s, 1H), 7.68 (m, 3H), 7.65 (m, 2H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.13 (m, 1H), 7.07 (m, 1H), 7.02 (br s, 1H), 2.08 (s, 3H), 1.31 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 168.4, 165.0, 139.3, 136.7, 135.2, 128.8, 127.4, 126.3, 121.8, 119.9, 119.7, 118.6, 111.2, 110.3, 50.3, 28.5, 24.0; HRMS (ESI): Exact mass calcd for C₂₁H₂₄N₃O₂ [M+H]⁺ 350.1863, found 350.1864.

N-tert-butyl-2-(4-acetylphenyl)-1H-indole-3-carboxamide 3ka

The reaction was performed at 50 °C. White solid, 51 mg, 76% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.77 (br s, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.55 (br s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.19 (m, 1H), 7.11 (m, 1H), 2.62 (s, 3H), 1.36 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 197.4, 165.0, 136.1, 135.73, 135.69, 134.6, 128.3, 127.8, 127.2, 122.7, 120.1, 119.8, 112.9, 111.5, 50.5, 28.5, 26.7; HRMS (ESI): Exact mass calcd for C₂₁H₂₃N₂O₂ [M+H]⁺ 335.1754, found 335.1756.

methyl 4-(3-(tert-butylcarbamoyl)-1H-indol-2-yl)benzoate 3la

The reaction was performed at 50 °C. White solid, 47 mg, 68% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.77 (br s, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.49 (br s, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.19 (m, 1H), 7.11 (m, 1H), 3.89 (s, 3H), 1.35 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.9, 164.9, 136.3, 135.7, 134.6, 129.1, 128.6, 128.0, 127.2, 122.7, 120.1, 119.8, 112.8, 111.5, 52.2, 50.5, 28.5; HRMS (ESI): Exact mass calcd for C₂₁H₂₃N₂O₃ [M+H]⁺ 351.1703, found 351.1708.

N-tert-butyl-2-(4-chlorophenyl)-1*H*-indole-3-carboxamide 3ma

White solid, 50 mg, 76% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.68 (br s, 1H), 7.74 (m, 2H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.57 (m, 2H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.33 (br s, 1H), 7.17 (m, 1H), 7.09 (m, 1H), 1.34 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.9, 135.4, 135.2, 132.7, 130.7, 129.8, 128.4, 127.2, 122.3, 120.1, 119.8, 111.6, 111.4, 50.5, 28.5; HRMS (ESI): Exact mass calcd for C₁₉H₂₀ClN₂O [M+H]⁺ 327.1259, found 327.1260.

N-tert-butyl-2-(4-bromophenyl)-1H-indole-3-carboxamide 3na

White solid, 64 mg, 86% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.68 (br s, 1H), 7.69 (m, 5H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.34 (br s, 1H), 7.17 (m, 1H), 7.09 (m, 1H), 1.34 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.9, 135.4, 135.2, 131.3, 131.1, 130.1, 127.2, 122.3, 121.3, 120.1, 119.7, 111.7, 111.4, 50.5, 28.5; HRMS (ESI): Exact mass calcd for C₁₉H₂₀BrN₂O [M+H]⁺ 371.0754, found 371.0755.

N-tert-butyl-2-(2-chlorophenyl)-1H-indole-3-carboxamide 3oa

White solid, 52 mg, 79% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.76 (br s, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.67 (m, 1H), 7.60 (m, 1H), 7.53 (m, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.19 (m, 1H), 7.13 (m, 1H), 6.01 (br s, 1H), 1.18 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 163.9, 135.4, 135.2, 133.3, 132.5, 131.4, 130.8, 129.6, 127.2, 126.3, 122.2, 120.6, 120.3, 111.4, 111.2, 49.9, 28.4; HRMS (ESI): Exact mass calcd for C₁₉H₂₀ClN₂O [M+H]⁺ 327.1259, found 327.1259.

N-tert-butyl-2-(3-chlorophenyl)-1H-indole-3-carboxamide 3pa

White solid, 50 mg, 76% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.72 (br s, 1H), 7.79 (s, 1H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 7.9 Hz, 1H), 7.45 (m, 3H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 1.36 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.9, 135.5, 134.4, 133.8, 133.1, 130.3, 127.7, 127.6, 127.1, 126.4, 122.5, 120.1, 119.8, 112.1, 111.4, 50.5, 28.5; HRMS (ESI): Exact mass calcd for C₁₉H₂₀ClN₂O [M+H]⁺ 327.1259, found 327.1260.

N-tert-butyl-2-(thiophen-2-yl)-1H-indole-3-carboxamide 3qa

White solid, 45 mg, 75% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.65 (br s, 1H), 7.62 (m, 3H), 7.42 (br s, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.17 (m, 2H), 7.08 (m, 1H), 1.38 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.5, 135.2, 133.3, 130.6, 127.4, 127.2, 127.0, 126.8, 122.3, 120.1, 119.7, 111.12, 111.11, 50.4, 28.6; HRMS (ESI):

Exact mass calcd for $C_{17}H_{19}N_2OS[M+H]^+299.1213$, found 299.1213.

N-tert-butyl-2-butyl-1H-indole-3-carboxamide 3ra

White solid, 47 mg, 88% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.30 (br s, 1H), 7.63 (m, 1H), 7.32 (m, 1H), 7.05 (m, 2H), 6.87 (br s, 1H), 2.98 (t, *J* = 7.6 Hz, 2H), 1.66 (m, 2H), 1.41 (s, 9H), 1.31 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.2, 142.8, 134.6, 126.1, 120.8, 119.7, 119.2, 110.9, 109.1, 50.3, 31.3, 28.9, 26.2, 21.9, 13.7; HRMS (ESI): Exact mass calcd for C₁₇H₂₅N₂O [M+H]⁺ 273.1961, found 273.1963.

N-tert-butyl-2-cyclohexyl-1H-indole-3-carboxamide 3sa

White solid, 53 mg, 87% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.21 (br s, 1H), 7.58 (m, 1H), 7.33 (m, 1H), 7.04 (m, 2H), 6.88 (br s, 1H), 3.41 (m, 1H), 1.66 (m, 10H), 1.40 (s, 9H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.2, 147.2, 134.7, 125.7, 120.7, 119.7, 119.0, 111.1, 108.0, 50.3, 35.6, 32.0, 28.9, 26.2, 25.6; HRMS (ESI): Exact mass calcd for C₁₉H₂₇N₂O [M+H]⁺ 299.2118, found 299.2120.

N-butyl-2-phenyl-1H-indole-3-carboxamide 3ab

 $PdCl_2$ (3.6 mg, 10 mol %) and Cs_2CO_3 (65 mg, 1 equiv) instead of Na_2CO_3 were employed. White solid, 30 mg, 51% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.67 (br

s, 1H), 7.72 (m, 4H), 7.48 (m, 2H), 7.40 (m, 2H), 7.16 (m, 1H), 7.09 (m, 1H), 7.24 (m, 2H), 1.47 (m, 2H), 1.31 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 165.2, 136.9, 135.4, 131.8, 128.4, 128.2, 128.1, 127.1, 122.1, 120.0, 119.8, 111.4, 110.1, 38.5, 31.2, 19.7, 13.7; HRMS (ESI): Exact mass calcd for C₁₉H₂₁N₂O [M+H]⁺ 293.1648, found 293.1649.

N-isopropyl-2-phenyl-1*H*-indole-3-carboxamide 3ac

PdCl₂ (3.6 mg, 10 mol %) and Cs₂CO₃ (65 mg, 1 equiv) instead of Na₂CO₃ were employed. White solid, 35 mg, 63% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.65 (br s, 1H), 7.73 (m, 1H), 7.71 (m, 1H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.48 (m, 2H), 7.40 (m, 2H), 7.16 (m, 1H), 7.09 (m, 1H), 4.12 (m, 1H), 1.10 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.5, 136.7, 135.4, 131.8, 128.4, 128.20, 128.15, 127.2, 122.1, 120.0, 119.8, 111.4, 110.2, 40.5, 22.3; HRMS (ESI): Exact mass calcd for C₁₈H₁₉N₂O [M+H]⁺ 279.1492, found 279.1490.

N-cyclohexyl-2-phenyl-1H-indole-3-carboxamide 3ad

PdCl₂ (3.6 mg, 10 mol %) and Cs₂CO₃ (65 mg, 1 equiv) instead of Na₂CO₃ were employed. White solid, 39 mg, 61% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.65 (br s, 1H), 7.73 (m, 1H), 7.71 (m, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.52 (m, 1H), 7.48 (m, 2H), 7.40 (m, 2H), 7.16 (m, 1H), 7.08 (m, 1H), 3.79 (m, 1H), 2.20 (m, 10H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.3, 136.7, 135.4, 131.8, 128.4, 128.2, 128.1, 127.2, 122.1, 119.9, 119.8, 111.3, 110.1, 47.6, 32.3, 25.2, 24.6; HRMS (ESI): Exact mass calcd for C₂₁H₂₃N₂O [M+H]⁺ 319.1805, found 319.1804.

N-(2,6-dimethylphenyl)-2-phenyl-1*H*-indole-3-carboxamide 3ae

The reaction was performed in the presence of PdCl₂ (3.6 mg, 10 mol %) and Cs₂CO₃ (65 mg, 1 equiv) instead of Na₂CO₃ at 50 °C. White solid, 39 mg, 57% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 11.82 (br s, 1H), 9.25 (br s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.80 (m, 2H), 7.49 (m, 3H), 7.42 (m, 1H), 7.21 (m, 1H), 7.16 (m, 1H), 7.10 (m, 3H), 2.25 (s, 6H); ¹³C NMR (125 MHz, DMSO-d₆) δ 164.2, 137.9, 135.7, 135.50, 135.45, 131.9, 128.5, 128.4, 128.3, 127.7, 127.1, 126.3, 122.2, 120.2, 119.9, 111.6, 109.8, 18.6; HRMS (ESI): Exact mass calcd for C₂₃H₂₁N₂O [M+H]⁺ 341.1648, found 341.1645.

N-(adamantan-1-yl)-2-phenyl-1H-indole-3-carboxamide 3af

White solid, 73 mg, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (br s, 1H), 8.16 (m, 1H), 7.64 (m, 2H), 7.48 (m, 3H), 7.35 (m, 1H), 7.22 (m, 2H), 5.28 (br s, 1H), 2.04 (m, 3H), 1.95 (m, 6H), 1.66 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 164.6, 137.9, 135.3, 131.7, 129.3, 128.9, 127.8, 123.1, 121.45, 121.42, 110.8, 110.7, 51.9, 41.7, 36.4, 29.5; HRMS (ESI): Exact mass calcd for C₂₅H₂₇N₂O [M+H]⁺ 371.2118, found 371.2118.

N-acetyl-N-tert-butyl-2-phenyl-1H-indole-3-carboxamide 4a

White solid, 58 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (br s, 1H), 8.13

(m, 1H), 7.61 (m, 2H), 7.50 (m, 3H), 7.45 (m, 1H), 7.35 (m, 2H), 2.05 (s, 3H), 1.40 (s, 9H); 13 C NMR (125 MHz, CDCl₃) δ 171.6, 169.6, 147.2, 135.2, 131.6, 130.0, 129.3, 128.6, 126.9, 124.0, 123.3, 121.4, 111.9, 111.5, 58.8, 28.5, 25.7; HRMS (ESI): Exact mass calcd for C₂₁H₂₂N₂NaO₂ [M+Na]⁺ 357.1573, found 357.1574.

N-acetyl-N-tert-butyl-5-methyl-2-phenyl-1H-indole-3-carboxamide 4b

White solid, 59 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (br s, 1H), 7.95 (s, 1H), 7.58 (m, 2H), 7.46 (m, 3H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.15 (d, *J* = 8.3 Hz, 1H), 2.50 (s, 3H), 2.03 (s, 3H), 1.36 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 169.8, 147.2, 133.6, 132.9, 131.8, 129.8, 129.3, 128.5, 127.3, 125.4, 121.1, 111.4, 111.2, 58.7, 28.4, 25.6, 21.8; HRMS (ESI): Exact mass calcd for C₂₂H₂₄N₂NaO₂ [M+Na]⁺ 371.1730, found 371.1732.

N-acetyl-*N*-tert-butyl-2-phenyl-5-trifluoromethyl-1*H*-indole-3-carboxamide 4c

White solid, 65 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (br s, 1H), 8.52 (s, 1H), 7.57 (m, 3H), 7.55 (m, 1H), 7.50 (m, 3H), 2.00 (s, 3H), 1.31 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 169.8, 148.4, 136.8, 131.0, 130.3, 129.3, 128.7, 126.7, 120.88, 120.85, 119.20, 119.17, 112.4, 112.0, 59.0, 28.3, 25.8; HRMS (ESI): Exact mass calcd for C₂₂H₂₁F₃N₂NaO₂ [M+Na]⁺ 425.1447, found 425.1448.

N-acetyl-N-tert-butyl-5-bromo-2-phenyl-1H-indole-3-carboxamide 4d

White solid, 61 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.57 (br s, 1H), 8.34 (d, J = 1.7 Hz, 1H), 7.56 (m, 2H), 7.49 (m, 3H), 7.42 (d, J = 8.6 Hz, 1H), 7.32 (d, J = 8.6 Hz, 1H), 2.01 (s, 3H), 1.32 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 171.2, 169.8, 147.8, 134.0, 131.1, 130.1, 129.3, 128.8, 128.6, 127.1, 124.1, 116.8, 113.0, 111.4, 58.9, 28.3, 25.7; HRMS (ESI): Exact mass calcd for C₂₁H₂₁BrN₂NaO₂ [M+Na]⁺435.0679, found 435.0680.

N-acetyl-*N*-tert-butyl-2-(4-methoxylphenyl)-1*H*-indole-3-carboxamide 4e

White solid, 55 mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (br s, 1H), 8.09 (m, 1H), 7.59 (m, 2H), 7.43 (m, 1H), 7.35 (m, 2H), 7.03 (m, 2H), 3.87 (s, 3H), 2.06 (s, 3H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 169.6, 161.0, 147.5, 135.1, 130.7, 127.0, 123.8, 123.6, 123.2, 121.3, 114.1, 111.4, 58.8, 55.4, 28.6, 25.6; HRMS (ESI): Exact mass calcd for C₂₂H₂₄N₂NaO₃ [M+Na]⁺ 387.1679, found 387.1682.

methyl 4-(3-(acetyl(tert-butyl)carbamoyl)-1H-indol-2-yl)benzoate 4f

The reaction was performed at 50 °C. White solid, 43 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (br s, 1H), 8.11 (m, 2H), 8.06 (m, 1H), 7.69 (m, 2H), 7.48 (m, 1H), 7.37 (m, 2H), 3.95 (s, 3H), 2.03 (s, 3H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 169.7, 166.5, 145.9, 136.1, 135.6, 131.1, 129.6, 129.4, 126.7, 124.2, 123.4, 121.1, 112.1, 111.9, 59.0, 52.4, 28.6, 25.6; HRMS (ESI): Exact mass calcd for C₂₃H₂₄N₂NaO₂₄ [M+Na]⁺ 415.1628, found 415.1630.

N-acetyl-N-tert-butyl-2-(4-bromophenyl)-1H-indole-3-carboxamide 4g

White solid, 42 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (br s, 1H), 8.05 (m, 1H), 7.63 (m, 2H), 7.52 (m, 2H), 7.46 (m, 1H), 7.35 (m, 2H), 2.02 (s, 3H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 169.6, 146.0, 135.3, 131.8, 130.9, 130.4, 126.7, 124.5, 124.2, 123.4, 121.1, 111.9, 111.7, 59.0, 28.6, 25.6; HRMS (ESI): Exact mass calcd for C₂₁H₂₁BrN₂NaO₂ [M+Na]⁺ 435.0679, found 435.0680.

4. Determination of the Oxygen Source in Product 3aa

When the reaction was performed in the presence of 10 equiv of H_2O^{18} under otherwise identical conditions described for the synthesis of **3**, **3aa** was obtained in 80% yield, in which about 60% of the product was O^{18} incorporated (eq 1). In a control experiment (eq 2), **1a** was replaced by **3aa**, and no oxygen exchange was detected in the recovered **3aa**. The result suggested that water was involved during the amide bond formation, not after that.

MS (ES+APCI) of 3aa

5. References

- (1) S. Cacchi, G. Fabrizi and P. Pace, J. Org. Chem., 1998, 63, 1001.
- (2) J. Peng, L. Liu, Z. Hu, J. Huang and Q. Zhu, Chem. Commun., 2012, 48, 3772.

6. Copies of NMR Spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

