Computational details:

The magnetic exchange interaction between the Gd(III) centers in the non-radical bridged complex has been evaluated using the following Hamiltonian relation,

$$\widehat{H} = -2J\,\widehat{S}_{Gd}\,\widehat{S}_{Gd}$$

J represents the Isotropic exchange coupling constant and S_I , S_2 are the spins of Gd (III) centers. *J* values are computed from the energy differences between the high spin (E_{HS}) state, which is calculated using single determinant wave functions and low spin (E_{BS}) state, determined using Broken Symmetry (BS) approach developed by Noodleman.^{1, 2} The BS approach was proved to be handy in evaluating the J values to a good estimate in variety of complexes. All the calculations are performed using hybrid B3LYP³ functional with a combination of CSDZ ECP on Gd⁴ and TZV⁵ triple- ζ basis set on other atoms as implemented in the Gaussian 09 suite of programs.⁶ In the case of radical bridged dinuclear Gd(III) complex, the magnetic interaction between the metal-radical and Gd(III)...Gd(III) interaction has to be taken into account. Four different configurations (all spins up, spin of down on N₂, spin down on Gd_A, spin down on Gd_B) have been computed to obtain the values of J_1 and J_2 .²

	HS	BS1	BS2	BS3		< S ² >	•	
1	-4291.32197	-4291.32370	4291.3229	4291.3229	63.7782	49.7794	7.781	7.781
2	-4291.33551	-4291.33558	-	-	56.0281	7.0295	-	-
[Gd(Hbpz ₃) ₂ (dtbsq)](3)	-2211.03014	-2211.03036	-	-	21.0189	14.0180	-	-
[Gd(NITBzImH) ₂ (NO ₃) ₃](4)	-1999.09573	-1998.92771	-	-	20.0690	13.0578	-	-
[Gd(hfac)(IM2py)](5)	-3640.35909	-3640.35918	-	-	20.0284	13.0288	-	-
[Gd(NITBzImH)4](ClO4)3(6)	-1423.30279	-1423.30284	-	-	20.0393	13.0393	-	-

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, $\langle S^2 \rangle$ values for different radical systems.

Table S2: DFT computed spin densities of selected atoms of complexes 1 and 2.

	Coi	nplex (1)			Comp	lex (2)
Atom specification		Spin de	nsities		Spin de	ensities
	HS	BS1	BS2	BS3	HS	BS
Gd1	7.0119	7.0727	7.0337	-7.0948	7.0425	7.0571
Gd2	7.0152	7.0751	-7.0966	7.0364	7.0425	-7.0571
07	0.0005	-0.0001	0.0003	0.0002	-0.0001	-0.0003

N8	-0.0088	-0.0038	-0.0087	0.0037	-0.0095	-0.0095
N9	-0.0059	-0.0068	-0.0058	0.0067	-0.0104	-0.0104
N10	0.4733	-0.5366	0.5021	0.5082	-0.0208	-0.0011
N71	0.4831	-0.5478	0.5208	0.5104	-0.0208	0.0011
O76	0.0005	0.00003	0.0001	0.0003	-0.0001	0.0003
N77	-0.0085	-0.0038	0.0037	-0.0083	-0.0095	0.0095
N78	-0.0062	-0.0071	0.0070	-0.0062	-0.0104	0.0104

Table S3: DFT computed spin densities of selected atoms of complexes 3, 4, 5 and 6.

	Complex 3			Complex 4			Complex 5			Complex 6	
Atom specificati	Spin de	ensities	Atom specificati	Spin de	ensities	Atom specificati	Spin de	ensities	Atom specificati	Spin d	ensities
on	HS	BS									
Gd1	7.0487	7.0537	Gd1	7.0358	7.0364	Gd1	7.0220	7.0318	Gd1	7.0337	7.0269
02	0.2204	-0.2265	02	0.0000	-0.0002	O21	-0.0013	-0.0032	O2	0.1364	-0.1460
O3	0.1954	-0.2031	N4	-0.0048	-0.0044	O22	-0.0019	-0.0019	O3	0.4759	-0.4756
N5	0.0056	0.0057	07	0.2824	-0.2858	O23	-0.0019	-0.0024	N4	0.2964	-0.3015
N13	-0.0295	-0.0296	08	0.3949	-0.3941	O24	-0.0023	-0.0024	N5	0.2267	-0.2266
N20	-0.0224	-0.0272	N9	0.2983	-0.3006	O25	-0.0005	-0.0026	N6	-0.0185	0.0069
N36	0.0021	0.0012	N10	0.2983	-0.2978	O26	-0.0010	-0.0022	O39	-0.0007	-0.0008
N44	0.0127	0.0102	N11	-0.0564	0.0472	N27	0.3251	-0.3321	N41	-0.0052	-0.0056
			O45	-0.0027	-0.0041	N28	0.3163	-0.3171	O44	-0.0006	-0.0004
			O46	-0.0051	-0.0050				N46	-0.0048	-0.0049
			O49	-0.0053	-0.0057				O49	-0.0004	-0.0005
			O50	-0.0039	-0.0037				N51	-0.0062	-0.0057
			O53	-0.0055	-0.0076						
			O54	-0.0057	-0.0066						

Figure S1: Computed spin density plot for complexes 3, 4, 5 and 6.

Figure S2: Computed magnetic orbitals of the Gd(III) in Complex 1.

<u>Mechanism- Overlap between 4f-orbitals of two Gd(III) ions and πp_{v}^{*} of N_{2}^{3-} </u>

Figure S3. Form overlap integral values (Table S6 and S7), we infer that three 4f orbitals [(a) $f_{x(x}2_{-3y}2)$, (b and c) $f_{y(y}2_{-3x}2)$, (d) $f_{z(x}2_{-y}2)$] overlap with πp_y^* orbital of $N_2^{3^-}$ plays a prominent in deciding the interaction as antiferromagnetic and this can be evidenced from the superimposed figure shown above. The overlap of $f_{y(y}2_{-3x}2)$ with πp_y^* orbital is found to be prominent in both Gd(III) ions whereas the $f_{x(x}2_{-3y}2)$ overlap is found to be prominent in Gd₁ and $f_{z(x}2_{-y}2)$ in the case of Gd₂.

Figure S3: Qualitative Molecular diagram for complex 1.

Complexes	$J(\mathrm{cm}^{-1})$	Ref
[Cu ^{II} Gd ^{III} {pyCO(OEt)pyC(OH)(OEt)py} ₃](ClO ₄) ₂ ·EtOH	-0.32	7
[Mn ^{II} Gd ^{III} {pyCO(OEt)pyC(OH)(OEt)py} ₃](ClO ₄) ₂ ·EtOH	-1.7	7
[Ni ^{II} Gd ^{III} {pyCO(OEt)pyC(OH)(OEt)py} ₃](ClO ₄) ₂ ·EtOH	-0.22	7
[LCo(MeOH)Gd(NO ₃) ₃]	0.45	8
$L^{1}Fe(CH_{3}OH)Gd(NO_{3})_{3}(CH_{3}OH)_{2}$	0.50	9
$L^{1}Fe((CH_{3})_{2}CO)Gd(NO_{3})_{3}$	0.41	9
$L^{2}Fe((CH_{3})_{2}CO)Gd(NO_{3})_{3}$	0.08	9
$[Gd_2Ni_2(pro)_4(NO_3)_6(CH_3CN)_4]$	0.15	10
[LVOGd(hfa) ₂ (CH3OH)] ₂	0.46	11
$[L^2V(O)\{(CH_3)_2CO\}Gd(NO_3)_3]$	-2.6	12

Table S4: Exchange coupling values for certain {3d-4f} complexes.

Magneto-structural correlations (Dihedral Correlation)

Figure S4. Magneto-structural correlation developed by varying the Gd-N-Gd-N dihedral angle.

The magnetic coupling between Gd_1 and $\text{N}_2^{3^2}$ has been taken as J_{1a} and J_{1b} in the case of Gd_2 . The developed correlation by varying the dihedral angle (Gd-N-Gd-N) is shown in the above figure, in which J_{1a} is denoted in red lines and J_{1b} in black lines whereas J_2 (interaction between 2 Gd(III) atoms) is denoted by blue lines. Here the dihedral is varied by moving the Gd₂ atom out of the Gd₂N₂ plane without affecting the position of Gd₁. Upon varying the dihedral, J_{1a} remains unaffected whereas J_{1b} and J_2 vary constantly. This variation routes from the large difference between the overlap between the 4f-orbitals and πp_y^* (Table S7 and S9).

Table S5:	Spin	densities	and NPA	charges of	different	atoms in	complex 1
	~ ~ ~ ~ ~ ~			B			

Distance	N1	N2
(N-N)		
1.440	0.488	0.498
1.420	0.480	0.490
1.400	0.473	0.483
1.380	0.466	0.474
1.360	0.456	0.465
1.340	0.446	0.455
1.320	0.434	0.443

Electronic Supplementary Material (ESI) for Chemical Communications
Lieutonic Supplementary Material (LOI) for Orientical Communications
This journal is @ The Royal Society of Chemistry 2012

1.300	0.421	0.431
1.278	0.409	0.417
1.260	0.395	0.402
1.240	0.378	0.385

Distance	Gd1	Gd2	N1	N2
(N-N)				
1.400 (1)	1.743	1.700	-0.813	-0.793
1.380	1.734	1.689	-0.806	-0.788
1.320	1.693	1.640	-0.777	-0.759
1.278	1.665	1.600	-0.748	-0.731
1.240	1.636	1.570	-0.717	-0.701

÷
J_{lb}
and
J_{la}
', (.
nt.
ısta
cor
ng
ilqi
coi
to
ing
puc
spe
DITE
1 č
ex
lqn
Co
Е.
ion
elat
orre
e c
ance c
distance c
for distance c
es for distance c
alues for distance c
b) values for distance c
(S_{ab}) values for distance c
gral (Sab) values for distance c
ntegral (Sab) values for distance c
\mathfrak{p} integral (S_{ab}) values for distance c
erlap integral (S_{ab}) values for distance c
Overlap integral (Sab) values for distance c
S6: Overlap integral (Sab) values for distance c
ole S6: Overlap integral (Sab) values for distance c
Table S6: Overlap integral (Sab) values for distance c

f_{a^2} -0.01925 $f_{a(2,3,3)}$ 0.04579 $f_{a(2,3,3)}$ -0.03830 f_{a^2} f_{a^2} -0.03830 f_{a^2} f_{a^2} -0.03831 f_{a^2,a^2} 0.01346 f_{a^2} 0.01346 f_{a^2} 0.01346 f_{a^2} 0.00535 f_{a^2} 0.00531 f_{a^2,a^2,a^2} 0.0130 f_{a^2,a^2,a^2} 0.00470 f_{a^2,a^2,a^2} 0.00532 f_{a^2,a^2,a^2} 0.00339 f_{a^2,a^2,a^2} 0.00513 f_{a^2,a^2,a^2} 0.00481 f_{a^2,a^2,a^2} 0.00722 f_{a^2,a^2,a^2} 0.00339 f_{a^2,a^2,a^2,a^2} 0.05322 f_{a^2,a^2,a^2} 0.01575 f_{a^2,a^2,a^2} 0.01722 f_{a^2,a^2,a^2} 0.03348 f_{a^2,a^2,a^2,a^2} 0.03692 f_{a^2,a^2,a^2,a^2} 0.01575 f_{a^2,a^2,a^2,a^2} 0.01329 f_{a^2,a^2,a^2,a^2} 0.02330 $f_{a^2,a^2,a^2,a^2,a^2,a^2,a^2,a^2,a^2,a^2,$	f_{xz^2}	πp_y^*	-0.01664	1.36	f_{xz^2}	πp_y^*	0.02371	1.32	f_{xz^2}	πp_y^*	0.00315	1.278	f_{xz^2}	πp_y^*	0.02413
f_3 0.01346 f_3 0.01136 f_3 0.00136 f_3 0.00535 f_3 0.00531 $f_{a(2-3)}$ 0.01493 $f_{a(2-3)}$ 0.00431 $f_{a(2-3)}$ 0.00433 $f_{a(2-3)}$ 0.00335 $f_{a(3-3)}$ 0.00339 $f_{a(2-3)}$ 0.00613 $f_{a(2-3)}$ 0.04274 $f_{a(2-3)}$ 0.04232 $f_{a(2-3)}$ 0.00339 $f_{a(3-3)}$ 0.00339 $f_{a(2-3)}$ 0.03692 $f_{a(2-3)}$ 0.04313 $f_{a(2-3)}$ 0.04323 $f_{a(2-3)}$ 0.01423 $f_{a(2-3)}$ 0.01329 $f_{a(2-3)}$ 0.01329 $f_{a(2-3)}$ 0.01339 $f_{a(2-3)}$ 0.00995 $f_{a(2-3)}$ 0.01451 $f_{a(2-3)}$ 0.01452 $f_{a(2-3)}$ 0.01232 $f_{a(2-3)}$ 0.01329 $f_{a(2-3)}$ 0.01336 $f_{a(2-3)}$ 0.01362 $f_{a(2-3)}$ 0.01362 $f_{a(2-3)}$ 0.01362 $f_{a(2-3)}$ 0.01363 $f_{a(2-3)}$ 0.01363 $f_{a(2-3)}$ 0.01363 $f_{a(2-3)}$ 0.01363 $f_{a(2-3)}$	f_{yz^2}		-0.01925		$f_{x(x^{2-3}y^{2})}$		0.04579		$f_{x(x^{2-3y^{2}})}$		-0.03830		f_{xyz}		-0.02868
	f_{z^3}		0.01346		f_{z^3}		0.01180		f_{z^3}		0.01175		f_{z^3}		-0.00531
f_{xx} 0.00613 $f_{y(x^2,3y^2)}$ 0.04274 $f_{x(y^2,3y^2)}$ 0.04773 $f_{y(x^2,3y^2)}$ 0.03395 $f_{xy(x^2,3y^2)}$ 0.05232 f_{xyz} 0.00481 f_{xyz} 0.00722 $f_{y(x^2,3y^2)}$ 0.03548 $f_{yyz^2,3y^2)$ 0.05323 f_{xyz} 0.01575 f_{xyz} 0.01425 f_{yyz} 0.03548 f_{yyz} 0.03692 f_{xyz} π_{yy} 0.01425 f_{yyz} f_{yyz} 0.03548 f_{yyz} 0.01836 f_{xyz} π_{yy} 0.01425 f_{xyz} π_{yy} 0.00571 f_{yyz} 0.01836 f_{xyz} π_{yy} 0.01362 f_{xy} f_{yyz} 0.00571 f_{yyz} 0.01836 f_{xyz} π_{yy} 0.01362 f_{xy} f_{yyz} 0.00571 f_{xyz} 0.01836 f_{xyz} f_{xyz} π_{yy} f_{xyz} π_{yy} f_{xyz} f_{xyz} f_{xyz} 0.01836 f_{xyz} f_{xyz} π_{yy} f_{xyz} f_{xyz} f_{xyz} f_{xyz} 0.01836 f_{xyz} f_{xyz} f_{xyz} f_{xyz} f_{xyz} f_{xyz} f_{xyz} 0.01603 f_{xyz} </td <td>$f_{z(x^{2}\text{-}y^{2})}$</td> <td></td> <td>0.01493</td> <td></td> <td>f_{yz^2}</td> <td></td> <td>0.00970</td> <td></td> <td>f_{yz^2}</td> <td></td> <td>0.00575</td> <td></td> <td>f_{yz^2}</td> <td></td> <td>0.00249</td>	$f_{z(x^{2}\text{-}y^{2})}$		0.01493		f_{yz^2}		0.00970		f_{yz^2}		0.00575		f_{yz^2}		0.00249
	f_{xyz}		0.00613		$f_{y(y^2\cdot 3x^2)}$		0.04274		$f_{y(y^2-3x^2)}$		0.04773		$f_{x(x^{2,3y^2})}$		0.03399
	$f_{x(x^{2}\cdot 3y^{2})}$		0.05232		$f_{\rm xyz}$		0.00481		$f_{\rm xyz}$		0.00722		$f_{y(y^{2,3}x^{2})}$		-0.03548
	$f_{y(y^2\cdot 3x^2)}$		0.03692		$f_{z(x^{2-y^2})}$		0.01575		$f_{z(x^{2-y^2})}$		0.01425		$f_{z\left(x^{2,y^{2}\right)}}$		0.02320
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f_{xz^2}	πp_y^*	0.00995		f_{xz^2}	πp_y^*	-0.01451		f_{xz^2}	πp_y^*	-0.01362		f_{xz^2}	πp_y^*	-0.00673
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f_{yz^2}		0.01836		$f_{\rm xyz}$		0.01119		$f_{\rm xyz}$		-0.00591		f_{xyz}		-0.00041
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f_{z^3}		-0.00817		f_{z^3}		-0.01063		f_{z^3}		-0.01279		f_{z^3}		-0.00230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{z(x^{2}\text{-}y^{2})}$		0.02466		f_{yz^2}		-0.00942		f_{yz^2}		-0.00242		f_{yz^2}		0.00127
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{x(x^{2-3y^2})}$		0.01603		$f_{y(y^2\cdot 3x^2)}$		-0.06184		$f_{y(y^2\cdot 3x^2)}$		-0.06682		$f_{y\left(y^{2}\text{-}3x^{2}\right)}$		-0.06964
$f_{y(y^{2}\cdot 3x^{2})} \qquad -0.0634 \qquad f_{x(x^{2}\cdot 3y^{2})} \qquad 0.01069 \qquad f_{x(x^{2}\cdot 3y^{2})} \qquad -0.00055 \qquad f_{z(x^{2}\cdot y^{2})} \qquad -0.00601 \qquad -0.00601$	f_{xyz}		-0.01277		$f_{z(x^{2-y^2})}$		-0.02493		$f_{z(x^{2-y^2})}$		-0.02275		$f_{z(x^{2,y^2})}$		0.00302
	$f_{y(y^2\cdot 3x^2)}$		-0.0634		$f_{x(x^{2-3}y^{2})}$		0.01069		$f_{x(x^{2-3y^{2}})}$		-0.00055		$f_{z(x^{2,y^2)}}$		-0.00601

$\left(\begin{array}{c} 1\\ p \end{array} \right)$
5
an
J_{la}
<u> </u>
ť
an
nst
S
ğ
ill
Inc
ŏ
Ę
п ^в
ndi
Do
es
Ю
1
X
ple
[III]
ŭ
ш.
nc
atic
el
ю
l c
dra
he
di.
for
SS 1
lu
va
(q
$\widehat{\mathbf{S}}_{a}$
al
Ĕ
nte
p i
rla
ve
0
5
ē
ab
Ë

-0.01178 0.022082 -0.01478 -0.02019 -0.04391 0.044373 -0.01553	0.030052 -0.00057 0.004117 0.013074 -0.05986 -0.02653 -0.0345
жр _y *	πp _v *
$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{xyz} \\ f_{xyz} \\ f_{x(y^2-3x^2)} \\ f_{x(x^2-3y^2)} \\ f_{x(x^2-y^2)} \end{array}$	$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{y(y^{2-3}x^2)} \\ f_{y(y^{2-3}x^2)} \\ f_{xyz} \\ f_{xyz} \end{array}$
13.6	
-0.00964 0.002887 -0.01559 -0.02076 0.047755 0.044404 -0.01629	0.024332 0.006456 0.005635 0.01611 -0.06055 -0.02937 0.002866
πp _y *	πp _v *
$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{z^3} \\ f_{xyz} \\ f_{xyz} \\ f_{x(x^2-3x^2)} \\ f_{x(x^2-3y^2)} \\ f_{z(x^2-y^2)} \end{array}$	$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{x(x^{2-3y^2})} \\ f_{y(y^{2-3x^2})} \\ f_{y(y^{2-3x^2})} \\ f_{z(x^{2-y^2})} \\ f_{xyz} \end{array}$
2	
-0.01264 -0.0056 -0.01433 -0.01973 0.050831 -0.03949 -0.01566	0.015593 0.009635 0.00628 0.017923 -0.06267 -0.02729 0.012418
лр _y *	πp _v *
$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{z^3} \\ f_{xyz} \\ f_{x(y^{2,3x^2)}} \\ f_{x(x^{2,3y^2)}} \\ f_{x(x^{2,3y^2)}} \end{array}$	$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{x(x^{2,3y^2})} \\ f_{y(y^{2,3x^2)}} \\ f_{z(x^{2,y^2})} \\ f_{xyz} \end{array}$
4	
-0.01664 -0.01925 0.01346 0.01493 0.01493 0.0613 0.05232 0.03692	0.00995 0.01836 -0.00817 0.02466 0.01603 -0.01277 -0.0634
ар _у *	πp _v *
$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{z}_{x} \\ f_{z(x^2,y^2)} \\ f_{x(yz} \\ f_{x(y^2,3x^2)} \\ f_{y(y^2,3x^2)} \end{array}$	$\begin{array}{c} f_{xz^2} \\ f_{yz^2} \\ f_{z^3} \\ f_{z(x^{2-3y^2})} \\ f_{x(y^{2-3y^2})} \\ f_{xyz} \\ f_{y(y^{2-3x^2})} \end{array}$
0 Gd1	Gd2

0.001416	-0.00047	-0.00188	-0.000496	6.818E-05	0.0011658	0.0005559	-0.000714	-0.000186	0.0012764	-0.000269	7.693E-05	-0.00075	-0.000398	-0.002057	-3.58E-05	0.002802	0.0009067	2.769E-05	-0.001506
f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^{2-3x^{2})}}$	$f_{x(x^{2-3y^{2})}}$	f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2-y^{2}})}$	f_{xyz}	$f_{\nu(\nu^{2}\text{-}3x^{2})}$
f_{xz^2}							f_{yz^2}							f_{z^3}					
1.278																			
0.00256	-0.000188	-0.00339	-0.001098	0.0001526	0.0015879	0.0005359	-0.001476	-0.00042	0.0023283	0.0006721	9.294E-05	-0.000945	-0.000378	-0.002559	-0.000569	0.0034652	0.0012885	0.000138	-0.001208
f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{\gamma(\gamma^{2-3}x^{2})}$
f_{xz^2}							f_{yz2}							f_{z^3}					
1.32																			
0.005901	0.000525	-0.005179	-0.00417	0.0002087	0.0020709	0.0000511	-0.003104	-0.000997	0.0030758	0.0024185	0.0002817	-0.00084	-5.95E-05	-0.002654	-0.000828	0.0022352	0.0020252	0.0003188	-0.000412
f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$	f_{xz^2}	f_{yz^2}	f_z^3	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{\nu(\nu^2-3x^2)}$
f_{xz^2}							f_{yz2}							f_{z^3}					
1.36																			
-0.01465	-0.000359	0.0029013	0.0076368	-0.000112	0.0014042	0.0003957	0.0076368	-0.000724	-0.001588	-0.002268	-0.000464	-0.001084	0.0001319	0.0029013	0.0009341	0.0007919	-0.001588	0.0005178	-0.0005932
f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2,y^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^2)}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2,y^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$

 f_{yz^2}

-0.00068

 $f_{x(x^{2-3y^2})}$

 $f_{x(x^{2-3y^2})} \quad \text{-}0.000444$

 $f_{x(x^{2,3}y^{2})} \quad 0.0000319$

0.0001651

 $f_{x(x^{2-3y^2})}$

 f_{z^3}

Table S8: Overlap integral (S_{ab}) values for distance correlation in complex 1 corresponding to coupling constant J_2 .

 f_{xz^2}

1.4

7.014E-05	0.000512	-0.000344	-0.000218	-0.00034	-0.000547	0.0008658	-0.000468	0.0029845	-0.00056	-0.000203	-0.000984	5.044E-05	0.0001434	0.0006775	0.0007042	-0.000993	-0.00046	-0.000117	0.0004589	5.012E-05	0.0004642
f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z(x^{2}\text{-}v^{2})}$	$f_{\rm xyz}$	$f_{y(y^2-3x^2)}$	$f_{x(x^{2,3}y^{2})}$	f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}
$f_{y(y^2.3x^2)}$							$f_{x(x^2-3y^2)}$							$f_{\rm xyz}$							$f_{z(x^2-}$
-5.86E-05	0.0003092	-0.00027	-0.000127	-0.000534	-0.000788	0.0008628	-0.000522	0.0027463	-0.000682	-6.04E-05	-0.00129	-0.000276	9.336E-05	0.0007726	0.001057	-0.001207	-0.000556	-0.000307	0.0002236	-5.61E-05	0.0005271
f_{xz2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2-y^2})}$	$f_{\rm xyz}$	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2-y^2})}$	$f_{\rm xyz}$	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}
$f_{z(x^{2}.}$							$f_{x(x^2.}^{-2.}$							f_{xyz}							$f_{y(y^2-3x^2)}$
-0.000295	0.0001167	-0.000146	-0.000085	-0.000779	-0.000864	0.0011173	-0.000512	0.0024302	-0.000917	-0.000333	-0.001513	-0.000346	0.0000017	0.0009255	0.0012591	-0.00099	-0.000938	-0.00056	-0.000156	-0.000164	0.0007226
f_{xz2}	$f_{\rm yz2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	$f_{x vz}$	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{\nu(\nu^{2}\text{-}3x^{2})}$	$f_{x(x^{2,3}y^{2})}$	f_{xz^2}	$f_{\rm yz2}$	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	$f_{\rm xyz}$	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}
$f_{z(x^2, \ldots}$							$f_{x(x^{2})}^{3y^{2}}$							f_{xyz}							$f_{y(y^2-3x^2)}$
0.0003957	0.0001282	0.0001651	0.0001319	-0.000889	0.0003516	0.0013567	-0.000359	0.0012951	0.0009341	-0.000724	0.0001596	-0.001558	0.0001282	0.0014042	-0.001558	-0.0005932	-0.001084	0.0008753	-0.001211	0.0003516	-0.000112
f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	$f_{\rm xyz}$	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(\gamma^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2-y^2})}$	$f_{\rm xyz}$	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}
$f_{z(x^{2}\text{-}}_{y^{2})}$							$f_{x(x^{2}-3y^{2})}$							f_{xyz}							$f_{y(y^2.}$

	0.00177	، ب	f , 0.00100		f , 0.000171	0 000350	, t	
	-0.01043	13.6 f_{xz^2} f_{xz^2}	f _{xz} 2 -0.01301	$10 f_{xz^2}$	f _{xz} 2 -0.01401	-0.01465 4 f_{xz^2}	f_{xz^2}	f_{xz^2}
		ling constant J_2 .	1 corresponding to coup	on in Complex	es for dihedral correlation	integral (Sab) value	e S9: Overlap	Tabl
-0.000428	$f_{x(x^{2-3y^{2}})}$	-0.000551	$f_{x(x^{2}-3y^{2})}$	-0.000753	$f_{x(x^{2,3}y^{2})}$	-0.000889	$f_{x(x^{2-3}y^{2})}$	
0.0004825	$f_{y(y^2-3x^2)}$	0.0006543	$f_{y(y^2-3x^2)}$	0.0007173	$f_{y(y^2-3x^2)}$	0.0008753	$f_{y(y^2\cdot 3x^2)}$	
0.0002081	f_{xyz}	0.0004723	f_{xyz}	0.0007971	$f_{\rm xyz}$	0.0011235	f_{xyz}	
-0.000107	$f_{\mathbf{z}(x^{2},y^{2})}$	-0.000161	$f_{z(x^{2-y^2})}$	-9.62E-05	$f_{z(x^{2-\nu^2})}$	-0.000464	$f_{z(x^{2-\nu^2})}$	
-0.000156	f_{z^3}	1.964E-05	f_{z^3}	0.0003537	f_{z^3}	0.0005178	f_{z^3}	
-0.000865	f_{yz^2}	-0.0000-	f_{yz^2}	-0.001038	f_{yz^2}	0.0001596	f_{yz2}	

z^2	-0.01465	4	f_{xz^2}	f_{xz^2}	-0.01401	10	f_{xz^2}	f_{xz^2}	-0.01301	13.6	f_{xz^2}	f_{xz^2}	-0.01043
	-0.000359			f_{yz2}	0.002171			f_{yz^2}	-0.00102			$f_{x(x^{2-3}y^{2})}$	-0.00177
	0.0029013			f_{z^3}	0.006629			f_{z^3}	0.00912			f_{z^3}	0.01154
	0.0076368			$f_{z\left(x^{2}-y^{2}\right)}$	0.007243			$f_{z(x^{2-y^2})}$	0.006789			f_{yz2}	0.005636
	-0.000112			f_{xyz}	-0.00045			f_{xyz}	-0.0011			$f_{y(y^2 \text{-} 3x^2)}$	-0.00154
	0.0014042			1 _{y(y} 2- 3x ²)	-0.00138			$f_{y(y^2\cdot 3x^2)}$	0.002411			$f_{z(x^{2-y^2})}$	0.00237
	0.0003957			$f_{x(x^{2-3y^2})}$	0.00062			$f_{x(x^{2-3y^2})}$	0.001479			f_{xyz}	0.001379
	0.0076368		$f_{\rm yz2}$	f_{xz^2}	-0.00364		f_{yz^2}	f_{xz^2}	-0.00333		f_{yz^2}	f_{xz^2}	-0.00327
	-0.000724			f_{yz2}	0.000809			f_{yz^2}	0.000588			$f_{x(x^{2-3y^2})}$	0.000414
	-0.001588			f_z^3	0.002006			f_{z^3}	0.002696			f_{z^3}	0.004029
	-0.002268			$f_{z(x^{2-y^2})}$	0.002119			$f_{z(x^{2-y^2})}$	0.001903			f_{yz^2}	0.001858
	-0.000464			f_{xyz}	-0.00065			f_{xyz}	-0.00083			$f_{\nu(\nu^{2-3x^2)}}$	-0.00113
	-0.001084			1y(y ² - 3x ²)	0.000422			$f_{y(y^2\cdot 3x^2)}$	0.000453			$f_{z(x^{2-y^2})}$	0.000501
	0.0001319			$f_{x(x^{2-3y^2})}$	0.000244			$f_{x(x^{2-3y^2})}$	0.000506			f_{xyz}	0.000645

 f_{yz^2}

 $0 \quad f_{xz^2}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

-0.00277	0.000433	0.003017	0.001602	-0.00096	0.000126	0.000516	0.000471	0.000453	-0.00018	-0.00033	-0.00051	-0.00137	-0.00116	0.000143	0.002058	0.001655	0.000101	-0.00181	0.000237	0.000599
f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(\gamma^2\cdot 3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$
f_{z^3}							$f_{z(x^2,}$							$f_{x(x^{2}-3y^{2})}$						
-0.00258	0.000501	0.001648	0.001432	-0.00065	0.000116	0.000427	-0.00017	-0.00036	-0.00033	5.04E-05	0.000728	0.001163	0.001186	0.000292	0.001928	0.00133	0.000348	-0.0016	0.000355	0.000413
f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{\gamma(\gamma^{2}\cdot 3x^{2})}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}\nu^{2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$
f_{z^3}							$f_{z(x^{2,}}$							$f_{x(x^2.}$						
-0.00279	0.000392	0.001137	0.00153	-0.00056	0.00047	0.000258	-0.00025	0.000851	-0.00023	-6.5E-05	0.000803	-0.00066	0.001237	0.000359	0.001213	0.001066	0.000539	-0.00159	0.001501	0.000227
f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^2-y^2)}$	f _{xyz}	¹ y(y ² - 3x ²)	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^2-y^2)}$	f _{xyz}	¹ y(y ² - 3x ²)	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	$f_{z^{3}}$	$f_{z(x^{2}\text{-}v^{2})}$	f _{xyz}	¹ y(y ² - 3x ²)	$f_{x(x^{2-3y^2})}$
f_{z^3}							$f_{z(x^2.}$							$f_{x(x^{2}-3y^{2})}$						
0.0029013	0.0009341	0.0007919	-0.001588	0.0005178	- 0.0005932	0.0001651	0.0003957	0.0001282	0.0001651	0.0001319	-0.000889	0.0003516	0.0013567	-0.000359	0.0012951	0.0009341	-0.000724	0.0001596	-0.001558	0.0001282
f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{\nu(\nu^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z(x^{2-\nu^2})}$	f_{xyz}	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^2)}$
f_{z^3}							$f_{z(x^2.}$							$f_{x(x^{2}-3y^{2})}^{3y^{2}}$						

-0.00089	0.000869	0.001213	0.000605	-0.00066	0.000106	0.000609	-0.0002	-0.00121	-0.001	0.000196	0.000859	0.000519	0.000351
f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{y(y^2-3x^2)}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2}\text{-}y^{2})}$	f_{xyz}	$f_{\gamma(\gamma^{2}\text{-}3x^{2})}$	$f_{x(x^{2-3y^{2}})}$
f_{xyz}							$f_{y(y^2)}^{-2}$						
-0.00117	0.001288	0.001145	0.00089	-0.00095	0.000121	0.00061	-0.00037	-0.00133	-0.00095	-5.3E-06	0.000934	0.000515	0.000475
f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2,y^2})}$	f_{xyz}	$f_{y(y^{2-3x^2})}$	$f_{x(x^{2-3y^2})}$	f_{xz^2}	f_{yz^2}	f_{z^3}	$f_{z(x^{2,y^2})}$	f_{xyz}	$f_{\gamma(\gamma^{2-3x^2})}$	$f_{x(x^{2-3y^2})}$
f_{xyz}							$f_{y(y^2,3x^2)}$						
-0.00133	0.000753	0.000849	0.001042	-0.00096	0.001169	0.00047	-0.00044	-0.00021	-0.00087	-0.00026	0.001073	-0.00141	0.000642
f_{xz^2}	$f_{\gamma z^2}$	f_{z^3}	$f_{z\left(x^{2}-y^{2}\right)}$	f _{xyz}	1 _{y(y} 2- 3x ²)	$f_{x(x^{2,3y^2})}$	f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z\left(x^{2}-y^{2}\right)}$	f _{xyz}	1 _{y(y} 2- 3x ²)	$f_{x(x^{2,3}y^2)}$
$f_{\rm xyz}$							$f_{y(y^2.3x^2)}$						
0.0014042	-0.001558	0.0005932	-0.001084	0.0008753	-0.001211	0.0003516	-0.000112	0.0001596	0.0005178	-0.000464	0.0011235	0.0008753	-0.000889
f_{xz^2}	$f_{\nu z^2}$	f_{z^3}	$f_{z(x^{2-y^2})}$	$f_{x\nu z}$	$f_{y(y^2\cdot 3x^2)}$	$f_{x(x^{2-3}y^{2})}$	f_{xz^2}	f_{yz2}	f_{z^3}	$f_{z(x^{2-y^2})}$	f_{xyz}	$f_{y(\sqrt{2}-3x^2)}$	$f_{x(x^{2-3y^2})}$
f_{xyz}							f _{y(y} 2. _{3x²)}						

References

- 1. L. Noodleman, J. Chem. Phys., 1981, 74, 5737.
- E. Ruiz, S. Alvarez, A. Rodriguez-Fortea, P. Alemany, Y. Pouillon and C. Massobrio, in "Magnetism: Molecules to Materials", Vol. II ed J. S. Miller and M. Drillon, Wiley-VCH, Weinheim, 2001, pp 227. с.
 - 3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 4. T. R. Cundari and W. J. Stevens, J. Chem. Phys., 1993, 98, 5555.
- (a) A. Schafer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; (b) A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, **100**, 5829. S.
- Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. s Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. lyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. . 0
 - A. N. Georgopoulou, R. Adam, C. P. Raptopoulou, V. Psycharis, R. Ballesteros, B. Abarca and A. K. Boudalis, Dalton. Trans., 2010, 39, 5020.
 - 8. J. -P. Costes, F. Dahan, J. Garcia-Tojal, Chem. Eur. J. 2002, 8, 5430.
- 9. J. -P. Costes, J. M. C. Juan, F. Dahan, F. Dumestre and J. –P. Tuchagues, *Inorg. Chem.* 2002, **41**, 2886.
- 10. S. Igarashi, S. -I. Kawaguchi, Y. Yukawa, F. Tuna and R. E. P. Winpenny, Dalton. Trans., 2009, 3140.
- 11. J. -P. Costes, S. Shova, J. M. C. Juan and N. Suet, Dalton. Trans., 2005, 2830.
- 12. J. -P. Costes, F. Dahan, B. Donnadieu, J. Garcia-Tojal and J. -P Laurent, Eur. J. Inorg. Chem. 2001, 363.