ELECTRONIC SUPPORTING INFORMATION

Intramolecular carboboration of a carbonyl ligand to

form boroxycarbenes.

Celedonio M. Álvarez, Romen Carrillo, Raúl García-Rodríguez and Daniel Miguel*

GIR MIOMET, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, C/Prado de la Magdalena s/n., E-47071, Valladolid, Spain. Laboratorio de Rayos X y Materiales Moleculares, Departamento de Física Fundamental II, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, E-38204, La Laguna, Santa Cruz de Tenerife, Spain.

Table of Contents

1.	Materials and Methods	S2
2.	Experimental details for the preparation of manganese compounds 1, 3·TfO, 3·ClO ₄ , 5a, 5b, 6, 7, 8, 9, 10a and 10b	S2
3.	Experimental details for the preparation of rhenium compounds 6(Re), 7(Re), 8(Re) and 9(Re)	S8
4.	Crytallographic data of compounds 1, 3·TfO, 3·ClO ₄ , 5a, 6, 7(Re), 8, 8(Re), 9 <i>cis</i> , 9 <i>cis</i> (Re) and 10a	S10

Materials and Methods.

¹H NMR spectra were recorded at 400.13 or 300.13 MHz, ¹³C NMR spectra were recorded at 100.61 or 75.78 MHz, ³¹P NMR at 161.98 MHz and ¹⁹F NMR at 282.40 or 376.50 MHz. Chemical shifts are reported in ppm and referenced to the solvent peak and to a H₃PO₄ aqueous solution (85%) for ³¹P NMR experiments and referenced to CFCl₃ for ¹⁹F NMR. The temperature of the NMR was calibrated with methanol and ethylene glycol standards. All solvents were purified by standard techniques. ¹ Reactions were performed under nitrogen in Schlenk flasks. All filtrations were performed through Celite under nitrogen.

Experimental details for the preparation of manganese compounds 1, 3. TfO, 5a, 5b, 6, 7, 8, 9, 10a

<u>and 10b</u>.

Compounds 2 and 4 were prepared as previously described.²

• Synthesis of fac-[Mn(CO)₃κ₃(N,O,O')-{py-CH(OH)CH₂COCH₃}][OTf], 3·TfO

Pyridine-2-carboxaldehyde (0.780 g, 7.28 mmol) is solved in 50 ml of hexane and then [MnBr(CO)₅] (2.000 g, 7.28 mmol) is added. The reaction mixture was refluxed for 40 minutes. A brownish precipitate is formed, filtered, washed with hexane (3 x 15 ml), and dried under high vacuum. To a solution of fac-[MnBr(CO)₃(pyC(H)=O)] formed in the previous reaction (0.300 g, 0.920 mmol) in 30 ml of acetone, AgOTf (0.236 g, 0.920 mmol) was added. The resulting suspension was refluxed and stirred for 4h in the dark. Then solvent was removed and the solid extracted with CH₂Cl₂.Hexane is added and solvent partially removed. A yellow precipitate is formed, which is subsequently filtered. (0.371 g, 89%).

IR (**Me₂CO, cm⁻¹**): 2052, 1958, 1944 (CO).

IR (CH₂Cl₂, cm⁻¹): 2055, 1967, 1943 (CO), 1674 (C=O).

¹H NMR (r.t., 300.13 MHz, Me2CO-d6): 9.54 [br, 1H, OH], 9.25 [br, 1H, pyH⁶], 8.22 [a, 1H, pyH⁴], 7.88 [br, 1H, pyH³], 7.76 [br,1H, pyH⁵], 5.80 [br,1H, CH], 3.81 [d(J=19Hz),1H, CH₂], 3.60 [d(J=19Hz),1H, CH₂], 2.37 [s, 3H, CH₃].
Elemental Analysis: Found: C 34.63, H 2.31, N 3.01. Calc. for C₁₃H₁₁F₃MnNO₈S: C 34.45; H 2,45; N 3.09.
Crystalization conditions: CH₂Cl₂/ hexane at -20°C.

 ¹ Armarego, W. L. F.; Perrin, D. D. *Purification of Laboratory Chemicals*, 4th ed.; Butterworth-Heinemann: Oxford, 1996.
 ² C. M. Álvarez, R. Carrillo, R. García-Rodríguez, D. Miguel, *Chem. Commun.* 2011, 47, 12765.

• Synthesis of *fac*-[Mn(CO)₃κ₃(N,O,O')-{py-CH(OH)CH₂COCH₃}][ClO₄], 3· ClO₄

Pyridine-2-carboxaldehyde (0.780 g, 7.28 mmol) is solved in 50 ml of hexane and then [MnBr(CO)₅] (2.000 g, 7.28 mmol) is added. The reaction mixture was refluxed for 40 minutes. A brownish precipitate is formed, filtered, washed with hexane (3 x 15 ml), and dried under high vacuum. To a solution of *fac*-[MnBr(CO)₃(pyC(H)=O)] formed in the previous reaction (0.300 g, 0.920 mmol) in 30 ml of acetone, AgClO₄ (0.190 g, 0.920 mmol) was added. The resulting suspension was refluxed and stirred for 4h in the dark. Then solvent was removed and the solid extracted with CH₂Cl₂.Hexane is added and solvent partially removed. A yellow precipitate is formed, which is subsequently filtered. (0.329 g, 88%).

IR (**Me₂CO, cm⁻¹**): 2052, 1958, 1944 (CO).

IR (CH₂Cl₂, cm⁻¹): 2055, 1967, 1943 (CO), 1674 (C=O).

¹**H NMR (r.t., 300.13 MHz, Me2CO-***d6***):** 9.54 [br, 1H, O*H*], 9.25 [br, 1H, py*H*⁶], 8.22 [a, 1H, py*H*⁴], 7.88 [br, 1H, py*H*³], 7.76 [br,1H, py*H*⁵], 5.80 [br,1H, C*H*], 3.81 [d(*J*=19Hz),1H, C*H*₂], 3.60 [d(*J*=19Hz),1H, C*H*₂], 2.37 [s,3H, C*H*₃]. **Crystalization conditions:** CH₂Cl₂/ hexane at -20°C.

• Synthesis of *fac*-[Mn(CO)₃μ(O)κ₂(N,O)-(pyCH(O)CH₂COCH₃]₂, 1

To a solution of fac-[Mn(CO)₃ κ_3 (N,O,O')-{py-CH(OH)CH₂COCH₃}][OTf] (**3**·**TfO**) (0.200 g, 0.441 mmol) in 30 ml of acetone, an excess of K₂CO₃ (0.500 g, 3.618 mmol) is added. The solution was stirred for 2 h at room temperature. Then solvent was removed and solid was solved in CH₂Cl₂. Hexane was added to the transparent solution and solvent was evaporated to obtain compound **2** as a yellow solid. (0.119 g, 89%).

IR (**Me₂CO, cm⁻¹**): 2031, 2014, 1935, 1904 (CO).

IR (**CH₂Cl₂, cm⁻¹**): 2033, 2016, 1937, 1906 (CO), 1715 (C=O).

¹**H NMR (r.t., 300.13 MHz, Me₂CO-***d***₆):** 8.91 [d(*J*=5Hz), 2H, py*H*⁶], 7.57 [td(*J*=8, 1Hz), 2H, py*H*⁴], 7.34 [t(*J*=6Hz), 2H, py*H*⁵], 6.94 [d(*J*=8Hz), 2H, py*H*³], 5.18 [dd(*J*=10, 4Hz), 2H, C*H*], 2.85 [dd(*J*=14, 10Hz), 2H, C*H*₂], 2.35-2.29 [m, 8H, C*H*₃, C*H*₂].

 $\textbf{Elemental Analysis:} \ Found: C \ 47.49, H \ 3.39, N \ 4.79; Calc. \ for \ C_{24}H_{20}N_2O_{10}Mn_2: C \ 47.54, H \ 3.32, N \ 4.62.$

Crystalization conditions: CH_2Cl_2 / hexane at -20°C.

• Synthesis of boroxy-carbene, 5a

To a solution of fac-[Mn(CO)₃ μ (O) κ_2 (N,O)-(pyCH(O)CH₂COCH₃]₂ (1) (0.200 g, 0.330 mmol) in 20 ml of THF, 0.66 ml of 1.0 M de BEt₃ in hexane (0.660 mmol) were added. The reaction mixture was stirred at room temperature for 2 hours,

while solution changed its color from yellow to orange. Solvent was partially removed and upon hexane addition, compound **5a** precipitated as a yellow solid. (0.217 g, 82%).

IR (**THF**, **cm**⁻¹): 1938, 1846 (CO), 1681 (C=O).

IR (**CH**₂**Cl**₂, **cm**⁻¹): 1936, 1840 (CO), 1682 (C=O).

¹**H NMR (r.t., 400.13 MHz, Me₂CO-***d*₆): 9.10 [d(*J*=5Hz), 1H, py*H*⁶], 7.94 [t(*J*=8Hz), 1H, py*H*⁴], 7.61 [d(*J*=8Hz), 1H, py*H*³], 7.45 [m, 1H, py*H*⁵], 5.33 [m, 1H, CH], 3.36 [dd(*J*=20, 4Hz), 1H, CH₂CH], 3.29 [d(*J*=20Hz), 1H, CH₂CH], 3.00 [m, 2H, CH₂C=Mn], 2.15 [s, 3H, CH₃C=O], 0.90 [t(*J*=7Hz), 3H, CH₃CH₂C=Mn], 0.84 [t(*J*=7Hz), 3H, CH₃CH₂B], 0.73 [t(*J*=7Hz), 3H, CH₃CH₂B], 0.65-0.48 [m, 2H, CH₃CH₂B], 0.37 [m, 1H, CH₃CH₂B], -0.07 [m, 1H, CH₃CH₂B].

¹**H NMR** (**r.t., 400.13 MHz, THF-***d*₈): 9.08 [br, 1H, py*H*⁶], 7.81 [br, 1H, py*H*⁴], 7.42 [br, 1H, py*H*³], 7.32 [br, 1H, py*H*⁵], 5.22 [m, 1H, C*H*], 3.26 [m, 1H, C*H*₂CH], 3.06 [m, 1H, C*H*₂CH], 2.99 [m, 2H, C*H*₂C=Mn], 2.06 [s, 3H, C*H*₃C=O], 0.88 [br, 3H, C*H*₃CH₂C=Mn], 0.84 [br, 3H, C*H*₃CH₂B], 0.73 [br, 3H, C*H*₃CH₂B], 0.65-0.48 [m, 2H, CH₃C*H*₂B], 0.37 [m, 1H, C*H*₃C*H*₂B], -0.10 [m, 1H, C*H*₃C*H*₂B].

¹³C RMN (r.t., 100.61 MHz, THF-*d*₈): 341.49 [*C*=Mn], 230.22 [br, CO], 223.66 [br, CO], 216.69 [*C*=O], 165.09 [py*C*²],
150.99 [py*C*⁶], 138.02 [py*C*⁴], 123.08 [py*C*⁵], 120.26 [py*C*³], 74.93 [*C*H], 49.47 [*C*H₂CMn], 46.78 [*C*H₂CH], 30.03 [*C*H₃CO], 13.25 [br, *C*H₂B], 11.54 [br, *C*H₂B], 9.53 [*C*H₃], 9.21 [*C*H₃], 8.81 [*C*H₃].

Elemental Analysis: Found: C 53.95, H 6.32, N 3.68; Calc. for C₁₈H₂₅BMnNO₅: C 53.89, H 6.28, N 3.49.

Crystalization conditions: CH₂Cl₂/ hexane at -20°C.

• Synthesis of boroxy-carbene, 5b

To a solution of fac-[Mn(CO)₃ μ (O) κ_2 (N,O)-(pyCH(O)CH₂COCH₃]₂ (1) (0.200 g, 0.330 mmol) in 20 ml of THF, 0.66 ml of 1.0 M de BBu₃ in hexane (0.660 mmol) were added. The reaction mixture was stirred at room temperature for 2 hours, while solution changed its color from yellow to orange. Solvent was partially removed and upon hexane addition, compound **5a** precipitated as a yellow solid. (0.253 g, 79%).

IR (**THF**, **cm**⁻¹): 1938, 1845 (CO), 1682 (C=O).

¹H NMR (r.t., 400.13 MHz, THF-*d*₈): 9.07 [br, 1H, pyH⁶], 7.79 [br, 1H, pyH⁴], 7.42 [br, 1H, pyH³], 7.27 [br, 1H, pyH⁵],
5.18 [m, 1H, CH], 3.28 [m, 1H, CH₂CH], 3.09 [m, 1H, CH₂CH], 2.92 [m, 2H, CH₂C=Mn], 2.07 [s, 3H, CH₃C=O], 1.660.50 [m, 23H, CH₃CH₂C=Mn], 0.39 [m, 1H, CH₃CH₂B], -0.08 [m, 1H, CH₃CH₂B].

¹³C NMR (r.t., 100.61 MHz, THF-*d*₈): 341.63 [*C*=Mn], 230.10 [br, *CO*], 223.56 [br, *CO*], 216.67 [*C*=O], 165.00 [py*C*²],
150.85 [py*C*⁶], 138.05 [py*C*⁴], 123.01 [py*C*⁵], 120.13 [py*C*³], 74.86 [*C*H], 49.39 [*C*H₂CMn], 46.75 [*C*H₂CH], 30.03
[*C*H₃CO], 29.97 [*C*H₂], 29.05[*C*H₂], 28.91 [*C*H₂], 26.98 [*C*H₂], 26.79 [*C*H₂], 26.61 [*C*H₂], 22.07 [br, *C*H₂B], 21.29 [br, *C*H₂B], 13.94 [*C*H₃], 13.59 [*C*H₃], 13.25 [*C*H₃].

Elemental Analysis: Found: C 59.60, H 7.47, N 2.65; Calc. for C₂₄H₃₇BMnNO₅: C 59.40, H 7.68, N 2.89.

• Synthesis of fac-[Mn(CO)₃K₃(N,O,O')-{pyCH(OBF₃)CH₂COCH₃}], 6

To a solution of fac-[Mn(CO)₃ μ (O) κ_2 (N,O)-(pyCH(O)CH₂COCH₃]₂ (1) (0.100 g, 0.165 mmol) in 20 mL of CH₂Cl₂, BF₃·OEt₂ (42 μ L, 0.330 mmol) was added. The reaction mixture was stirred at room temperature for 2 hours and then solvent was partially removed under vacuum. Upon addition of hexane, compound 6 precipitated as a yellow solid. (0.089 g, 73%).

IR (Me₂CO, cm⁻¹): 2049, 1959, 1929 (CO).

IR (CH₂Cl₂, cm⁻¹): 2052, 1964, 1932 (CO), 1676 (C=O).

¹**H** NMR (r.t., 300.13 MHz, CDCl₃): 9.02 [d(J=5Hz), 1H, py H^6], 7.92 [td(J=8, 1Hz), 1H, py H^4], 7.48-7.39 [m, 2H, py H^3 , py H^5], 5.43 [d(J=5Hz), 1H, CH], 3.64 [dd(J=15, 5Hz), 1H, CH₂], 2.83 [d(J=20Hz), 1H, CH₂], 2.21 [s ,3H, CH₃].

¹**H NMR (r.t., 400.13 MHz, Me₂CO-***d*₆): 9.12 [d(*J*=5Hz), 1H, py*H*⁶], 8.10 [t(*J*=7Hz), 1H, py*H*⁴], 7.76 [d(*J*=7Hz), 1H, py*H*³], 7.63 [m, 1H, py*H*⁵], 5.41 [br,1H, C*H*], 3.51 [dd(*J*=20, 4Hz),1H, C*H*₂], 3.31 [d(*J*=20Hz), 1H, C*H*₂], 2.27 [s ,3H, C*H*₃].

¹⁹F NMR (r.t., 282.40 MHz, CDCl₃): -152.49 [br, 3F ¹⁰BF3, 3F ¹¹BF3].

¹⁹F NMR (r.t., 376.50 MHz, Me₂CO-*d*₆): -151.61 [br, 3F ¹⁰BF3, 3F ¹¹BF3].

Elemental Analysis: Found: C 38.61, H 2.88, N 3.73; Calc. for C₁₂H₁₀BF₃MnNO₅: C 38.85, H 2.72, N 3.78.

Crystalization conditions: CH₂Cl₂/ hexane at 0°C.

• Synthesis of fac-[Mn(CO)₃κ₃(N,O,O')-{pyCH(OCH₃)CH₂COCH₃}][OTf], 7

To a solution of fac-[Mn(CO)₃ μ (O) κ_2 (N,O)-(pyCH(O)CH₂COCH₃]₂ (1) (0.100 g, 0.165 mmol) in 30 ml of CH₂Cl₂, an excess of CH₃OTf (100 μ L, 0.912 mmol) was added. The reaction mixture was stirred at room temperature for 6 hours and solvent partially removed under vacuum. Addition of hexane makes compound **7** precipitate as a yellow solid, which was recrystallyzed in a mixture CH₂Cl₂/hexane. (0.088 g, 57%)

IR (**CH₂Cl₂, cm⁻¹**): 2056, 1967, 1944 (CO), 1670 (C=O)

¹**H NMR (r.t., 400.13 MHz, CD₂Cl₂):** 9.04 [br, 1H, pyH⁶], 8.03 [br, 1H, pyH⁴], 7.75-7.40 [m, 2H, pyH³, pyH⁵], 4.51 [s, 3H, OCH₃], 5.36 [br, 1H, CH], 3.58-3.02 [m, 2H, CH₂], 2.25 [br, 3H, CH₃].

¹**H NMR (r.t., 400.13 MHz, Me₂CO-***d*₆): 9.22 [br, 1H, py*H*⁶], 8.18 [m, 1H, py*H*⁴], 7.83 [br, 1H, py*H*³], 7.72 [m, 1H, py*H*⁵], 5.71 [br, 1H, C*H*], 3.97 [s, 3H, OC*H*₃], 3.79 [d(*J*=20Hz), 1H, C*H*₂], 3.54 [d(*J*=20Hz), 1H, C*H*₂], 2.35 [s, 3H, C*H*₃].

Elemental Analysis: Found: C 35.71, H 2.93, N 2.83; Calc. for C₁₄H₁₃F₃MnNO₈S: C 35.99, H 2.80; N 3.00.

• Synthesis of *fac*-[MnBr(CO)₃(pyCH₂OH)], 8

 $[MnBr(CO)_5]$ (2.000 g, 7.28 mmol) is added to a solution of Pyridine-2-methanol (0.794 g, 7.28 mmol) in 50 mL of hexane. The reaction mixture is refluxed for 90 minutes. La mezcla se calienta a reflujo durante 90 minutos. A brownish precipitate is formed, filtered, washed with hexane (3 x 15 ml), and dried under high vacuum. (2.149 g, 90%).

IR (**THF**, **cm**⁻¹): 2029, 1935, 1913 (CO).

¹**H NMR (r.t., 400.13 MHz, Me₂CO-***d*₆): 9.45 [br, 1H, OH], 9.07 [br, 1H, pyH⁶], 8.02 [br, 1H, pyH⁴], 7.62-7.55 [br, 2H, pyH³, pyH⁵], 5.29 [br, 1H, CH²], 5.14 [br, 1H, CH²].

Elemental Analysis: Found: C 33.13, H 2.11, N 4.36. Calc. for C₉H₇BrMnNO₄: C 32.96, H 2.15, N 4.27.

Crystalization conditions: CH₂Cl₂/ hexane at -20°C.

• Synthesis of *fac*-[Mn(CO)₃μ(O)κ₂(N,O)-(pyCH₂O)]₂, 9

To a solution of complex **8** (0.350 g, 1.07 mmol) in THF (30 mL) an excess of K_2CO_3 (1.5 g) was added. The reaction mixture was stirred at room temperature for 12 hours. Then it is filtered through kieselguhr and solvent partially removed under vacuum. Upon addition of hexane, compoud **9** precipitated as a yellow solid. (0.225 g, 85%).

IR (**THF**, **cm**⁻¹): 2031, 2012, 1934, 1914, 1902 (CO).

¹**H NMR (r.t., 400.13 MHz, Me₂CO-***d*₆): Major isomer (*cisoid*, 85%): 8.88 [d(*J*=5Hz), 2H, py*H*⁶], 7.55 [t(*J*=8Hz), 2H, py*H*⁴], 7.27 [m, 2H, py*H*⁵], 6.92 [d(*J*=8Hz), 2H, py*H*³], 4.77 [d(*J*=18Hz), 4H, C*H*₂]. Minor isomer (*transoid*, 15%): 9.25 [d(*J*=5Hz), 2H, py*H*⁶], 8.10 [t(*J*=8Hz), 2H, py*H*⁴], 7.83 [d(*J*=8Hz), 2H, py*H*³], 7.74 [m, 2H, py*H*⁵], 5.11 [d(*J*=16Hz), 2H, C*H*₂], 4.91 [d(*J*=16Hz), 2H, C*H*₂].

Elemental Analysis: Found: C 43.52, H 2.71, N 5.51. Calc. for C₁₈H₁₂Mn₂N₂O₈: C 43.75, H 2.45, N 5.67.

Crystalization conditions: CH₂Cl₂/ hexane at -20°C.

• Synthesis of boroxy-carbene, 10a

To a solution of complex **9** (0.035 g, 0.071 mmol) in THF (20 mL), an excess of BEt₃ (1.0 mL of a 1.0 M solution in hexane, 1 mmol) and an excess of PPh₃ (0.056 g, 0.213 mmol). The reaction mixture is stirred at room temperature for 6 hours. Then solvent is partially removed under vacuum and compound **10a** precipitated as a yellow solid upon hexane addition. (0.067 g, 78%).

IR (**THF**, **cm**⁻¹): 1933, 1853 (CO).

¹**H NMR** (**r.t., 400.13 MHz, THF-***d*₈): 8.81 [d(*J*=5Hz), 1H, py*H*⁶], 7.48-7.20 [m, 16H, PPh₃, py*H*⁴], 7.12 [m, 1H, py*H*⁵], 6.70 [d(*J*=7Hz), 1H, py*H*³], 4.59 [d(*J*=16Hz), 1H, OC*H*₂], 3.81 [d(*J*=16Hz), 1H, OC*H*₂], 3.56 [m, 1H, C*H*₂C=Mn], 3.27

[m, 1H, CH₂C=Mn], 1.07-0.99 [m, 6H, 2CH₃], 0.90-0.51 [m, 5H, CH₃, CH₃CH₂B], 0.58 [m, 1H, CH₃CH₂B], -0.07 [m, 1H, CH₃CH₂B].

¹³C NMR (r.t., 100.61 MHz, THF-*d*₈): 333.78 [d(*J*=28Hz), *C*=Mn], 231.24 [d(*J*=7Hz), *CO*], 225.08 [d(*J*=15Hz), *CO*],
162.32 [pyC²], 150.85 [pyC⁶], 136.18 [pyC⁴], 134.80-127.90 [18C, PPh₃], 122.94 [pyC⁵], 119.25 [pyC³], 70.88 [OCH₂],
48.84 [CH₂CMn], 12.73 [br, CH₂B], 12.05 [br, CH₂B], 9.81 [CH₃], 9.32 [CH₃], 8.54 [CH₃].

³¹P NMR (r.t., 161.98 MHz, THF-*d*₈): 47.63 (s).

Elemental Analysis: Found: C 65.41, H 6.17, N 2.49. Calc. for C₃₃H₃₆BMnNO₄P: C 65.26, H 5.97, N, 2.31.

Crystalization conditions: THF/ hexane at -20°C.

• Synthesis of boroxy-carbene, 10b

To a solution of complex **9** (0.035 g, 0.071 mmol) in THF (20 ml), an excess of BBu₃ (1.0 mL of a 1.0 M solution in ether, 1 mmol) and an excess of PPh₃ (0.056 g, 0.213 mmol). The reaction mixture is stirred at room temperature for 8 hours. Then solvent is partially removed under vacuum and compound **10b** precipitated as a yellow solid upon hexane addition and washed with hexane (3 x 15ml). (0.064 g, 65%).

IR (**THF**, **cm**⁻¹): 1933, 1853 (CO).

¹**H NMR (r.t., 400.13 MHz, THF-***d*₈): 8.79 [br, 1H, py*H*⁶], 7.48-7.19 [m, 16H, PPh3, py*H*⁴], 7.07 [br, 1H, py*H*⁵], 6.68 [br, 1H, py*H*³], 4.62 [d(*J*=16Hz), 1H, OC*H*₂], 3.81 [d(*J*=16Hz), 1H, OC*H*₂], 3.57 [m, 1H, C*H*₂C=Mn], 3.23 [m, 1H, C*H*₂C=Mn], 1.62-0.64 [m, 23H, 2BC*H*₂C*H*₂C*H*₃, C*H*₃C*H*₂C*H*₂C*H*₂C=Mn], 0.58 [m, 1H, C*H*₂B], -0.06 [m, 1H, C*H*₂B].

¹³C NMR (r.t., 100.61 MHz, THF-*d*₈): 334.00 [d(*J*=28Hz), *C*=Mn], 231.08 [d(*J*=7Hz), CO], 225.17 [d(*J*=15Hz), CO],
162.08 [pyC²], 150.64 [pyC⁶], 135.98 [pyC⁴], 134.80-127.90 [18C, PPh3], 122.72 [pyC⁵], 118.96 [pyC³], 70.62 [OCH₂],
55.30 [CH₂CMn], 29.80 [CH₂], 28.92 [CH₂], 28.70 [CH₂], 26.85 [CH₂], 26.71 [CH₂], 26.57 [CH₂], 21.98 [br, CH₂B],
21.21 [br, CH₂B], 13.89 [CH₃], 13.55 [CH₃], 13.23 [CH₃].

³¹P NMR (r.t., 161.98 MHz, THF-*d*₈): 47.98 (s).

Elemental Analysis: Found: C 67.93, H 7.19, N 2.28. Calc. for C₃₉H₄₈BMnNO₄P: C 67.74, H 7.00, N, 2.03.

Experimental details for the preparation of rhenium compounds 6(Re), 7(Re), 8(Re) and 9(Re).

• Synthesis of *fac*-[Re(CO)₃κ₃(N,O,O')-{pyCH(OBF₃)CH₂COCH₃}], 6(Re)

To a solution of fac-[Re(CO)₃µ(O) κ_2 (N,O)-(pyCH(O)CH₂COCH₃]₂ (**2**) (0.100 g, 0.115 mmol) in 20 mL of CH₂Cl₂, BF₃·OEt₂ (29 µL, 0.230 mmol) was added. The reaction mixture was stirred at room temperature for 2 hours and then solvent was partially removed under vacuum. Upon addition of hexane, compound 6 precipitated as a white solid. (0.105 g, 91%).

IR (Me₂CO, cm⁻¹): 2038, 1933, 1909 (CO).

IR (CH₂Cl₂, cm⁻¹): 2042, 1938, 1910 (CO), 1669 (C=O).

¹**H NMR (r.t., 400.13 MHz, Me₂CO-***d*₆): 8.97 [d(*J*=4Hz), 1H, py*H*⁶], 8.23 [td(*J*=8, 1Hz), 1H, py*H*⁴], 7.97 [d(*J*=8Hz), 1H, py*H*³], 7.66 [m, 1H, py*H*⁵], 5.74 [d(*J*=5Hz), 1H, CH], 3.81 [dd(*J*=20, 5Hz), 1H, CH₂], 3.65 [d(*J*=20Hz), 1H, CH₂], 2.38 [s, 3H, CH₃].

¹³C RMN (r.t., 100.61 MHz, Me₂CO- d_6): 224.65 [C=O], 196.57 [CO], 196.74 [CO], 196.36 [CO], 163.32 [pyC²], 153.30 [pyC⁶], 142.21 [pyC⁴], 126.43 [pyC⁵], 123.28 [pyC³], 74.82 [CH], 48.12 [CH₂], 32.09 [CH₃].

¹⁹F RMN (r.t., 282.40 MHz, Me₂CO-*d*₆): -152.92 [s, 3F ¹⁰BF₃], -152.98 [s, 3F ¹¹BF₃].

Elemental Analysis: Found: C 28.65, H 2.19, N 3.91; Calc. for C₁₂H₁₀BF₃ReNO₅: C 28.70, H 2.01, N 2.79.

Crystalization conditions: CH₂Cl₂/ hexane at -20°C.

• Synthesis of fac-[Re(CO)₃K₃(N,O,O')-{pyCH(OCH₃)CH₂COCH₃}][OTf], 7(Re).

To a solution of fac-[Re(CO)₃µ(O) κ_2 (N,O)-(pyCH(O)CH₂COCH₃]₂ (**2**) (0.100 g, 0.115 mmol) in 30 ml of CH₂Cl₂, an excess of CH₃OTf (100 µL, 0.912 mmol) was added. The reaction mixture was stirred at room temperature for 6 hours and solvent partially removed under vacuum. Slow diffusion of hexane at -20^oC yields colorless crystals of compound **7(Re)** suitable for X-ray diffraction. (0.082 g, 60%)

IR (**CH₂Cl₂, cm⁻¹**): 2046, 1940, 1928 (CO), 1660 (C=O)

¹**H NMR (r.t., 400.13 MHz, CDCl₃):** 8.85 [d(J=5Hz), 1H, py H^6], 8.07 [td(J=8, 2Hz), 1H, py H^4], 7.74 [d(J=8Hz), 1H, py H^3], 7.51 [m, 1H, py H^5], 5.86 [d(J=5Hz), 1H, CH], 4.20 [s, 3H, OCH₃], 3.90-3.40 [m, 2H, CH₂], 2.31[s, 3H, CH₃] **Elemental Analysis:** Found: C 27.98, H 2.11, N 2.43; Calc. for C₁₄H₁₃F₃ReNO₈S: C 28.09, H 2.19 N 2.34. **Crystalization conditions:** CH₂Cl₂/ hexane at -20°C.

• Synthesis of *fac*-[ReBr(CO)₃(pyCH₂OH)], 8(Re)

 $[\text{ReBr}(\text{CO})_5]$ (1.000 g, 2.46 mmol) is added to a solution of Pyridine-2-methanol (0.273 g, 2.50 mmol) in 50 mL of hexane. The reaction mixture is refluxed for 10 hours. A white precipitate is formed, filtered, washed with hexane (3 x 15 ml), and dried under high vacuum. (1.028 g, 91%).

IR (**THF**, **cm**⁻¹): 2025, 1917, 1893 (CO).

¹**H NMR (r.t., 400.13 MHz, Me₂CO-***d₆*): 9.18 [br, 1H, OH], 8.88 [d(*J*=5Hz), 1H, py*H*⁶], 8.12 [td(*J*=8, 2Hz), 1H, py*H*⁴], 7.75 [d(*J*=8Hz), 1H py*H*³], 7.59 [m, 1H py*H*⁵], 5.66 [d(*J*=15Hz), 1H, CH₂], 5.46 [d(*J*=15Hz), 1H, CH₂].

Elemental Analysis: Found: C 23.46, H 1.79, N 3.25. Calc. for C₉H₇BrReNO₄: C 23.54, H 1.54, N, 3.05.

Crystalization conditions: THF/ hexane at -20°C.

• Synthesis of *fac*-[Re(CO)₃μ(O)κ₂(N,O)-(pyCH₂O)]₂, 9(Re)

To a solution of complex 8(Re) (0.275 g, 0.60 mmol) in THF (30 mL) an excess of K₂CO₃ (1.5 g) was added. The reaction mixture was stirred at room temperature for 12 hours. Then it is filtered through kieselguhr and solvent partially removed under vacuum. Upon addition of hexane, compoud 9(Re) precipitated as a white solid. (0.118 g, 83%).

IR (**THF**, **cm**⁻¹): 2028, 2011, 1921, 1903, 1893 (CO).

¹**H** NMR (r.t., 400.13 MHz, Me₂CO-*d*₆): Major isomer (M, transoid, 70%); Minor isomer (m, cisoid, 30%) (M) [d(*J*=5Hz), 2H, py*H*⁶], 8.83 (m) [d(*J*=5Hz), 2H, py*H*⁶], 8.21 (M) [td(*J*=8, 2Hz), 2H, py*H*⁴], 7.98 (M) [d(*J*=8Hz), 2H, py*H*³], 7.74 (M) [m, 2H, py*H*⁵], 7.71 (m) [td(*J*=7, 1Hz), 2H, py*H*⁴], 7.35 (m) [m, 2H, py*H*⁵], 7.10 (m) [d(*J*=8Hz), 2H, py*H*³], 5.81 (M) [d(*J*=16Hz), 2H, C*H*₂], 5.43 (m) [d(*J*=17Hz), 2H, C*H*₂], 5.38 (M) [d(*J*=16Hz), 2H, C*H*₂], 5.10 (m) [d(*J*=17Hz), 2H, C*H*₂].

Elemental Analysis: Found: C 28.49, H 1.91, N 3.44. Calc. for C₁₈H₁₂Re₂N₂O₈: C 28.57, H 1.60, N 3.70.

Crytallographic data of compounds 1, 3. TfO, 3. ClO₄, 5a, 6, 7(Re), 8, 8(Re), 9cis and 10a

Intensity measurement was made with a Bruker AXS SMART 1000 diffractometer with graphite monochromatized Mo K α X-radiation and a CCD area detector. Raw frame data were integrated with the SAINT program.³ A semi-empirical absorption correction was applied with the program SADABS.⁴ The structures were solved by direct methods with SIR2002, ⁵ under WINGX, ⁶ and refined against F² with SHELXTL. ⁷ All non-hydrogen atoms were refined anisotropically unless otherwise stated. Hydrogen atoms were set in calculated positions and refined as riding atoms, with a common thermal parameter. Calculations were made with SHELXTL and PARST⁸.

Figure S1.- Perspective view of compound 1 (left), and 9cis (right), showing the atom numbering.

Figure S2.- Perspective view of compound $3ClO_4$ (left), and 6 (right), showing the atom numbering. Both the proton and the BF₃ group, are pointing towards the axial carbonyl ligand.

³ SAINT+. SAX area detector integration program. Version 6.02. Bruker AXS, Inc. Madison, WI, 1999.

⁴ G. M. Sheldrick, SADABS, Empirical Absorption Correction Program. University of Göttingen: Göttingen, Germany, 1997.

⁵ M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidory and R. Spagna, SIR2002, A program for automatic solution and refinement of crystal structures. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Cryst.* 1999, **32**, 115-119.

⁶ L.J. Farrugia, J. Appl. Cryst., 1999, **32**, 837-838.

⁷ G. M Sheldrick Acta Cryst. 2008, A64, 112-122. G. M. Sheldrick, SHELXTL, An integrated system for solving, refining, and displaying crystal structures from diffraction data. Version 5.1. Bruker AXS, Inc. Madison, WI, 1998.

⁸ (a) M. Nardelli, Comput. Chem., 1983, **7**, 95-97. (b) M. Nardelli, J. Appl. Crystallogr., 1995, **28**, 659.

Figure S3.- Perspective view of compound **3OTf** (left), and **7(Re)** (right), showing the atom numbering. Both the proton and the methyl group respectively, are pointing towards one of equatorial carbonyl ligands, not the axial one in these cases.

Figure S4.- Perspective view of compounds 8 (left) and 8(Re) (right), showing the atom numbering.

	1	3(CIO4)	3011	5a	6
formula	$C_{24}H_{20}Mn_2N_2O_{10}$	C12H11ClMnNO9	C13H11F3MnNO8S	C18H25BMnNO5	C12H10BF3MnNO5
$M_{\rm f}$	606.30	403.61	453.23	401.14	370.96
crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
a/Å	9.020(3)	14.101(2)	13.030(4)	14.745(5)	7.089(7)
b/Å	9.148(3)	9.0131(15)	8.432(3)	8.775(3)	7.997(6)
c/Å	17.351(6)	13.155(2)	16.566(5)	31.476(10)	13.897(10)
$\alpha/^{\circ}$	105.056(6)	90.00	90.00	90.00	97.627(16)
$\beta/^{\circ}$	90.211(6)	94.292(4)	105.772(6)	99.237(9)	96.696(15)
γ/°	109.425(6)	90.00	90.00	90.00	105.950(15)
V/Å ³	1297.5(8)	1667.3(5)	1751.4(10)	4020(2)	741.1(12)
T/K	298(2)	298(2)	298(2)	293(2)	293(2)
space group	$P\overline{1}$	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$	$P\overline{1}$
Ζ	2	4	4	8	2
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
μ (MoK α)/mm ⁻¹	1.032	0.997	0.946	0.683	0.947
reflns collected	12983	16251	11433	16037	7344
Indep. Refl.	6312	4135	2542	4935	3630
R _{int}	0.0256	0.0738	0.0392	0.0933	0.0181
$R_{I} (I > 2\sigma(I))$	0.0392	0.0511	0.0339	0.0916	0.0334
$wR(F^2)$ (all data)	0.1035	0.1387	0.0915	0.2124	0.0953
GOF on F^2	1.005	0.939	0.997	1.032	1.037
CCDC number	860498	860499	860500	860501	860502

Table S1.Crystal, measurement and refinement data for the compounds studied by X-ray diffraction (contd.)

	7(R e)	8	8(Re)	9cis	10a
formula	C14H13F3NO8ReS	C9H7BrMnNO4	C ₁₃ H ₁₅ BrNO ₅ Re	$C_{18}H_{12}Mn_2N_2O_8$	C37H44BMnNO5P
M_{f}	598.51	328.01	531.37	494.18	679.45
crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
a/Å	8.830(2)	16.534(6)	9.083(3)	10.874(2)	12.581(6)
b/Å	9.860(2)	11.294(4)	9.093(3)	10.940(2)	17.889(9)
c/Å	11.793(3)	13.542(5)	11.271(4)	15.741(4)	16.664(9)
$\alpha/^{\circ}$	109.086(4)	90.00	75.642(5)	90.00	90.00
$\beta/^{\circ}$	104.152(4)	114.688(5)	66.993(5)	91.706(4)	106.245(11)
γ/°	91.234(4)	90.00	74.222(5)	90.00	90.00
$V/Å^3$	935.0(4)	2297.7(13)	813.9(4)	1871.8(7)	3601(3)
T/K	298(2)	293(2)	298(2)	293(2)	298(2)
space group	$P\overline{1}$	C2/c	$P\overline{1}$	C2/c	$P2_1/n$
Ζ	2	8	2	4	4
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
μ (MoK α)/mm ⁻¹	6.681	4.623	9.938	1.401	0.452
reflns collected	8209	8735	6731	7187	28738
Indep. Refl.	3803	2117	3080	1723	6614
R _{int}	0.0266	0.0872	0.0384	0.0387	0.0593
$R_I (I > 2\sigma(I))$	0.0229	0.0481	0.0289	0.0304	0.0527
$wR(F^2)$ (all data)	0.0593	0.1019	0.0717	0.0814	0.1781
GOF on F^2	1.057	0.841	0.987	0.981	0.979
CCDC number	860503	860504	860505	860506	860507