Electronic Supplementary Information for:

Stereocomplex of poly(lactide)s with chain end modification: simultaneous resistances to melting and thermal decomposition

Hiroharu Ajiro,^{*a,b*} Yi-Ju Hsiao,^{*a*} Tran Hang Thi,^{*c*} Tomoko Fujiwara, *^{,*d*} Mitsuru Akashi*^{*a,b*}

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan. Fax:+81-6-6879-7359;

Tel: +81-6-6879-7356; E-mail: akashi@chem.eng.osaka-u.ac.jp

^b The Center for Advanced Medical Engineering and Informatics, Osaka University

^c Faculty of Technology of Organic Chemistry, College of Chemistry, Ministry of Industry, Tien Kien, Lam Thao, Phu Tho, Vietnam

^d Department of Chemistry, The University of Memphis

Contents	page
1. Experimental procedure	2
2. ¹ H NMR spectra	5
3. FT-IR/ATR spectra	7
4. SEC traces	9

1. Experimental procedure

1-1.) Materials.

L-lactide (LLA; Musashino Chemical Laboratory, Ltd., Japan) and D-lactide (DLA; Musashino Chemical Laboratory, Ltd., Japan) were recrystallized from ethyl acetate, and then dried *in vacuo* at room temperature for 24h. Benzyl alcohol (Tokyo Chemical Industry, Ltd., Japan) was distilled with CaH₂ for purification. Thionyl chloride (SOCl₂), 3,4-dihydroxycinnamic acid (DHCA), acetic anhydride (Ac₂O) were used without purification.

1-2.) Measurements.

The number average of molecular weight of PLLA was determined by size exclusion chromatography (SEC). A JASCO Chem NAV system was used with polystyrene standards at 40 °C, equipped with PU-2080, AS-2055, CO-2065, and RI-2031. Two commercial columns (TSKgel SuperH4000 and TSKgel GMH_{XL}) were connected in series and tetrahydrofran (THF) was used as an eluent. ¹H NMR spectra were measured with a NMR spectrometer (JEOL FX400) at 400 MHz and 600MHz.

1-3.) Synthesis of poly(L-lactide) (PLLAb)

To the round bottom flask, LLA (2 g, 13.9 mmol) was dissolved in 2 mL of toluene under N_2 atmosphere, then benzyl alcohol (36 μ L, 0.347 mmol) and SnOct₂ (28 mg, 0.0694 mmol) were combined to heat up at 120 °C for 2 hr. After the reaction, the product was dissolved in chloroform and purified by re-precipitation over methanol twice. The yield was 92 %.

1-4.) Synthesis of poly(D-lactide) (PDLAb)

To the round bottom flask, DLA (10 g, 69.4 mmol) was dissolved in 10 mL of toluene under N_2 atmosphere, then benzyl alcohol (180 mL, 1.73 mmol) and SnOct₂ (70 mg, 0.173 mmol) were

combined to heat up at 120 °C for 2 hr. After the reaction, the product was dissolved in chloroform and purified by re-precipitation over methanol twice. The yield was 83 %.

1-5.) Synthesis of 3,4-diacetoxycinnamic acid (DACA)

DACA was prepared according to the literature.^[S1] To the round bottom flask, DHCA (10 g, 55.5 mmol) was dissolved in 20 mL of dry pyridine under N₂ atmosphere at 0 °C. After 30 min, 30 mL of acetic anhydride (318 mmol) was added to stir for 30 min at 0 °C. Then the reaction mixture was heated up to 130 °C for 5 hr. After the reaction, the solvent was evaporated and recrystallized from toluene. The obtained compound was washed by 0.1 N HCL repeatedly. The yield was 50 %.

1-6.) Synthesis of 3,4-diacetoxycinnamoyl chloride (DACC)

DACC was prepared according to the literature .^[S1] To the round bottom flask, DACA (0.264 g, 1 mmol) was dissolved in 0.6 mL of dichloromethane. Then, 0.5 mL of SOCl₂ and 0.79 μ L of dimethylformamide (DMF) were added to heat up to 60 °C for 7 hr. The reaction mixture was directly transfered to the next reaction without further purification.

1-7.) Synthesis of DACA-PLLAb

DACA conjugation with PLLAb was achieved according to the literature.^[S1] 0.525 g of PLLAb was dissolved into 1.875 mL of dichloromethane and 0.094 mL of pyridine. The mixture was then, it was introduced into DACC (0.23 g, 0.83 mmol) at 0 °C to stir for 1.5 hr. The reaction mixture was kept to

stir at room temperature for 24 hr. After the reaction, the product was washed by 0.1 N HCl repeatedly and reprecipitated in ethanol.

1-8.) Synthesis of DACA-PDLAb

DACA conjugation with PDLAb was achieved according to the literature.^[S1] 0.525 g of PLLAb was dissolved into 1.875 mL of dichloromethane and 0.094 mL of pyridine. The mixture was then, it was introduced into DACC (0.23 g, 0.83 mmol) at 0 °C to stir for 1.5 hr. The reaction mixture was kept to stir at room temperature for 24 hr. After the reaction, the product was washed by 0.1 N HCl repeatedly and reprecipitated in ethanol.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

2. ¹H NMR spectra of polymers.

Figure S1. ¹H NMR spectrum of PLLAb in CDCl₃ at r.t. (600 MHz).

Figure S2. ¹H NMR spectrum of PDLAb in CDCl₃ at r.t. (600 MHz).

Figure S3. ¹H NMR spectrum of DACA-PLLAb in CDCl₃ at r.t. (400 MHz).

Figure S4. ¹H NMR spectrum of DACA-PDLAb in CDCl₃ at r.t. (400 MHz).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2012

3. FT-IR/ATR spectra of polymers

Figure S10. FT-IR/ATR spectrum of PDLAb.

Figure S11. FT-IR/ATR spectrum of DACA-PLLAb.

Figure S12. FT-IR/ATR spectrum of DACA-PDLAb.

4. SEC charts of polymers

Figure S5. SEC chart of PLLAb in CHCl₃.

Figure S6. SEC chart of PDLAb in CHCl₃.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

References

[S1] T. H. Thi, M. Matsusaki, and M. Akashi, Chem. Commn., 2008, 3918-3920.